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Abstract. Interest in using the higher harmonic generation of ultrasonic guided wave modes for nondestructive
evaluation continues to grow tremendously as the understanding of nonlinear guided wave propagation has
enabled further analysis. The combination of the attractive properties of guided waves with the attractive proper-
ties of higher harmonic generation provides a very unique potential for characterization of incipient damage,
particularly in plate and shell structures. Guided waves can propagate relatively long distances, provide access
to hidden structural components, have various displacement polarizations, and provide many opportunities for
mode conversions due to their multimode character. Moreover, higher harmonic generation is sensitive to chang-
ing aspects of the microstructures such as to the dislocation density, precipitates, inclusions, and voids. We
review the recent advances in the theory of nonlinear guided waves, as well as the numerical simulations
and experiments that demonstrate their utility. © 2015 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.
OE.55.1.011002]
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1 Introduction
Nonlinear ultrasonic nondestructive evaluation uses interrog-
ation signals at frequencies other than the excitation
frequency to detect changes in structural integrity and char-
acterize degradation of materials. Nonlinear ultrasonic meth-
odologies provide improved sensitivity to damage and the
ability to identify incipient damage relative to linear meth-
ods. In general, linear ultrasonic methods provide good sen-
sitivity to macroscale damage such as long fatigue cracks.
However, in many cases, once damage appears at the macro-
scale, the remaining life is short, severely limiting mainte-
nance decisions. Thus, characterization of incipient
damage could facilitate a paradigm shift in operations of
structural systems from schedule-based to condition-based
maintenance that would ultimately enhance safety and
reduce life cycle costs. Nonlinear ultrasonics is a broad dis-
cipline1,2 which encompasses many specialized techniques
reliant upon nonlinear material behavior to detect and/or
characterize incipient damage. Some of these include nonlin-
ear resonant ultrasound spectroscopy,3 nonlinear elastic
wave spectroscopy,4–6 and second-harmonic generation.7

Modeling relies upon both classical and nonclassical8 non-
linear effects such as hysteresis. Early investigations focused
on using higher harmonic generation for characterizing
material microstructure.9–11 The contributions of elastic non-
linearity and dislocations were examined for bulk waves.12–14

Many studies over the years have employed second-har-
monic generation to characterize microstructural changes,
for example, associated with fatigue, creep, or thermal
aging. A recent article15 provides a thorough review of sec-
ond-harmonic generation measurements. The overwhelming
majority of the work reviewed in Refs. 1, 2, and 15 involves

bulk waves, and to a lesser extent, Rayleigh surface waves.
However, over the course of the last 15 to 20 years, nonlinear
ultrasonic guided waves have emerged as a powerful tool for
characterization of incipient damage in structures comprised
plates, pipes/tubes, rods, and rails. The advantages of
nonlinear guided waves are the union of the advantages of
nonlinear ultrasonics already described (i.e., improved sen-
sitivity and capability to detect incipient damage) and guided
waves (e.g., volumetric coverage, long propagation distan-
ces, single-sided access, inspection speed, and inspection
of inaccessible domains). Further advantages could be real-
ized by implementing noncontact methods such as laser
excitation and laser Doppler vibrometer measurements.
However, due to the dispersive multimodal character of
guided waves, they present a number of analytical challenges
that bulk waves do not, and the likelihood of performing a
successful inspection with nonlinear guided waves without
understanding their propagation is just above nil.

In this article, theoretical modeling of nonlinear guided
wave propagation is summarized first in Sec. 2. Doing so
enables intelligent selection of primary wave modes that
will generate strong internally resonant higher harmonics
through interaction with the nonlinear elastic waveguide.
Numerical simulations provide a means to test assumptions
made in the model development and enable demonstration of
nonlinear wave propagation features without the additional
nonlinearities introduced by laboratory instrumentation.
Thus, results of finite element analyses are reviewed in
Sec. 3. Experiments provide the only real proof of the verac-
ity of the theory and simulations. Thus, Sec. 4 reviews
results from higher harmonic generation experiments on
waveguide structures. These experimental results demonstrate
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the unique wave propagation characteristic of internally res-
onant higher harmonics; their cumulative nature. They also
show how the higher harmonics generation changes as the
material microstructure changes. The article closes with a
summary and discussion of where the current state-of-
knowledge could lead.

2 Theory
In Sec. 1, we provided the motivation for using nonlinear
guided waves for microscale damage detection and charac-
terization. However, the mathematical complexity associated
with guided wave propagation does not easily lend itself for
analysis from a theoretical standpoint. A first step in this
regard was taken by Deng16,17 to analyze the second-
harmonic guided wave generation from shear-horizontal (SH)
and Rayleigh–Lamb (RL) modes in plates. The approach
was based on the use of the partial-wave technique18 to
expand the primary wave-field, and then to examine the con-
ditions under which the second harmonics from partial
waves generate a propagating guided wave field. De Lima
and Hamilton19 employed a different approach to analyze
second-harmonic generation from guided waves in plates.
In this section, we describe their approach to study second-
harmonic guided wave generation in plates. Unlike the
study by De Lima and Hamilton,19 we adopt a displacement
gradient-based formulation that enables a systematic analysis
procedure. Next, we introduce some notation that is used in
the rest of the article.

2.1 Notation

We used bold letters to denote vectors and tensors and denote
the position of the material particle in the reference and cur-
rent configurations20 by X and x, respectively. The displace-
ment of the material particles is denoted by u. The
deformation gradient is denoted by F and is given by

EQ-TARGET;temp:intralink-;e001;63;361F ¼ ∂x
∂X

: (1)

Likewise, the displacement gradient is denoted by H and is
given by

EQ-TARGET;temp:intralink-;e002;63;298H ¼ ∂u
∂X

¼ F − I; (2)

where I is the identity tensor. We use a Lagrangian measure
of strain denoted by E and given by

EQ-TARGET;temp:intralink-;e003;63;235E ¼ 1
2
ðFTF − IÞ ¼ 1

2
ðHþHT þHTHÞ: (3)

Also, the linearized strain that does not include geometric
nonlinearity is denoted by Elin and is given by

EQ-TARGET;temp:intralink-;e004;63;171Elin ¼
1
2
ðHþHTÞ: (4)

In this article, two equivalent (widely used) weakly non-
linear hyperelastic constitutive models that describe the
strain energy function of the material are used and are
given by

1. Landau–Lifshitz model

EQ-TARGET;temp:intralink-;e005;326;741WðEÞ ¼ 1

2
λ½trðEÞ�2 þ μtrðE2Þ þ 1

3
C½trðEÞ�3

þ BtrðEÞtrðE2Þ þ 1

3
AtrðE3Þ: (5)

2. Murnaghan model

EQ-TARGET;temp:intralink-;e006;326;660WðEÞ¼1

2
λ½trðEÞ�2þμtrðE2Þþ1

3
ðlþ2mÞ½trðEÞ�3

−mtrðEÞf½trðEÞ�2− trðE2ÞgþndetðEÞ: (6)

Here, λ, μ are the Lame’s constants, A, B, C are called the
third order elastic constants, and l, m, n are called the
Murnaghan constants. The constants ðA;B; CÞ and ðl; m; nÞ
are related by21 l ¼ Bþ C, m ¼ ð1∕2ÞAþ B, and n ¼ A.
Next, we introduce some stress measures used in this article.
First, the second Piola–Kirchhoff stress tensor (TRR) is
obtained from WðEÞ and is given by

EQ-TARGET;temp:intralink-;e007;326;504TRR ¼ ∂WðEÞ
∂E

: (7)

The first Piola–Kirchhoff stress (S) is related to TRR by

EQ-TARGET;temp:intralink-;e008;326;451S ¼ FTRR: (8)

For the Landau–Lifshitz model, the second Piola–Kirchhoff
stress tensor is written in terms of strain as

EQ-TARGET;temp:intralink-;e009;326;398TRRðEÞ ¼ λtrðEÞ þ 2μEþ C½trðEÞ�2Iþ BtrðE2ÞI
þ 2BtrðEÞEþ AE2: (9)

Since our theoretical formulation is based on the displace-
ment gradient, we treat first and second Piola–Kirchhoff
stress tensors as explicit functions of displacement gradient
(H) and they are denoted as SðHÞ and TRRðHÞ. TRRðHÞ can
be obtained by using Eqs. (9) and (3) and is given by

EQ-TARGET;temp:intralink-;e010;326;297

TRRðHÞ¼ λ

2
trðHþHTÞþμðHþHTÞþ λ

2
trðHTHÞI

þCtrðHÞ2IþμHTHþBtrðHÞðHþHTÞ

þB
2
trðH2þHTHÞIþA

4
ðH2þHTHþHHTþHT2Þ;

(10)

up to second order in H. Further, we decompose TRRðHÞ
into two parts, namely TL

RRðHÞ and TNL
RRðHÞ such that

TRRðHÞ ¼ TL
RRðHÞ þ TNL

RRðHÞ. As indicated in the notation,
TL
RRðHÞ is linear in H and TNL

RRðHÞ is nonlinear in H and is
explicitly given by
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EQ-TARGET;temp:intralink-;e011;63;752

TL
RRðHÞ¼λ

2
trðHþHTÞþμðHþHTÞ;

TNL
RRðHÞ¼λ

2
trðHTHÞIþCtrðHÞ2IþμHTHþBtrðHÞðHþHTÞ

þB
2
trðH2þHTHÞIþA

4
ðH2þHTHþHHTþHT2Þ:

(11)

Likewise, using S ¼ FTRR, we can write SðHÞ ¼ SLðHÞ þ
SNLðHÞ where
EQ-TARGET;temp:intralink-;sec2.1;63;630SLðHÞ ¼ TL

RRðHÞ;

and

EQ-TARGET;temp:intralink-;e012;63;587SNLðHÞ ¼ HTL
RRðHÞ þ TNL

RRðHÞ: (12)

Equivalent expressions can be obtained for the Murnaghan
model. However, we restrict ourselves to the Landau–
Lifshitz model in this section.

2.2 Second-Harmonic Guided Waves in Plates

Consider the schematic of the traction-free plate in the refer-
ence configuration as shown in Fig. 1. We begin with the
referential form of the balance of the linear momentum
given by

EQ-TARGET;temp:intralink-;e013;63;456Div½SðHÞ� ¼ ρκü; Snκ ¼ 0 on X2 ¼ �h; (13)

where nκ denotes the unit normal to the surface of the plate in
the reference configuration and ρκ denotes the density of the
material in the reference configuration.

Suppose that the displacement associated with the pri-
mary wave propagating in the plate is denoted by u1ðX; tÞ,
and that associated with the secondary wavefield is denoted
by u2ðX; tÞ, then the total displacement in the material is
given by

EQ-TARGET;temp:intralink-;e014;63;337uðX; tÞ ¼ u1ðX; tÞ þ u2ðX; tÞ with ku2k ≪ ku1k; (14)

where the perturbation assumption is indicated. Likewise for
the displacement gradient, we have

EQ-TARGET;temp:intralink-;e015;63;284H ¼ H1 þH2 with kH2k ≪ kH1k; (15)

whereH1 ¼ ð∂u1∕∂XÞ andH2 ¼ ð∂u2∕∂XÞ are the displace-
ment gradients associated with primary and secondary dis-
placements. Next, we obtain the expression for the first-
Piola Kirchhoff stress that goes into Eq. (13). Using Eq. (12),
we get
EQ-TARGET;temp:intralink-;e016;63;203

SðHÞ ¼ SLðHÞ þ SNLðHÞ ⇒
SðH1 þH2Þ ¼ SLðH1 þH2Þ þ SNLðH1 þH2Þ ⇒
SðH1 þH2Þ ¼ SLðH1Þ þ SLðH2Þ þ SNLðH1 þH2Þ; (16)

where the linearity of SLðHÞ was used.

As we are interested in the solution for the second har-
monic, we retain only the terms of the second degree in
H1 in the expression for SNLðH1 þH2Þ, and denote those
terms by SNLðH1;H1; 2Þ which correspond to self-interac-
tion22 of the primary mode. From Eq. (16), we have

EQ-TARGET;temp:intralink-;e017;326;697SðHÞ ¼ SLðH1Þ þ SLðH2Þ þ SNLðH1;H1; 2Þ: (17)

Substituting Eqs. (14) and (17) in Eq. (13), we obtain two
separate boundary value problems for u1 and u2 as follows:

EQ-TARGET;temp:intralink-;e018;326;644Div½SLðH1Þ� − ρκü1 ¼ 0 SLðH1Þnκ ¼ 0; (18)

EQ-TARGET;temp:intralink-;e019;326;611

Div½SLðH2Þ� − ρκü2 ¼ −Div½SNLðH1;H1; 2Þ�
SLðH2Þnκ ¼ −SNLðH1;H1; 2Þnκ: (19)

Now, assume u1ðX; tÞ ¼ Refu1ðX2ÞeiðkX1−ωtÞg, a propa-
gating guided wave mode in the plate (can either be RL
or SH mode), where Refg denotes the real part of the argu-
ment, ω denotes the angular frequency, and k denotes the
wavenumber of the mode. The first problem in Eq. (18) is
identically satisfied due to our assumption that u1 is a propa-
gating mode in the plate. On the other hand, the solution for
u2 is obtained using the normal mode expansion technique.18

Following De Lima and Hamilton,19 we seek asymptotic
expansions of SLðH2Þ and _u2 as follows:

EQ-TARGET;temp:intralink-;e020;326;456SLðH2Þ ¼
Xm¼∞

m¼1

AmðX1ÞSm; _u2 ¼
Xm¼∞

m¼1

AmðX1Þvm; (20)

where Smm¼∞
m¼1 and vmm¼∞

m¼1 denote the stress and velocity
fields corresponding to all the guided wave modes [propa-
gating and nonpropagating (evanescent)] at 2ω.

As shown in Ref. 19, AmðX1Þ satisfies the following ordi-
nary differential equation [Eq. (21)] for each n such that
Pmn ≠ 0

EQ-TARGET;temp:intralink-;e021;326;3414Pmn

�
∂Am

∂X1

− ik�nX1

�
¼ ðfsurfn þ fvoln Þ: (21)

Here,
EQ-TARGET;temp:intralink-;e022;326;286

Pmn ¼
−1
4

Z
h

−h

�
Smv�n þ Snv�m

4
:n1

�
dX2;

fsurfn ¼ −1
2

SNLðH1;H1; 2Þv�n:n2
����
h

−h

fvoln ¼ 1

2

Z
h

−h
Div½SNLðH1;H1; 2Þ�:v�ndX2: (22)

For every propagating modem used in the asymptotic expan-
sion, there is only one propagating mode n ¼ m such that
Pmn ≠ 0 and km ¼ kn. If m corresponds to a nonpropagating
mode, then km ¼ k�n. This ensures that the solution to
Eq. (21) is well defined and is given by
EQ-TARGET;temp:intralink-;e023;326;135

AmðX1Þ ¼
−iðfsurfn þ fvoln Þ

4Pmn

�
eik

�
nX1 − ei2kX1

k�n − 2k

�
if k�n ≠ 2k

AmðX1Þ ¼
ðfsurfn þ fvoln Þ

4Pmn
X1 if k�n ¼ 2k: (23)

Fig. 1 Cross section of the traction-free plate.
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Note that if the primary mode is a propagating mode, and if
there exists another propagating mode n ¼ m such that
k�n ¼ kn ¼ 2k, then the amplitude Am increases linearly
with the propagation distance and is termed as a cumulative
second harmonic. While this condition is satisfied at every
frequency for bulk waves, only specific primary guided wave
modes generate cumulative second harmonics. The two
“internal resonance” conditions that a primary mode needs to
satisfy for it to generate a cumulative second harmonic are19

1. Phase-matching condition: existence of a propagating
guided wave mode at ð2ω; 2kÞ, where ðω; kÞ is the pri-
mary mode.

2. Nonzero power-flux criterion: ðfsurfn þ fvoln Þ ≠ 0 for
that mode n such that k�n ¼ kn ¼ 2k.

The above analysis does not assume the nature of the pri-
mary mode and can be applied to both RL and SH modes. To
identify the guided wave modes that satisfy both the condi-
tions, one needs to analyze each of them separately as out-
lined below.

• Phase-matching condition19,23–26

The phase-matching condition is satisfied if and
only if there exists a propagating guided wave
mode in the plate at (2ω, 2k), where (ω, k) corre-
sponds to the frequency and wavenumber of the pri-
mary mode. To proceed with the analysis, we first
start with the following dispersion relations

EQ-TARGET;temp:intralink-;e024;63;438

tanðqhÞ
tanphÞ ¼−

4k2pq
ðq2− k2Þ2 ðsymmetric RL modesÞ;

tanðqhÞ
tanðphÞ ¼−

ðq2− k2Þ2
4k2pq

ðantisymmetric RL modesÞ;

qh¼ nπ
2

ðshear− horizontal modesÞ: (24)

Here, p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω∕clÞ2 − k2

p
and q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω∕ctÞ2 − k2

p
,

where cl and ct are the longitudinal and transverse
wave speeds in the material, respectively. The
phase matching condition needs to be analyzed for
different combinations of primary and secondary
modes. First, consider the case of a primary RL
mode generating a secondary RL mode. If both the
primary ðω; kÞ and secondary modes (2ω, 2k) are
symmetric modes then we have

EQ-TARGET;temp:intralink-;sec2.2;63;241

tanðqhÞ
tanðphÞ ¼ −

4k2pq
ðq2 − k2Þ2 ;

tanð2qhÞ
tanð2phÞ ¼ −

4ð2kÞ2ð2pÞð2qÞ
½ð2qÞ2 − ð2kÞ2�2 ;

where the first one is the dispersion relation for the
primary mode and the second one is the dispersion
relation for the secondary mode. One interesting
observation that needs to be made with regard to
the above relations is that the right hand sides of
both of the equations are identical which enables
one to write

EQ-TARGET;temp:intralink-;sec2.2;326;752

tanðqhÞ
tanðphÞ ¼

tanð2qhÞ
tanð2phÞ :

Likewise, we can write relations for all possible com-
binations of the primary and secondary RL modes as
follows:

EQ-TARGET;temp:intralink-;e025;326;684

tanðqhÞ
tanðphÞ ¼

tanð2qhÞ
tanð2phÞ

Primary symmetric ðantisymmetricÞ
→ Secondary symmetric ðantisymmetricÞ;

tanðqhÞ
tanðphÞ ¼

tanð2phÞ
tanð2qhÞ

Primary symmetric ðantisymmetricÞ
→ Secondary antisymmetric ðsymmetricÞ:

(25)

The first relation in Eq. (25) describes a primary
mode generating a secondary mode of the same
kind and the second relation describes a primary
mode generating a secondary mode of the opposite
kind. Similar relations can be written down for a pri-
mary SH mode generating a secondary RL mode.
Care must be taken in interpreting the above relations,
especially when any of the terms in the equation are 0
or ∞. A detailed analysis of the phase-matching con-
dition can be found in Refs. 23 and 24. Next, we ana-
lyze the nonzero-power-flux criterion.

• Nonzero power flux criterion19,22,25–27

To analyze nonzero power flux criterion, we adopt
a parity analysis in terms of the displacement gradient
(H). First, we begin by observing that the displace-
ment field and the corresponding displacement gra-
dient in the plate for different modes are of the
following form given in Table 1. Here, S denotes a
symmetric (even) function about the midplane of
the plate and A denotes an antisymmetric (odd) func-
tion about the midplane of the plate.

Table 1 Parity of the displacement and displacement gradient for
different primary modes.

Primary mode u1 (displacement) H1 (displacement gradient)

RL symmetric

0
@S

A
0

1
A

2
4S A 0
A S 0
0 0 0

3
5

RL antisymmetric

0
@A

S
0

1
A

2
4A S 0
S A 0
0 0 0

3
5

SH symmetric

0
@ 0

0
S

1
A

2
4S A 0
A S 0
0 0 0

3
5

SH antisymmetric

0
@S

A
0

1
A

2
4A S 0
S A 0
0 0 0

3
5
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Correspondingly, one can show22,25 that the nonlinear
terms SNLðH1;H1; 2Þ and Div½SNLðH1;H1; 2Þ� are of the
parity indicated in Table 2.

From the above observations, one can conclude26 the
following:

1. fsurfn ¼ ð1∕2ÞSNLðH1;H1; 2Þv�n:n2jh−h ≠ 0 if and only
if vn corresponds to a symmetric mode.

2. fvoln ¼ ð1∕2Þ∫ h
−hDiv½SNLðH1;H1; 2Þ�:v�ndX2 ≠ 0 if

and only if vn corresponds to a symmetric mode.

Therefore, the power-flux fsurfn þ fvoln ≠ 0 if and only if
the secondary mode is a symmetric RL mode. It should
be noted that this would also be the case even if the primary
mode is an SH mode.26

From the conclusions obtained for both the phase-match-
ing and nonzero power flux criteria, one can identify the fol-
lowing list (Table 3) of guided wave modes that are capable
of generating cumulative second harmonics. Here, m, n
denote arbitrary positive integers. In addition to the modes
listed in Table 3, other modes25 like the quasi-Rayleigh
modes and (high-frequency) guided wave modes near the
transverse wave speeds are also capable of second-harmonic
generation.

2.3 Mode Selection

The importance of selecting a primary mode that generates a
higher harmonic with strong internal resonance was men-
tioned in Sec. 1, but it cannot be overemphasized. Internal
resonance is the first consideration; starting with phase
matching and then assessing the secondary modes that have
not just nonzero power flux, but significant power fluxes.28

Other important considerations include: modal excitability
given the selected transducer, proximity of nearby modes,
dispersion, diffraction, and attenuation. In fact, the number
of primary modes that generate internally resonant second

harmonics that are measured by currently available transduc-
ers are so low that the generation of third harmonics was
analyzed.29

2.4 Nonlinear Guided Waves in Other Waveguides

In this section, we briefly summarize some of the earlier
work concerning nonlinear guided waves in nonplate-like
waveguides. Second harmonic, sum, and difference fre-
quency generation in waveguides of arbitrary cross section
w first investigated by De Lima and Hamilton.30 The condi-
tions for internal resonance were arrived at and also second-
harmonic generation in cylindrical rods and shells was
numerically demonstrated. Likewise, generalized higher har-
monic generation in waveguides of arbitrary cross section
was investigated.31,32 Second-harmonic guided waves from
axis-symmetric longitudinal modes in pipes were investi-
gated in Ref. 33 using a large-radius asymptotic approxima-
tion for wavestructures in pipes. Limits on the thickness to
diameter ratio were discussed by Chillara and Lissenden.33 It
was observed that these wavestructures for pipes converge
asymptotically to that of plates, hence, conclusions concern-
ing second-harmonic generation for plates can be appropri-
ately extended for pipes. Second-harmonic generation from
axis-symmetric torsional and longitudinal modes was ana-
lyzed in Ref. 34. Recently, higher order mode interactions
in pipes were studied35,36 where harmonic generation from
flexural modes was analyzed as well.

3 Numerical Simulations
In this section, we discuss numerical simulations pertaining
to nonlinear guided wave propagation in waveguides.
Numerical simulations offer a convenient way to investigate
the cumulative harmonic generation in waveguides and offer
key insights into aspects of guided wave mode selection for
efficient harmonic generation from a practical standpoint.
The numerical studies enable us to alienate the nonlinear
effects arising out of instrumentation and just study the effect
of material nonlinearity on the wave propagation. Both
semianalytical and numerical methods have successfully
been employed to investigate nonlinear guided waves in
waveguides.

Nucera and Lanza di Scalea37 developed a COMSOL
based nonlinear semianalytical finite element (CO.NO.
SAFE) to analyze synchronism conditions for mode-selec-
tion and also to determine the modal amplitude content at
second harmonics in waveguides. The method was demon-
strated for variety of waveguides like rail, composite lami-
nates, reinforced concrete slab, and so on. Finite-difference-
time-domain method incorporating material and geometric

Table 2 Parity of the SNLðH1;H1;2Þ and Div½SNLðH1;H1; 2Þ�.

Primary mode SNLðH1;H1;2Þ Div½SNLðH1;H1;2Þ�

RL symmetric or
RL antisymmetric

2
4S A 0
A S 0
0 0 0

3
5

2
4S A 0
A S 0
0 0 0

3
5

SH symmetric or
SH antisymmetric

2
4S A 0
A S 0
0 0 0

3
5

2
4S A 0
A S 0
0 0 0

3
5

Table 3 List of guided wave modes that can generate cumulative second harmonics.

Primary mode Cut-off modes cp ¼ cl cp ¼ ffiffiffi
2

p
ct Mode-intersections Special modes

RL symmetric (ω) nπct
h

nπcl ct
h

ffiffiffiffiffiffiffiffiffiffi
c2l −c

2
t

p
ffiffi
2

p
nπcl ct

h
ffiffiffiffiffiffiffiffiffiffiffiffi
2c2t −c

2
l

p All —

RL antisymmetric (ω) ð2nþ1Þπct
2 h —

ffiffi
2

p
nπcl ct

h
ffiffiffiffiffiffiffiffiffiffiffiffi
2c2t −c

2
l

p All —

SH (ω) nπct
2h

nπcl ct
2h

ffiffiffiffiffiffiffiffiffiffi
c2l −c

2
t

p — — Modes that satisfy
�

1
c2l
− 1

c2p

�
¼ m2

n2

�
1
c2t
− 1

c2p

�
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nonlinearities was employed38 to study center-frequency
dependence of cumulative harmonic generation in isotropic
plates. Likewise, two local approaches, namely cellular
automata finite element and local interaction simulation
approach have been employed39 to study second-harmonic
guided wave generation in waveguides. On the other hand,
conventional finite element methods incorporating material
and geometric nonlinearities were extensively used26,28,36,40–42

to study second-harmonic guided wave propagation in wave-
guides, especially in plates and pipes. In this section, we dis-
cuss the results from finite element simulations concerning
second-harmonic guided waves in plates. First, we discuss sec-
ond-harmonic guided wave generation in homogeneous, iso-
tropic plates in Sec. 3.1, and then discuss results for second-
harmonic guided waves in plates with inhomogeneous/local-
ized nonlinearities in Sec. 3.2.

3.1 Second-Harmonic Guided Waves in
Homogeneous Isotropic Plates

All the results presented in this section are obtained using the
commercial finite element software COMSOL. Results are
presented for an aluminum plate (1-mm thick) whose
material properties are shown in Table 4. Figure 2 shows
the schematic of the model used for simulations. The
wave excitation is specified as a displacement boundary con-
dition at x ¼ 0 to excite the appropriate mode. Throughout
this section, we denote the x-component of the displacement
with “u” and the y-component of the displacement with “v.”
Figure 3 shows the dispersion curves for the plate along with
the primary modes used for the study in red.

3.1.1 Cumulative versus noncumulative
second-harmonic generation

Here, we discuss and compare the second-harmonic gener-
ation from two different primary modes; S0 mode (0.5 MHz)
and the S1 mode (3.6 MHz). For the FE discretization, tri-
angular plane-strain elements with a maximum size of
0.1 mm are employed to discretize the domain along the
wave propagation direction and a minimum of 15 elements
are used along the thickness direction. A maximum time-step
of 0.01 μs is used for the S0 mode and 0.005 μs is used for
the S1 mode. Displacement amplitudes of 1 × 10−7 m and
2 × 10−8 m are used for the boundary conditions for the
S0 mode and the S1 mode, respectively. This choice ensures
a stress wave of a few MPa—typical of an ultrasonic wave
propagating in the material. Note while the S1 mode
(3.6 MHz) satisfies the conditions of internal resonance

discussed in Sec. 2.2, while the S0 mode (0.5 MHz) does
not satisfy the phase matching criterion of Sec. 2.2. The
phase velocity of the primary S0 mode (0.5 MHz) is
5.34 mm∕μs and that of the second harmonic S0 mode
(1 MHz) is 5.27 mm∕μs. On the other hand, the phase veloc-
ity of both the primary S1 mode (3.6 MHz) and the secondary
S2 mode (7.2 MHz) is 6.17 mm∕μs.

Figure 4 shows the amplitude of the second harmonic
from the S0 mode (0.5 MHz) and Fig. 5 shows the same
for the S1 mode (3.6 MHz) as a function of the normalized
propagating distance. The normalization is carried out using
the corresponding wavelength of the primary mode (λS0 ¼
10.68 mm, λS1 ¼ 1.71 mm). Clearly, the second harmonic
from the S0 mode (0.5 MHz) is not cumulative as it starts
to decrease after about (ðx∕λS0Þ ¼ 10). On the other hand,
the second harmonic from the S1 mode (3.6 MHz) is cumu-
lative and increases linearly as shown in Fig. 5. This is
in agreement with the prediction from the perturbation
approach presented in Sec. 2.2 that the S1 mode (3.6 MHz)
generates a cumulative second harmonic.

3.1.2 Role of material and geometric nonlinearities

In this section, we compare the contribution of material and
geometric nonlinearity to the second-harmonic generation.
Simulations are carried out for the primary S1 mode

Fig. 2 Schematic of the model used for simulations.

Table 4 Elastic constants in GPa used for simulations.

λ μ l m n

51 26 −250 −333 −350

Fig. 3 Dispersion curves for the aluminum plate showing the primary
and secondary modes in the simulations.

Fig. 4 Second-harmonic amplitude (A2 in m) from primary S0 mode
(0.5 MHz) with normalized propagation distance.
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(3.6 MHz) generating a second-harmonic S2 mode
(7.2 MHz) for three variants of the constitutive model in
Eq. (6). These are:

1. Linear elastic material (LE)—no material or geometric
nonlinearities are included, i.e., l ¼ m ¼ n ¼ 0
[Eq. (6)] and linearized strain, Elin ¼ ð1∕2ÞðHþHTÞ
is used as a strain measure.

2. Nonlinear (NL)—both material and geometric nonli-
nearities are included, i.e., l ≠ 0, m ≠ 0, n ≠ 0 (values
from Table 1) and Lagrangian strain (E) is used as a
strain measure.

3. Geometrically nonlinear (NG)—only geometric
nonlinearity is included, i.e., l ¼ m ¼ n ¼ 0 and
Lagrangian strain (E) is used as a strain measure.

Figure 6 shows fast Fourier transforms for LE, NL, and
NG cases at x ¼ 50 mm from the left end of the plate.
Clearly, the NL case has a much higher second harmonic
and is about 10 times that for the NG case. The results pre-
sented here indicate that the second-harmonic generation is
dominated by the material nonlinearity as opposed to the
geometric nonlinearity. Hence, it can be concluded that geo-
metrically linear theories incorporating material nonlinearity

for material behavior provide a very good approximation for
studying nonlinear guided waves in plates.

3.1.3 Second-harmonic generation with group
velocity mismatch

The results presented in the previous sections considered pri-
mary modes that are (almost) phase-matched to their second
harmonic. To investigate the effect of group velocity mis-
match on the second-harmonic generation, simulations are
run for the primary A0 mode (0.5 MHz). The amplitude
of the displacement boundary condition is increased to
10−5 m to decipher some important aspects of second-har-
monic generation as outlined later. Figure 7 shows the
Hilbert transform (positive envelope) of the time-domain sig-
nals on a log-scale at x ¼ 40, 80, and 120 mm from the left
end of the plate. Clearly, there are two distinct peaks corre-
sponding to the arrival time of the pulses; the one with a
larger amplitude corresponds to the primary mode and
arrives later due to a smaller group velocity (2.91 mm∕μs),
and the smaller one corresponds to the secondary mode and
arrives earlier in time due to a larger group velocity
(5.12 mm∕μs). Also, they are clearly separated with the
time-difference between them increasing with increasing
propagation distance. A few important observations can
be made in this regard:

1. The second harmonic separates from the primary
mode, the hence group velocity matching is not
required for the higher harmonic generation. Note
that the phase matching condition is not satisfied
here. This finding, which is explained further in
Ref. 40, is in direct conflict with the reasonable argu-
ment presented by Muller et al.25 that the primary and
secondary wave packets must travel together in order
for energy transfer to occur. Our explanation is that the
higher harmonic is generated by the material nonli-
nearity with the nonlinear surface traction fsurfn and
nonlinear body force fvoln terms [Eq. (22)] acting
like distributed sources in a similar way that paramet-
ric arrays use distributed nonlinearity in fluids to gen-
erate directional sound beams. Thus, we believe it is
the material’s nonlinearity itself that enables the sec-
ondary wave packet to propagate and be cumulative
when the internal resonance criteria are satisfied.

Fig. 5 Second-harmonic amplitude (A2 in m) from primary S1 mode
(3.6 MHz) with normalized propagation distance.

Fig. 6 Primary mode: S1 mode (3.6 MHz)—fast Fourier transforms
(log-scale) obtained from time domain signals at x ¼ 50 mm for
the three cases: linear elastic material, nonlinear, and geometrically
nonlinear.

Fig. 7 Primary mode: A0 mode (0.5 MHz)—Hilbert transform of time
domain signals at x ¼ 40, 80, and 120 mm.
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However, if the primary and secondary waves have
different group velocities, due care must be taken in
their measurement.

2. The second-harmonic mode generated is the S0 mode
(1 MHz) as opposed to the A0 mode (1 MHz) as is
evident from the through-thickness displacement pro-
files “v” in Fig. 8 at x ¼ 120 mm during the times t ¼
28 to 35 μs, which is antisymmetric about the mid-
plane. This is in agreement with the predictions
from the perturbation approach.

3. It can be concluded that the second harmonic is con-
tinuously generated from the primary mode and once
generated, it can propagate independent of the primary
mode. This can be explained with the following ration-
ale. As observed here, the second harmonic separates
from the primary mode and propagates as a distinct
pulse independent of the primary mode. Now, the
residual primary mode can again generate a second
harmonic and this process repeats with the second-har-
monic pulses being separated from the primary mode
when sufficient time has elapsed—as dictated by the
group velocity mismatch between the primary and the
secondary modes. Also, the separated harmonic can
itself generate other higher harmonics. The theory
of mode interaction presented in Ref. 22 can be
used to assess the nature of such a higher harmonic
generation. It should be noted that these are much
smaller in magnitude when compared to the primary
mode and pose an enhanced difficulty in detecting
them in an experiment.

3.2 Second-Harmonic Guided Waves in Plates with
Inhomogeneous/Localized Nonlinearities

3.2.1 Homogeneous versus inhomogeneous
nonlinearity

Here, we compare the cumulative second-harmonic genera-
tion characteristics from S1 mode (3.6 MHz) for two cases,
namely homogeneous and nonhomogeneous nonlinearities
in the plate. For the homogeneous case, the Murnaghan con-
stants from Table 4 were used. For the nonhomogeneous

case, the parameters λ and μ in Table 4 were used and the
Murnaghan constants were varied along the wave propaga-
tion direction (x). The variation is assumed to be linear,
such as for a functionally graded material i.e., lðxÞ ¼
−250ð1þ x∕25Þ GPa, mðxÞ ¼ −333ð1þ x∕25Þ GPa, and
nðxÞ ¼ −350ð1þ x∕25Þ GPa, where “x” is in “mm” so
that the Murnaghan constants at x ¼ 50 mm are three
times those at x ¼ 0 mm. Figure 9 shows the amplitude
of the second harmonic with normalized propagation dis-
tance. Clearly, the amplitude of the second harmonic for
the inhomogeneous case is much higher due to the higher
nonlinearity. Also, it should be noted that the cumulative sec-
ond-harmonic generation is not linear (but super-linear) as
for the homogeneous case.

3.2.2 Effect of localized through-thickness nonlinearity
on cumulative second-harmonic generation

In Sec. 3.2.1, we investigated the effect of inhomogeneous
nonlinearity along the wave propagation direction. Now, we
investigate the effect of localized through-thickness nonli-
nearity on the second-harmonic generation of guided
waves, such as may be the case in a one-sided degradation
process. Simulations are run for two primary modes, namely,
the S0 mode (0.5 MHz) and the S1 mode (3.6 MHz).
Localized nonlinearity in the model is obtained by varying
the percentage through-thickness nonlinearity as indicated in
the Fig. 10, where “LE” denotes LE and “NL” denotes non-
linear elastic material. The results presented in this section
are from Ref. 41.

S0 mode (0.5 MHz). We first present the results obtained
for second-harmonic generation from the S0 mode at
0.5 MHz. Figure 11 shows the relative nonlinearity param-
eter (A2∕A2

1) at x ¼ 100 mm versus the percentage through-
thickness of nonlinearity. Clearly, it increases linearly with
the amount of through-thickness nonlinearity. Also, Fig. 12
shows the relative nonlinearity parameter as a function of the
propagating distance for varying levels of through-thickness
nonlinearity. As can be seen, the nonlinearity parameter
increases with the propagation distance for each of the cases.
Moreover, the rate of increase of the nonlinearity parameter
increases with increasing through-thickness nonlinearity.

Fig. 8 Primary mode: A0 mode (0.5 MHz)—through thickness “v ” dis-
placement profiles at x ¼ 120 mm and t ¼ 28 to 35 μs indicate the S0
mode.

Fig. 9 Primary mode: S1 mode (3.6 MHz)—comparison of the
second-harmonic amplitude (A2 in m) for homogeneous and inhomo-
geneous nonlinearity distribution.

Optical Engineering 011002-8 January 2016 • Vol. 55(1)

Chillara and Lissenden: Review of nonlinear ultrasonic guided wave nondestructive evaluation. . .



Also, it should be noted that the 20%–20% case which cor-
responds to 20% nonlinearity on the top and 20% nonlinear-
ity on the bottom of the plate almost coincides with the case
with 40% nonlinearity on the top. Hence, it appears that the
second-harmonic generation from the S0 mode (0.5 MHz) is
independent of the through-thickness damage location, but
only depends on the volume-fraction of the nonlinear
material. This is clearly evident from the plots of the normal-
ized relative nonlinearity parameter shown in Fig. 13 where
each curve is normalized with its value at x ¼ 20 mm and all
of them except one (20%) coincide. This is because, for the
20% case, the energy from the primary mode is transferred to
the antisymmetric mode at the second harmonic in addition
to the symmetric mode. This occurs due to the asymmetry of
the material parameters in the top and bottom surfaces of the
plate in Fig. 10.

It should be noted that the second-harmonic generation
from the S0 mode (0.5 MHz) is independent of the location
of the damage due to its uniform wavestructure through the
thickness as indicated in Fig. 14.

Next, we present the results obtained for second-harmonic
generation from the S1 mode at 3.6 MHz.

S1 mode (3.6 MHz). Simulations similar to the one for the
S0 mode (0.5 MHz) are run for the S1 mode (3.6 MHz) by
varying the through-thickness nonlinearity in the plate.
Simulations were run for different cases of through-thickness
nonlinearity, namely, 20%, 40%, 60%, 80%, 90%, 100%,
and 20%–20%, which again corresponds to 20% through-
thickness damage on the top and 20% on the bottom. Unlike
the S0 mode (0.5 MHz), the wavestructure for the S1 mode is
not uniform through the thickness as indicated in the Fig. 15,
which depicts the wavestructures of both the S1 mode
(3.6 MHz) and the S2 mode (7.2 MHz). Hence, we expect
the results to be different from those obtained for the S0
mode (0.5 MHz).

Figure 16 shows the relative nonlinearity parameter as a
function of the propagation distance. Several observations
are made in this regard.

1. Relative nonlinearity parameter is much higher when
compared to that from the S0 mode (0.5 MHz) due to
the higher frequency and cumulative nature of the S1
mode (3.6 MHz).

2. Relative nonlinearity parameter is not monotonic with
the increasing volume-fraction of the through-thick-
ness damage. Hence, it can be concluded that the sec-
ond-harmonic generation from the S1 mode (3.6 MHz)

Fig. 10 Schematic of the model with through-thickness nonlinearity
used for the simulation.

Fig. 11 Relative nonlinearity parameter versus the percent through-
thickness nonlinearity.

Fig. 12 Relative nonlinearity parameter versus the propagation dis-
tance for different levels of through-thickness nonlinearity.

Fig. 13 Normalized relative nonlinearity parameter versus the per-
cent through-thickness nonlinearity.

Fig. 14 S0 mode (0.5 MHz)-wavestructure.
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is not exclusively dependent on the volume fraction of
through-thickness nonlinearity.

3. The case of 20%–20% coincides with that for 100%,
hence it can be concluded that the second-harmonic
generation is mainly due to the contribution from the
material near the surface rather than that from the cen-
tral portion (bulk) of the plate. In fact, it appears that the
bulk contribution reduces the second-harmonic gener-
ation a little as is evident from Fig. 16 where the
20%–20% case surpasses the 100% for x > 30 mm.

From the above study, it appears that the second-harmonic
generation from the S1 − S2 mode pair at the longitudinal
wave speed is more sensitive to the surface damage and
can be used to efficiently detect and characterize it.

4 Experiments
Naturally, experiments are a vital part of the development of
nonlinear ultrasonic guided wave-based techniques for char-
acterization of material microstructure evolution. Even more
so than for linear ultrasonic guided waves, the probability of
successful experiments is low unless the nonlinear guided
wave propagation characteristics are understood and used
to select modes, frequencies, and transducers that activate
primary waves that, in turn, generate strong cumulative
higher harmonics. This section starts by describing general

considerations for nonlinear ultrasonic guided wave experi-
ments intended to measure the generation of higher harmon-
ics. It then reviews experimental results that have been
reported in the literature.

4.1 Measurement Considerations

The first and foremost experimental consideration is that a
finite amplitude near-monochromatic waveform having
excellent clarity is actuated. Three issues are embedded
in this consideration: (1) finite amplitude is desirable in
order that the generated higher harmonics, which have far
less energy than the primary wave, are measurable; (2) the
tail of the frequency distribution can overwhelm the higher
harmonics unless a narrow bandwidth excitation is obtained,
thus a toneburst excitation having a large number of cycles is
typical; and (3) high-signal clarity, or lack of distortion,
reduces the noise in the frequency spectrum making the
very low amplitude higher harmonics generated by the
material more evident. These issues apply to bulk waves
and guided waves, but because guided waves are multimo-
dal, it is even more important to get as much energy as pos-
sible into the selected primary wave mode at the frequency
that will generate the higher harmonic of interest. The second
consideration, which is linked to the first, is the intrinsic non-
linearity of the measurement system. A typical measurement
system comprises: synthesizer, amplifier, cables, transmit
transducer, coupling media, test material, more coupling
media, receive transducer, cabling, preamplifier, and oscillo-
scope. Matching networks and filters are also often used to
improve system performance. It is important that the signal
distortion due to the material nonlinearity dominates the dis-
tortion associated with other elements in the measurement
system. The considerations described above are always a
concern, but specific experimental setups will have addi-
tional considerations. For example, the ability to separate
the transmitter and receiver by different distances enables
the cumulative nature of higher harmonic waves to be
assessed. Hence, it provides confirmation that the distortion
causing higher harmonic generation is associated with the
material.

4.2 Transducers

Once a primary mode and the higher harmonic that it gen-
erates have been selected, transducers can be chosen to

Fig. 15 Wavestructures: (a) S1 mode (3.6 MHz) and (b) S2 mode (7.2 MHz).

Fig. 16 Cumulative second harmonic from the S1 mode (0.5 MHz) for
varying levels of through-thickness damage.
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transmit and receive based on mode excitability. The wave-
structure (i.e., transverse resonance pattern) for the selected
primary mode and frequency dictates the effectiveness of a
transducer to actuate that mode. The proximity of other
modes to the frequency/wavenumber of the selected mode
and their excitability dictates how preferentially the selected
primary mode is actuated with respect to the other modes.
Similar considerations apply to receiving the higher har-
monic mode. Waves actuated from finite-size transmitters
will diffract, which was not modeled in Sec. 2. Material
attenuation was not modeled either, thus the linear cumula-
tive effect of higher harmonics given by Eq. (22) for inter-
nally resonant mode pairs is not attained due to diffraction
and attenuation. Note that internal resonance is not required
for higher harmonic generation, but it is required for the
higher harmonic to be cumulative. Preferred transmitters
have a large footprint to minimize diffraction, strong cou-
pling between the electrical signal and resulting mechanical
disturbance, and minimal distortion of the waveform. Many
researchers choose to minimize distortion at the expense of
strong coupling by choosing single crystal lithium niobate
instead of polycrystalline lead zirconate titanate (PZT) for
piezoelectric transducers. Preferential excitation of guided
wave modes can be achieved with angle beam transducers
and comb (or interdigital) transducers regardless of the type
of transduction. The means of coupling the transmitter to the
material is important because conventional gel couplant
exhibits significant nonlinearity relative to solid media. On
the receiving side, the preferred transducer is broadband so
that it can receive both the primary and the higher harmonic
frequencies without bias, but this is often not practical.

4.3 Description of Nonlinearity

Most studies of second-harmonic generation employ some
version of the nonlinearity coefficient β to describe the
material nonlinearity. In solids, β is often called the acoustic
nonlinearity parameter, much to the chagrin of the nonlinear
acoustics community. The use of β for nonlinearity in solid
media originates with lossless bulk longitudinal plane waves
modeled in one-dimensional (1-D),43 where the boundary
condition uð0; tÞ ¼ uo cos ωt results in

EQ-TARGET;temp:intralink-;sec4.3;63;296uðx; tÞ ¼ β

8
ðku0Þ2xþ uo cosðkx − tÞ

−
β

8
ðku0Þ2x cos½2ðkx − ωtÞ�;

so clearly the amplitudes of the primary wave and the second
harmonic are

EQ-TARGET;temp:intralink-;sec4.3;63;207A1 ¼ uo; A2 ¼
β

8
ðku0Þ2x;

and the nonlinearity parameter can be written as

EQ-TARGET;temp:intralink-;sec4.3;63;159β ¼ 8

k2x
A2

A2
1

:

Thus, it is common to employ the relative nonlinearity
parameter, β 0 ¼ ðA2∕A2

1Þ. However, the propagation of
guided waves is not a 1-D problem, as the transverse reso-
nance in the waveguide creates unique displacement profiles
for the displacement components. Thus, strictly speaking, β

is not applicable to guided waves. It is useful to consider the
modal amplitude ratios, A2∕A2

1 and A3∕A3
1, for second and

third harmonics, respectively, which, of course, are the rel-
ative second and third order nonlinearity parameters. It
should be emphasized that these modal amplitudes imply
that A1 is constant, i.e., there is no diffraction or attenuation,
and the ratio is employed because it is often difficult to rep-
licate the same primary wave amplitude time after time in
experiments.

4.4 Metal Plates

Nonlinear RL waves in metal plates are the major subsection
on experiments and this is subdivided by the type of trans-
ducer employed: angle beam, magnetostrictive, and disc.

4.4.1 Angle beam transducers

Angle beam transducers enable preferential mode activation
through Snells law; i.e., the wedge angle is selected by the
phase velocity of the intended mode/frequency. The first
experiments on second-harmonic generation were reported
by Deng et al.44,45 for an aluminum plate at the A2∕S2
mode intersection point (see Table 3). Their results are
shown in Fig. 17 and demonstrate both second-harmonic
generation (of the S4 mode) and its cumulative nature. We
point out that the group velocities of the primary and secon-
dary modes do not match (3.4 and 2.3 mm∕μs).

Bermes et al.46 then showed that the S1 primary mode at
the longitudinal wave speed (cp ¼ cl, see Table 2) generates
a cumulative S2 second harmonic. A diffraction-based cor-
rection factor of 1∕

ffiffiffi
x

p
is employed when assessing the

cumulative nature of the second harmonic. These authors
used the short-time-Fourier transform to create a spectro-
gram onto which they superimposed the group velocity
dispersion curves as shown in Fig. 18. In this case, the
group velocities of the S1 and S2 modes are well matched
(4.3 mm∕μs). Bermes et al.47 then expand their analysis to
include the primary S2 mode, also at cp ¼ cl, and the S4 sec-
ondary mode. The use of a laser interferometer to receive the
wave signals has several advantages that include: flat fre-
quency response, no averaging affects from a finite size
receiver, and because it is a noncontact measurement, it is
easy to change the propagation distance.46,47

Matlack et al.48 performed a comparative study of three
internally resonant mode pairs (S1 − S2, S2 − S4, and
A2∕S2 − S4) with the result that the S1–S2 mode pair is pre-
ferred for practical reasons, but since the S2 − S4 mode pair
has a higher β 0, it would be preferred given more effective
experimental procedures (i.e., it is difficult to preferentially
activate the S2 mode at cp ¼ cl). Pruell et al.

49,50 compared
the use of an angle beam receiver with laser interferometer
reception for an aluminum plate that was plastically
deformed. They found that β 0 increased initially due to plas-
tic deformation and then remained relatively constant. The β 0
values obtained from the laser interferometer were lower
than those from the angle beam receiver because the piezo-
electric transducer used for the angle beam was selected
to preferentially receive the second-harmonic frequency,
and therefore, partially filtered the primary wave. Pruell
et al.51 showed that β 0 increases with low-cycle fatigue
for the S1 − S2 mode pair. Cycling was performed in load
control and the maximum plastic strain was less than
0.02 m∕m after 50 cycles, which gave an increase of 17%
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in β 0. From a theoretical perspective, it is surprising that Lee
et al.52 found the A1 − A2 mode pair to give a second
harmonic that increased with the propagation length. Liu
et al.53 compared second-harmonic measurements of anti-
symmetric modes with symmetric modes and found them
to be significantly smaller, but not zero.

4.4.2 Magnetostrictive transducers

A magnetostrictive transducer (MST) consisting of a magne-
tostrictive (e.g., iron-cobalt) foil, a meandering electric coil,
and a permanent magnet functions similar to a comb trans-
ducer, in that the coil spacing dictates the preferred wave-
length. The foil is typically coupled to the plate by adhesive
bonding. By orienting the permanent magnetic field bias col-
linear with the electric current in the coil, SH wave modes are
activated/received, while orienting it perpendicular results in
RL wave modes. Liu et al.26 showed that the internally res-
onant SH3 − S4 mode pair is cumulative and detectable with
MSTs. The MST transmitter was configured to send the SH3

mode at frequency f0 ¼ 2.63 MHz, while the MST receiver
was configured to receive the S4 RL mode at 2f0. Due to
the finite size of the MSTs, energy was received at both
the primary and second-harmonic frequencies. Energy was
received at the primary frequency because the wavefront
was curved, thus creating a detectable RL component from
the primary SH wave. Finite element simulations were con-
ducted to demonstrate this by investigating 20 and 100 mm
wide MSTs. Lissenden et al.54 showed that the third har-
monic of the fundamental SH0 mode is quite sensitive to
plastic deformation. In this investigation, 2024-T3 aluminum
plates were plastically deformed within a reduced width
region having lengths of L ¼ 51, 102, 229, and 457 mm.
The wave propagation distance was 430 mm, thus the plastic
strain localization increased as L decreased, even though it
was reasonably uniform (i.e., 5% to 8%) over the distance L.
The modal amplitude ratio, A3∕A3

1, was 4.8 times larger for a
uniformly deformed plate than it was for an undeformed
plate. As the localization increased, the A3∕A3

1 decreased lin-
early until it was indistinguishable from the undeformed
plate for a localization-to-propagation distance ratio of 0.12.
Furthermore, the plastic strain level was shown to have a sig-
nificant effect on the modal amplitude ratio, A3∕A3

1. In the
related experiments presented by Lissenden et al.55 using
load-controlled cycling to fatigue smooth-sided plate sam-
ples, the modal amplitude ratio increased by a factor of
3.6 at 80% of the fatigue life relative to the pristine material.

Fig. 17 (a) Primary and second harmonic amplitudes and (b) relative nonlinearity parameter with the
propagation distance. (Reprinted from Ref. 44 with the permission of authors and AIP Publishing.)

Fig. 18 Spectrogram showing the amplitudes and time of arrival of the
primary and secondary modes. (Reprinted from Ref. 46 with permis-
sions from authors and AIP Publishing.)
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No fatigue cracks were visually evident. Thus, the large
change in the modal amplitude ratio has a strong potential
to represent material degradation prior to initiation of a mac-
roscale crack.

4.4.3 Disc transducers

PZT disc transducers are inexpensive and easily surface-
bonded to take advantage of the shear stress activated in
the adhesive associated with radial resonance of the disc.
However, mode control capabilities are very limited. Hong
et al.56 reported β 0 for a pristine aluminum plate that appears
to increase linearly with propagation distance. However, the
PZT disc actuator actuates a circular crested wave whose
primary amplitude decreases as 1∕

ffiffiffi
r

p
with propagation dis-

tance, so it is likely that the results are significantly affected
by the primary wavefront spreading. Hong et al.56 also inves-
tigated the effect of a small fatigue crack on β 0 with PZT
discs and finite element modeling that includes material non-
linearity as well as contact acoustic nonlinearity (CAN) from
opening and closing of the crack. The authors plotted β 0 as a
function of distance from the crack as shown in Fig. 10 of
Hong et al.56 In the experiment, a 4-mm long high-cycle
fatigue crack half way through the thickness of the plate
was initiated in a single edge notch sample. Material plastic-
ity associated with dislocation dipoles was included in the
model, but since the authors do not discuss the plastic
zone size, it is implied that the material is modeled as being
homogeneous. If this is, indeed, the case, then the results
indicate that the CAN dominates the material nonlinearity,
otherwise β 0 would not have decreased for wave paths
located further from the crack. Hong et al.57 use second har-
monics for imaging fatigue damage at a rivet hole by using
an array of disc transducers.

We note that CAN associated with breathing cracks has
been studied by numerous researchers using sub- and super-
harmonic generation methods.58–61

4.5 Other Waveguides (Composite Plate, Pipes,
Rods, and Rail)

While the majority of the nonlinear guided wave experiments
were conducted on metal plates, other nondestructive evalu-
ation applications of note are briefly mentioned. Second-
harmonic generation in unidirectional composite plates sub-
jected to thermal and impact damage was studied in Refs. 62
and 63, respectively. Li and Cho64 also measured second-har-
monic generation in a pipe. Choi et al.65 used the axisymmet-
ric Tð0; 1Þ mode in an Alloy 617 pipe to generate third
harmonics that are sensitive to the fatigue-creep damage
that was present. Nucera and Lanza di Scalea66 investigated
nonlinear guided waves in solids subjected to constrained
thermal expansion with a view of being able to characterize
residual stresses due to the thermal expansion of rails.

5 Conclusions
Material and geometric nonlinearities distort passing guided
waves, which cause self-interactions to generate higher har-
monics at integer multiples of the excitation frequency and
mutual interactions to generate combinational harmonics.
Because propagating guided waves are confined to the
dispersion curves, the selection of primary modes that gen-
erates internally resonant higher harmonics is a critical first

step that has been enabled by theoretical modeling. Internally
resonant mode pairs are phase matched and have nonzero
power flux, and unfortunately, are quite limited in number.
Numerical simulations enable virtual experiments to be con-
ducted without instrument nonlinearities and collection of
data that is difficult to acquire from physical experiments.
Simulations have shown that secondary modes once gener-
ated, propagate independent of the primary mode without the
need for group velocity matching. Also, it was found that the
interplay between the wavestructure of the primary mode and
localized material degradation significantly affects the har-
monic generation. Experiments have been conducted with
a variety of transmitters and receivers that demonstrate the
relevant features of higher harmonic guided waves: e.g.,
antisymmetric second-harmonic RL modes are not cumula-
tive while symmetric second-harmonic RL modes are, and
they are sensitive to various types of microstructural
evolution. Thus, nonlinear guided waves have a strong
potential for characterization of incipient damage. In order
to achieve the potential of nonlinear guided waves, it
seems expedient to correlate the higher harmonic generation
with actual features of the material microstructure. Investig-
ations to relate ultrasonic nonlinearity for bulk waves
with material microstructure have been reported by numer-
ous researchers.12–14,43,67,68 However, these 1-D analysis
efforts may not be applicable for guided waves due to
their three-dimensional nature. Recent investigations by the
authors define an asymmetry parameter for mesoscale analy-
sis that can be homogenized up to the continuum level.69,70

More research along these lines should enable a correlation
between the higher harmonic generation and the evolution of
the microstructure, which is incipient damage. This, in turn,
will enable remaining life prediction at an early point in the
service life of structural systems.
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