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Abstract. Mo/Be multilayers are promising optical elements for extreme ultraviolet (EUV)
lithography and space optics. Experimentally derived optical constants are necessary for accurate
and reliable design of beryllium-containing optical coatings. We report optical constants of
beryllium derived from synchrotron radiation-based reflectivity data of Mo/Be multilayers.
Results are in good agreement with available data in the literature obtained from the well-known
absorption measurements of beryllium thin films or foils. We demonstrate synchrotron based
at-wavelength reflectometry as an accurate and non-destructive technique for deriving EUV
optical constants for materials that are difficult or unstable to make thin foils for absorption
measurements. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0
Unported License. Distribution or reproduction of this work in whole or in part requires full attribution
of the original publication, including its DOI. [DOI: 10.1117/1.OE.60.4.044103]
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1 Introduction

Beryllium is an essential material for varieties of scientific and industrial applications, due to its
unique physical and optical properties.1,2 Beryllium in the form of oxide ceramics, metallic
alloys, and salts is used in various industrial sectors.3 The fact that it has a low mass absorption
coefficient in the x-ray range qualifies it for x-ray windows, refractive lenses, and detector win-
dows for synchrotron- and FEL-beamlines.4 Moreover, beryllium has a relatively low absorption
near its K-edge compared to other lightweight materials such as Si, B4C, and SiC. This low
absorption property makes beryllium a promising candidate material for applications in the spec-
tral range 30 to 180 eV, which constitutes extreme ultraviolet (EUV) regime. One application in
this range for beryllium is as a bandpass filter in EUV astronomy instruments,5 the low absorp-
tion around 13.4 nm (∼92.5 eV) makes beryllium an attractive material in the technological
development of EUV lithography optics. Most of the benefits of beryllium in the EUV range
comes from its low absorptive nature. The absorption coefficients in the EUV range is indeed
lower than other traditional low-Z materials such as B4C, SiC, and Si as shown in Fig. 1(a). The
dispersive component of the refractive index of beryllium is also comparable as given in
Fig. 1(b).

Calculations of certain beryllium-containing new multilayer designs, using optical constants
of beryllium from the Henke table 7 achieve reflectivity higher than 70% in the 11- to 13.4-nm
spectral range.7 This range is of high interest for EUV lithography applications.8,9 Beryllium-
containing multilayers also demonstrate high reflectivity at 17.1- and 30.4-nm wavelengths that
are of interest for the optical engineering of solar mission satellites.10 It is, therefore, indispen-
sable to study optical constants of beryllium in the wider range of EUV targeting various
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applications. However, it is particularly important to study optical constants near its K edge
(∼11.09 nm or ∼111.7 eV) where optical responses show abrupt changes due to extremely sen-
sitive interactions of fine structures with neighboring absorbing atoms. It is convenient to discuss
optical constants in EUVand x-ray spectra in terms of δ and β to which the refractive index n is
related as

EQ-TARGET;temp:intralink-;sec1;116;432n ¼ 1 − δ� iβ;

where 1 − β is the real part (i.e., dispersive) and β is the imaginary (absorptive) part of the refrac-
tive index. Apart from the reports in Ref. 6 and in our recent work,11 measured optical constants
of beryllium are limited in the literature. We focus on the measurement of optical constants near
the beryllium absorption edge, where one can expect that experimentally derived optical con-
stants to show strongest deviation from the calculated constants based on atomic scattering
factors from Henke tables.

In this context, a combined analysis of x-ray and EUV reflectometry measurements has been
reported in recent years. Reconstruction of optical and interface parameters of Mo/Si and
B4C∕CeO2 MLs from grazing incidence EUV reflectivity measurements using thicknesses from
independent XRR data analysis are reported in Refs. 12–14. Simultaneous analysis of normal
incidence EUV reflectivity and XRR data were reported in Refs. 15–17 for the characterization
of La/B multilayers. Similar methodologies but technically improved are applied in this work to
derive optical constants of beryllium around its K-edge with high accuracy and reliability. The
XRR measurements at Cu-Kα (∼8 keV) enables determination of ML thicknesses (period, layer,
and interlayer thicknesses) with high spatial resolution. The EUV measurements determine
optical constants with high sensitivity to optical fluctuations.

In this paper, at-wavelength grazing incidence EUV reflectivity measurements are performed
to derive optical constants of beryllium. The method takes into consideration the sensitivity of
optical constants to the configuration of an atom in its environment (i.e., resolution of fine struc-
tures).12 The method is further optimized by taking high-resolution energy measurements to
account for abrupt changes in optical responses especially near the beryllium K edge. Wide-
angle reflectivity measurements are carried out to collect at least two Bragg peaks that allow
contributions of all layers and interlayers in the ML stack to be determined. By choosing a robust
numerical algorithm to fit the measured data [genetic algorithm (GA) in this case], the combined
analysis results in accurate and reliable optical constants. To our knowledge, this method is the
only alternative to derive EUVand soft x-ray optical constants from materials that are difficult to
produce as freestanding foils (e.g., Mg), which are important for space mission optics.

70 80 90 100 110 120 130

17.71 15.50 13.78 12.40 11.27 10.33 9.54

0.00

0.01

0.02

0.03

0.04

Wavelength (nm)

Photon energy (eV)

(a) (b)

MoSiC

Be

Si

B4C

70 80 90 100 110 120 130

17.71 15.50 13.78 12.40 11.27 10.33 9.54

0.00

0.04

0.08

0.12

0.16

Photon energy (eV)

Mo

SiC

Be

Si

Wavelength (nm)

B4C

Fig. 1 Optical constants of bulk beryllium in comparison to the commonly used low-Z materials
B4C, SiC, and Si. (a) Absorption constants and (b) refractive optical constants.6
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2 Sample Description, Experiments, and Data Analysis

As explained in the introduction, experiments were designed in such a way that structural and
optical parameters of MLs are derived with adequate reliability and accuracy. Two different
multilayer structures were designed and fabricated on Si-substrates using DC magnetron sput-
tering facilities that are certified according to health and safety standards10 and pumped out to a
residual pressure of 4 × 10−5 Pa. The working pressure of Argon (Ar) during the deposition was
about 0.1 Pa, and the chemical purity of Ar was about 99.99%. The target materials were disks of
diameter 150 mm and thickness 5 mm. The process utilized 270 W of power for the Be target,
160 W for the Mo target, and 150 W for the Si target.

The first sample (sample_01) is a tri-layer structure of [Mo/Be/Si] on Si substrate with design
period d ∼ 7 nm (dSi ¼ 2.6 nm, dBe ¼ 2 nm, and dMo ¼ 2.4 nm) and number of tri-layers
N ¼ 110. Sample_01 was designed to demonstrate high reflectivity performance at the wave-
length of interest for EUV lithography, i.e., around 13.5 nm. Introducing Si into the [Mo/Be]
MLM design plays a smoothing effect of interfaces and thus enhancing reflectivity.6

The second sample (sample_02) was [Mo/Be] on Si substrate with design parameters of
period d ¼ 14 nm, Γ ¼ 0.36, dMo ¼ 5.04 nm, dBe ¼ 8.96 nm, and N ¼ 25. The Γ-ratio is a
term defined as a quotient of thickness of the more absorbing layer by virtue of its mass (hence
absorber layer) to period. In [Mo/Be] ML combination, Mo with mass density of 10.28 gm∕cm3

is an absorber layer. Sample_02 is designed to allow at-wavelength EUV Reflectivity (EUVR)
measurements with the intention of obtaining at least one Bragg peak in a θ to 2θ scan. Since the
purpose of sample_01 is just to test EUV-reflectivity performance, only spectral measurements
were performed around the working wavelength in normal incidence. On the other hand, sam-
ple_02 was measured using at-wavelength grazing incidence EUV reflectivity from 90 to 134 eV
with an energy step Estep ¼ 0.5 eV in the 90 to 110 eV range, 0.2 eV in the 110 to 116 eV range
around the K-edge of beryllium, and 1 eV in 116 to 134 eV range. All EUV measurements for
both samples were performed in the reflectometer end station of the optics beamline at the
BESSY-II synchrotron radiation source at an energy resolution in the order of few meV.18,19

In addition, complementary x-ray reflectivity (XRR) measurements at a photon energy of
8.048 keV (Cu Kα) were performed using a Philips X’Pert Pro diffractometer system, with a
high-resolution asymmetric four-crystal Ge (220) monochromator, at the Institute for Physics of
Microstructures of Russian Academy of Sciences (IPM-RAS).

Reconstruction of ML parameters from both XRR and EUVR data was performed with the
help of IMD program (modeling and analysis of multilayer films) where details of the math-
ematical formulations are provided in Ref. 20. Computations of optical functions (reflection and
transmission) of multilayer films in IMD is a three-step process. First, reflections/transmissions
are calculated using Fresnel equations at each optical interfaces. Then computation of electro-
magnetic plane waves in each layer by solving Maxwell’s equations. Finally, using a recursive
approach to compute the net field amplitude throughout the stack, starting at the bottom-
most layer.

The numerical fitting in IMD benefits from robust mathematical algorithms. GA and a more
complex variant known by differential evolution (DE), which were included in the version 5 of
IMD package, are used for the fittings in this report. GA is considered as a global optimization
algorithm as it is generally less sensitive to the choice of initial parameters, less susceptible to
local minima, and undergoes stochastic search of global minima in a parameter space with an
intelligent strategy of solution finding.21,22 A nonlinear curve fitting of the measured reflectivity
data against a goodness of fit parameter chi-square (χ2) similar to the Pearson’s criterion20

retrieves almost any parameter of the ML. However, a realistic ML modeling is required to per-
form the nonlinear fitting. Thus, the ML structure of sample_02 is modeled in a four-layer sys-
tem (i.e., layer 1þ interlayer_1þ layer 2þ interlayer_2) to account inter-diffusion regions as
independent layers as witnessed by the high resolution TEM image (Fig. 2) of a similar sample
that was deposited in the same facility with very similar deposition conditions as sample_02. The
TEM image provides qualitative confirmation for the formation of interlayers due diffusions and
substantiate the adoption of the four-layer model. The fitting is a two-step process. First, thick-
nesses and roughness are derived from x-ray measurement at 8.048 keV (0.15 nm) benefiting
from high spatial depth resolution. Results from the XRR fitting are transferred to the second
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step fitting in EUV to retrieve optical constants (δ and β) of each layer and interlayer. In the four-
layer model, fixing the thicknesses and roughness lowers to at least eight input parameters,
δ and β of each layers and interlayers, excluding the surface and substrate parameters.

3 Results and Discussion

High measured reflectivity performance of 70.42% at 13.42-nm EUV wavelength in normal
incidence is achieved by the tri-layer structure of sample_01 as shown in Fig. 3(a).
Figure 3(b) shows angular measurements of that sample at a wavelength of 13.37 nm.
Average thicknesses of dSi ¼ 3.09 nm, dBe ¼ 1.07 nm, dMo ¼ 2.70 nm are obtained from x-ray
reflectometry (XRR) data analysis. The incorporation of Si layers into the Mo/Be structures
enhances performance as intensively reported in Ref. 23.

A nonlinear fit of the XRR of the four-layer Mo/Be structure (Sample_02) is shown
in Fig. 4(a). The model structure and derived layer and interlayer thicknesses are given
in Fig. 4(b).

Fig. 2 High-resolution bright field transmission electron microscopy image of Mo/Be sample to
demonstrate formation of interlayers at interfaces. The ML sample was deposited in the same
sputtering machine under similar deposition conditions to the samples discussed in this work.
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Fig. 3 Measured reflectivity of the ½Mo∕Be∕Si� × 110multilayer (sample_01) at EUV wavelengths.
(a) Spectral dependence in near-normal incidence and (b) angular dependence at 13.37 nm.
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The analysis of the XRR measurement at Cu-Kα line returns a period d ¼ 13.8� 0.2 nm,
dMo ¼ 4.66� 0.2 nm, and dBe ¼ 7.32� 0.2 nm. In addition, the fitting resulted in asymmetric
thicknesses for the interlayers with dMo-on-Be ¼ 0.8� 0.2 nm and dBe-on-Mo ¼ 0.96� 0.2 nm.
Optical constants (δ and β) are derived from EUVR measurements performed at each photon
energy by adopting the model and thicknesses obtained from the XRR fit, shown in Fig. 4(b).
This approach has an advantage in minimizing the number of input parameters. Examples of fits
to the measured curves at 99.61 and 121.64 eV are given in Fig. 5.

In this way, the EUVR fitting solely fits the optical constants (δ and β) by taking into account
the thickness parameters adopted from the XRR analysis. This method has two major advan-
tages: in one hand, it minimizes the number of input parameters significantly, second, it increases
the accuracy of the analysis due to the high optical sensitivity in this regime of the spectrum.
Yakunin et al.24 have already reported the advantage of simultaneous analysis of EUVand x-ray
data in driving structural parameters of multilayers, the mass density, and thicknesses. For the
derivation of optical constants in EUV, however, systematic analysis as implemented in this
work, can give better results. Derived average optical constants of beryllium are summarized
in Fig. 6 based on the methodology discussed above. The derived optical constants of beryllium
show very good agreement with Soufli et al.6 in the Henke table and to recently published work
in Ref. 11.
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Fig. 5 EUV measurements and corresponding fits of sample_02 (a) at 99.61 eV and fit, (b) at
the 121.64 eV. The layer and interlayer thicknesses are taken from the results of the XRR data
in Fig. 4.
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4 Conclusion

We have presented an alternative, non-destructive, realistic, and simpler method for deriving
beryllium optical constants by combining XRR and EUVR measurements. The method is suit-
able for instable or reactive materials, which cannot be produced as thin films for absorption
measurements. The method has been tested on Mo/Be multilayers in the range of the Be K-edge
at which beryllium has high technological importance for EUV-lithography optics as potential
spacer material, since beryllium-containing multilayer coatings show high reflectivity perfor-
mance. We report reflectivity larger than 70% at 13.4 nm from Mo/Be/Si multilayers. The
introduction of beryllium into the Mo/Si structures enhances performance. Optimization of
the coating processes in magneton sputtering may boost the reflectivity performance further.
The optical constants of beryllium derived by our method demonstrate good agreement with
available literature data obtained by absorption measurements. The derived optical constants
help for accurate and reliable design of beryllium-containing coatings.
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