Integral field spectroscopy (IFS), which is realized with IFU, is a two dimensional spectroscopy, providing spectra simultaneously for each spatial direction of an extended two-dimensional field. The scientific advantages of the IFS for studies of localized and transient solar surface phenomena are obvious. There are in general three methods [2][3] to realize the IFS depending on image slicing devices such as a micro-lenslet array, an optical fiber bundle and a narrow rectangular image slicer array. So far, there exist many applications of the IFS for ground-based astronomical observations [4]. Regarding solar instrumentations, the IFS of micro-lenslet array was done by Suematsu et al. [5], the IFS of densely packed rectangular fiber bundle with thin clads was realized [6] and being developed for 4-m aperture solar telescope DKIST by Lin [7] and being considered for space solar telescope SOLAR-C by Katsukawa et al. [8], and the IFS with mirror slicer array was presented by Ren et al. [9] and under study for up-coming large-aperture solar telescope in Europe by Calcines et al. [10] From the view point of a high efficiency spectroscopy, a wide wavelength coverage, a precision spectropolarimetry and space application, the image slicer consisting of all reflective optics is the best option among the three. However, the image slicers are presently limited either by their risk in the case of classical glass polishing techniques (see Vivès et al. [11] for recent development) or by their optical performances when constituted by metallic mirrors. For space instruments, small sized units are much advantageous and demands that width of each slicer mirror is as narrow as an optimal slit width (< 100 micron) of spectrograph which is usually hard to manufacture with glass polishing techniques. On the other hand, Canon is developing a novel technique for such as high performance gratings which can be applicable for manufacturing high optical performance metallic mirrors of small dimensions. For the space-borne spectrograph of SUVIT to be aboard SOLAR-C, we designed the IFS made of a micro image slicer of 45 arrayed 30-micron-thick metal mirrors and a pseudo-pupil metal mirror array re-formatting three pseudo-slits; the design is feasible for optical configuration sharing a spectrograph with a conventional real slit. According to the optical deign, Canon manufactured a prototype IFU for evaluation, demonstrating high performances of micro image slicer and pupil mirrors; enough small micro roughness for visible light spectrographs, sharp edges for efficient image slices, surface figure for high image quality, etc. In the following, we describe the optical design of IFU feasible for space-borne spectrograph, manufacturing method to attain high optical performance of metal mirrors developed by Canon, and resulted performance of prototype IFU in detail. |
CITATIONS
Cited by 1 scholarly publication.
Mirrors
Micromirrors
Spectrographs
Optics manufacturing
Surface roughness
Cutting equipment
Iterated function systems