TSOM is applicable to a wide variety of target materials ranging from transparent to opaque, and shapes ranging from simple nanoparticles to complex semiconductor memory structures, including buried structures under transparent films. TSOM has been successfully applied to targets ranging from one nm to over 100 μm (over five orders or magnitude size range). Demonstrated applications of TSOM include critical dimension (linewidth), overlay, patterned defect detection and analysis, FinFETs, nanoparticles, photo-mask linewidth, thin-film (less than 0.5 nm to 10 nm) thickness, throughsilicon vias (TSVs), high-aspect-ratio (HAR) targets and others with several potential three-dimensional shape process monitoring applications such as MEMS/NEMS devices, micro/nanofluidic channels, flexible electronics, self-assembled nanostructures, and waveguides. Numerous industries could benefit from the TSOM method —such as the semiconductor industry, MEMS, NEMS, biotechnology, nanomanufacturing, nanometrology, data storage, and photonics. |
ACCESS THE FULL ARTICLE
No SPIE Account? Create one
CITATIONS
Cited by 3 scholarly publications.
Nanoparticles
Metrology
Overlay metrology
3D metrology
Optical microscopes
Defect detection
Particles