Paper
29 January 2019 Towards bridging non-ionizing, ultra intense, laser radiation and ionizing radiation in cancer therapy
Alexandros Serafetinides, Mersini Makropoulou
Author Affiliations +
Proceedings Volume 11047, 20th International Conference and School on Quantum Electronics: Laser Physics and Applications; 1104702 (2019) https://doi.org/10.1117/12.2518241
Event: International Conference and School on Quantum Electronics "Laser Physics and Applications": ICSQE 2018, 2018, Nessebar, Bulgaria
Abstract
In oncology, cancer radiotherapy is a well-established therapeutic technique for more than 100 years and, worldwide, about two-thirds of all cancer patients will undergo conventional X-rays or gamma-rays therapy, as monotherapy or as part of their treatment, to destroy tumor cells by damaging their DNA. As the high energy electromagnetic waves based radiotherapy is not equally effective in all types and location of cancerous tumors, radiotherapy using accelerator based hadron beams is a well-established alternative, especially for deep-placed tumors, as a result of the well-known Bragg peak phenomenon. External proton beam radiation therapy is most commonly used in the treatment of pediatric, central nervous system and intraocular cancers. To overcome the major obstacle of the very expensive proton production facilities (through accelerators) in building of proton cancer treatment medical centers, the use of high-power lasers for particle radiation production was proposed. The recent development of lasers with ultrashort pulses (e.g. with pulse lengths around 30 fs) resulted in particle acceleration from the rear side of a laser-irradiated thin foil, based on their unique properties and laser-matter interaction mechanisms. In this review work, we aim to present the progress toward laser-driven radiotherapy, as well as to discuss if and how the radiobiological effectiveness of particle radiation generated by lasers differs from that provided by other conventional techniques. We will discuss the expectations and limitations in anti-cancer laser-driven proton therapy, reported in literature over the last decade. In the framework of the national project HELLAS-CH, we will present some of the preliminary efforts on the combined photodynamic and ionizing radiation action, with ultra-fast laser pulses, on tissue simulators and biological samples.
© (2019) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Alexandros Serafetinides and Mersini Makropoulou "Towards bridging non-ionizing, ultra intense, laser radiation and ionizing radiation in cancer therapy ", Proc. SPIE 11047, 20th International Conference and School on Quantum Electronics: Laser Physics and Applications, 1104702 (29 January 2019); https://doi.org/10.1117/12.2518241
Lens.org Logo
CITATIONS
Cited by 2 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Cancer

Laser therapeutics

Radiotherapy

Oncology

Photodynamic therapy

Particles

Oxygen

Back to Top