Presentation + Paper
20 September 2020 Prospects of time-bin quantum key distribution in turbulent free-space channels
Author Affiliations +
Abstract
Quantum key distribution is a quantum communication protocol which seeks to address potential vulnerabilities in data transmission and storage. One of the main challenges in the field is achieving high rates of secret key in lossy and turbulent free-space channels. In this scenario, most experimental demonstrations have used the polarization of photons as their qubit carriers, due to the relative robustness of polarization in free-space propagation. Time-bin or phase-based protocols are considered less practical due to the wave-front distortion caused by atmospheric turbulence. However, demonstrations of novel free-space interferometer designs are enabling interferometers to measure multimodal signals with high visibility. That means it is now viable to consider the prospects of implementing time-bin or phase-based protocols, which have demonstrated high key rates and long transmission distances in optical fiber. In this work, we present the possibilities of implementing time-bin protocols in turbulent free-space channels, using the coherent one-way protocol as the example. We present an analysis of the secret key rate and quantum bit error rate of the system, providing the errors due to noise counts, and the extinction ratio of the pulses. Finally, we developed a model to quantify the expected losses for a turbulence free-space channel, specifically for a free-space satellite-to-ground station channel.
Conference Presentation
© (2020) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Alfonso Tello Castillo, Catarina Novo, and Ross Donaldson "Prospects of time-bin quantum key distribution in turbulent free-space channels", Proc. SPIE 11540, Emerging Imaging and Sensing Technologies for Security and Defence V; and Advanced Manufacturing Technologies for Micro- and Nanosystems in Security and Defence III, 1154006 (20 September 2020); https://doi.org/10.1117/12.2573479
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Quantum key distribution

Quantum communications

Error analysis

Transmitters

Free space optics

Interferometers

Optical fibers

RELATED CONTENT

A scintillation playback system for quantum links
Proceedings of SPIE (February 24 2017)
Quantum cryptography on optical fiber networks
Proceedings of SPIE (July 06 1998)
An advanced design of receiver for free space quantum key...
Proceedings of SPIE (November 04 2010)
Parameter estimation and control in a QKD link
Proceedings of SPIE (August 24 2004)
Free-space quantum key distribution at night
Proceedings of SPIE (July 06 1998)

Back to Top