PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
The utilization of surface plasmons (SPs) in the form of hot electrons has a great potential for applications in photodetection. Unfortunately, the metallic nanostructures usually support only narrowband plasmon resonances and the hot-electron thermalization loss results in an inefficient internal quantum process. Here, we demonstrate a broadband super absorber based on the metallic nanorod arrays (NRs). The average absorption across the entire visible band is up to 0.8 and the conversion efficiency is over 30-fold enhanced relative to the reference. Furthermore, considering the metallic nanostructures are usually complex with a high fabrication challenge, we present a purely planar hot-electron photodetector based on Tamm plasmons (TPs). More than 87% of the light incidence can be absorbed by the top metal layer. This enables a strong and unidirectional photocurrent and a photoresponsivity that can even be higher than that of the conventional nanostructured system.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
The alert did not successfully save. Please try again later.
Cheng Zhang, Xiaofeng Li, "Infrared photodetection based on hot electrons in plasmonic nanostructures," Proc. SPIE 11557, Plasmonics V, 115570S (10 October 2020); https://doi.org/10.1117/12.2575326