Paper
5 November 2020 A calibration-free carbon monoxide sensor based on TDLAS technology
Author Affiliations +
Proceedings Volume 11569, AOPC 2020: Optical Information and Network; 115690P (2020) https://doi.org/10.1117/12.2580269
Event: Applied Optics and Photonics China (AOPC 2020), 2020, Beijing, China
Abstract
The characteristic absorption lines of carbon monoxide gas cross with that of other gases in near-infrared and midinfrared bands, the detection results are easily disturbed. Especially in some environments such as coal mines and petrochemicals, it is more important to avoid cross interference, in order to achieve accurate measurement of carbon monoxide. In this paper, a DFB laser beam at 2330nm was selected and scanned for absorption line of carbon monoxide. Although interference of other gas components was avoided, the overlap of carbon monoxide and methane spectra still existed. Firstly, the absorption lines of methane and carbon monoxide were studied. According to the theory of molecular spectroscopy, the FWHM of methane and carbon monoxide absorption lines are different. Once, there is methane gas in the background, the harmonic signals will be different due to different line shape. The second harmonic signals with different modulation coefficients are simulated. So the troughs width is selected as the evaluation function of the harmonic signal characteristics for component judgement. Secondly, after component determination, when mixed gas is present, adjacent methane absorption peaks are also scanned for deduction. The influence of temperature is also calculated and the evaluation function is modified again. Finally, the free calibration measurement of carbon monoxide concentration in the mixture is realized. In summary, for the working conditions of complex background gas such as coal mine and petrochemical. This paper presents a calibration-free method for reliable carbon monoxide concentration detection based on a TDLAS technique.
© (2020) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Meng Jiang, Xuefeng Wang, Kaitai Xiao, Xiangning Meng, Hui Gao, Lingbing Kong, and Yang Yong "A calibration-free carbon monoxide sensor based on TDLAS technology", Proc. SPIE 11569, AOPC 2020: Optical Information and Network, 115690P (5 November 2020); https://doi.org/10.1117/12.2580269
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Absorption

Carbon monoxide

Methane

Sensors

Land mines

Calibration

Gases

Back to Top