Photoacoustic imaging (PAI) is a biomedical imaging modality that can provide structural, functional, and molecular information. In PAI, laser pulses illuminate the tissue, and transient light absorption leads to instant thermal expansion and succeeding ultrasound emission. Since oxy- and deoxyhemoglobin are the major light-absorbing chromophores in biological tissue, PAI has very high contrast and is intrinsically suitable for the imaging of blood vessels. Meanwhile, superb microvascular imaging (SMI) is an emerging ultrasound imaging technique for angiography. In comparison to traditional color Doppler and power Doppler techniques which rely on the suppression of low-velocity components, SMI works by an intelligent algorithm that renders small vessels with low flow velocity visible. To date, there is no work to compare PAI and SMI in terms of vascular imaging capabilities. In this paper, we provide our recent evaluation results in imaging depths, speeds, sensitivities, and resolutions of these two modalities through phantom experiments and in-vivo studies. We used PAI and SMI to image the human forearm, and our preliminary data show that PAI is superior in imaging speeds, and sensitivities for superficial blood vessels. We acknowledge that more work needs to be done to compare the two techniques in diverse clinical applications more quantitatively, and we hope our work can pave the way for such systematic studies..
|