The field of precision radial velocities (PRVs) aims to detect radial velocity (RV) signals on the order of 1 m/s. The motivation for the push into PRV is to detect the reflex motion of stars induced by Earth-sized orbiting planets. Measuring PRVs in the near-infrared (NIR) provides a number of advantages over optical, such as reduced noise from stellar jitter, and wealth of RV information encoded in the NIR absorption features of cool, low-mass stars. The Palomar Radial Velocity Instrument (PARVI) implements three key strategies to achieve 1 m/s RV precision in the NIR: single-mode fiber (SMF) feeds, thermo-mechanical stabilization of the spectrograph, and a line-referenced, electro-optical modulation frequency comb (LR-EOFC). PARVI is a J & H band (1145-1766 nm) echelle spectrometer with spectral resolution 87,000–121,000. It was installed at the Hale 200" telescope summer 2019, and since then has undergone multiple hardware upgrades to maximize stability. Using the laser frequency comb (LFC) as a light source, we measure a science channel to reference channel stability of 0.001 pixels over the timespan of a single observing night. This measurement includes the motion of 2790 LFC lines over 17 spectral orders in the H band, and corresponds to a radial velocity precision of approximately 1 m/s at the LFC pump line (lambda_p = 1560 nm).
|