Poster + Paper
23 August 2024 Planning the integration and test of a space telescope with a 1 m aluminum primary mirror: the Ariel mission case
Paolo Chioetto, José Antonio Araiza-Durán, Umberto Barozzi, Lorenzo Barubiani, Georgia Bishop, Andrea Bocchieri, Daniele Brienza, Anna Brucalassi, Matteo Burresi, Andrew Caldwell, Martin Caldwell, Fausto Cortecchia, Fabio D'Anca, Lucile Desjonqueres, Marco Di Giampietro, Emiliano Diolaiti, Paul Eccleston, Alejandro Fernández-Soler, Debora Ferruzzi, Enrico Fossati, Camille Galy, Andrés Garcia Pérez, Gabriele Grisoni, Daniele Gottini, Elisa Guerriero, Marie-Laure Hellin, Lionel Jacques, Riccardo Lilli, Lorenzo Maddii Fabiani, Giuseppe Malaguti, Giuseppina Micela, Federico Miceli, Emanuele Pace, Enzo Pascale, Andrea Paternoster, Javier Pérez Álvarez, Raffaele Piazzolla, Paolo Picchi, Carlo Pompei, Giampaolo Preti, Stéphane Roose, Mario Salatti, Antonio Scippa, Giovanna Tinetti, Elisabetta Tommasi, Leonardo Tommasi, Andrea Tozzi, Dervis Vernani, Ines Ypi, Paola Zuppella
Author Affiliations +
Conference Poster
Abstract
Ariel (Atmospheric Remote-Sensing Infrared Exoplanet Large Survey) is ESA’s M4 mission of the “Cosmic Vision” program, with launch scheduled for 2029. Its purpose is to conduct a survey of the atmospheres of known exoplanets through transit spectroscopy. Ariel is based on a 1 m class telescope optimized for spectroscopy in the waveband between 1.95 and 7.8 µm, operating at cryogenic temperatures in the range 40–50 K. The Ariel Telescope is an off-axis, unobscured Cassegrain design, with a parabolic recollimating tertiary mirror and a flat folding mirror directing the output beam parallel to the optical bench. The secondary mirror is mounted on a roto-translating stage for adjustments during the mission. The mirrors and supporting structures are all realized in an aerospace-grade aluminum alloy T6061 for ease of manufacturing and thermalization. The low stiffness of the material, however, poses unique challenges to integration and alignment. Care must be therefore employed when designing and planning the assembly and alignment procedures, necessarily performed at room temperature and with gravity, and the optical performance tests at cryogenic temperatures. This paper provides a high-level description of the Assembly, Integration and Test (AIT) plan for the Ariel telescope and gives an overview of the analyses and reasoning that led to the specific choices and solutions adopted.
(2024) Published by SPIE. Downloading of the abstract is permitted for personal use only.
Paolo Chioetto, José Antonio Araiza-Durán, Umberto Barozzi, Lorenzo Barubiani, Georgia Bishop, Andrea Bocchieri, Daniele Brienza, Anna Brucalassi, Matteo Burresi, Andrew Caldwell, Martin Caldwell, Fausto Cortecchia, Fabio D'Anca, Lucile Desjonqueres, Marco Di Giampietro, Emiliano Diolaiti, Paul Eccleston, Alejandro Fernández-Soler, Debora Ferruzzi, Enrico Fossati, Camille Galy, Andrés Garcia Pérez, Gabriele Grisoni, Daniele Gottini, Elisa Guerriero, Marie-Laure Hellin, Lionel Jacques, Riccardo Lilli, Lorenzo Maddii Fabiani, Giuseppe Malaguti, Giuseppina Micela, Federico Miceli, Emanuele Pace, Enzo Pascale, Andrea Paternoster, Javier Pérez Álvarez, Raffaele Piazzolla, Paolo Picchi, Carlo Pompei, Giampaolo Preti, Stéphane Roose, Mario Salatti, Antonio Scippa, Giovanna Tinetti, Elisabetta Tommasi, Leonardo Tommasi, Andrea Tozzi, Dervis Vernani, Ines Ypi, and Paola Zuppella "Planning the integration and test of a space telescope with a 1 m aluminum primary mirror: the Ariel mission case", Proc. SPIE 13092, Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130924U (23 August 2024); https://doi.org/10.1117/12.3018650
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Telescopes

Mirrors

Optical alignment

Aluminum mirrors

Design

Manufacturing

Aluminum

Back to Top