Stray light testing is a crucial step in the development of space optical instruments, ensuring that designs perform as theoretically predicted and are free from unexpected stray light effects. Beyond this verification, stray light testing also generates kernels for stray light correction algorithms. Traditional stray light testing methods, while essential, often fall short due to their binary pass/fail output and increasingly stringent stray light requirements. To address this limitation, we have developed and demonstrated the Time-of-Flight (ToF) method for stray light characterization. Our initial application on a simple three-lens system showcased the method's potential for comprehensive stray light assessment, effectively deriving the origin of individual stray light contributors. This paper presents the latest advancements in the ToF method, highlighting its successful application in the test campaign for the NAC instrument, designed for returning samples from Mars in the frame of the Earth Return Observatory mission. Additionally, we will discuss the ToF method's effectiveness in characterizing a stray light baffle, demonstrating its broader applicability.
|