Traumatic Brain Injury (TBI) is the result of external forces impacting the brain. Despite scientific progress, TBI remains a significant cause of impairment and mortality. Recently, laser-induced shockwave (LIS) has emerged as an effective method for TBI simulation. LIS generates shockwaves through pulsed laser-induced plasma formation, allowing for the controlled study of TBI at the cellular level. This study introduces a novel approach to examine cellular morphological changes in response to shear stress, focusing on astrocyte cell type AST-1, by combining LIS with quantitative phase microscopy (QPM). QPM is a label-free technique that allows for real-time cellular dynamics observation through 3D imaging. Integrating LIS and QPM assesses astrocyte responses to shear stress caused by LIS, revealing both immediate and sustained morphological changes. Post-LIS exposure analysis shows significant alterations in astrocyte circularity, volume, surface area, and other features. Statistical tests confirm these observed trends, providing valuable insights into astrocyte responses to mechanical forces. These findings enhance our understanding of how mechanical stimuli affect astrocyte morphology, which may offer the potential for identifying and developing therapeutic strategies in TBI and related neurological disorders.
|