Paper
3 September 1993 Force and membrane compliance measurements using laser interferometry and optical trapping
Luke P. Ghislain, Watt W. Webb
Author Affiliations +
Proceedings Volume 1889, Holography, Interferometry, and Optical Pattern Recognition in Biomedicine III; (1993) https://doi.org/10.1117/12.155726
Event: OE/LASE'93: Optics, Electro-Optics, and Laser Applications in Scienceand Engineering, 1993, Los Angeles, CA, United States
Abstract
The development of the single beam gradient force optical trap has improved the experimental capabilities available to cell biologists for noninvasive micromanipulation and mechanical measurement on living cells. Laser traps can be used not only to optically manipulate particles including bacteria, yeast cells, and intracellular organelles ranging in size from 25 nm to 25 micrometers with fine control of position (10 nm) but also to measure small (0.1 pN) forces in biological systems. For a given particle, trapping forces are linearly related to the laser power so that a relatively simple way of measuring force is to trap a particle at high power and gradually reduce it until the particle just escapes from the trap. The `escape' power, which is usually calibrated against the viscous drag of the aqueous medium at varying laser power levels, is a measure of the force.
© (1993) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Luke P. Ghislain and Watt W. Webb "Force and membrane compliance measurements using laser interferometry and optical trapping", Proc. SPIE 1889, Holography, Interferometry, and Optical Pattern Recognition in Biomedicine III, (3 September 1993); https://doi.org/10.1117/12.155726
Lens.org Logo
CITATIONS
Cited by 1 scholarly publication.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Particles

Optical tweezers

Atomic force microscopy

Calibration

Laser interferometry

Sensors

Biomedical optics

Back to Top