Paper
7 June 1996 Processing of compressed imagery: basic theory with visual pattern image coding (VPIC) and block truncation coding (BTC) transformations
Author Affiliations +
Abstract
The cost of processing imagery that exhibits a large data burden can be ameliorated by compressive processing, which simulates an image-domain operation using an analogous operation over a given compressed image format. The output of the analogous operation, when decompressed, equals or approximates the output of the corresponding image operation. In previous research, we have shown that compressive processing can lead to sequential computational efficiencies that approach the compression ratio. This effect is due to the presence of fewer data in the compressed image, as well as to the occasional occurrence of an analogous operation whose cost per pixel is less than that of the corresponding image operation. We generally claim computational efficiencies that approach the compression ratio. A further advantage of compressive processing can occur in parallel computing paradigms, where a consequent reduction in the processor count may approach the compression ratio. This has important implications when the compressive operation requires less computing time than the corresponding image operation. That is, a reduction in the fundamental complexity may occur, which facilitates computation in nearly-constant time, given sufficient parallelism. Additionally, the degree of parallelism is reduced with respect to that required for image-domain computation by a factor that approaches the compression ratio. In this paper, we discuss fundamental theory that unifies compressive processing at a high level, as well as present and evaluate general formulations of the BTC and VPIC compression transforms, Analyses emphasize effects of information loss and computational error inherent in VPIC and BTC, as well as computational efficiency. Our algorithms are expressed in terms of image algebra, a rigorous, concise notation that unifies linear and nonlinear mathematics in the image domain. Since image algebra has been implemented on numerous sequential and parallel computers, our algorithms are feasible and widely portable.
© (1996) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Mark S. Schmalz "Processing of compressed imagery: basic theory with visual pattern image coding (VPIC) and block truncation coding (BTC) transformations", Proc. SPIE 2751, Hybrid Image and Signal Processing V, (7 June 1996); https://doi.org/10.1117/12.242004
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Image compression

Transform theory

Image processing

Raster graphics

Computer programming

Visualization

Image visualization

RELATED CONTENT


Back to Top