Paper
17 May 2000 Improved laser-assisted vascular tissue fusion using solder-doped polymer membranes on a canine model
Karen M. McNally-Heintzelman, Brian S. Sorg, Daniel X. Hammer, Douglas L. Heintzelman M.D., Diane E. Hodges, Ashley J. Welch
Author Affiliations +
Abstract
Newly developed light-activated surgical adhesives have been investigated as a substitute to traditional protein solders for vascular tissue fusion without the need for sutures. Canine femoral arteries (n equals 14), femoral veins (n equals 14) and carotid arteries (n equals 10) were exposed, and a 0.3 to 0.6 cm longitudinal incision was made in the vessel walls. The surgical adhesive, composed of a poly(L-lactic-co-glycolic acid) scaffold doped with the traditional protein solder mix of bovine serum albumin and indocyanine green dye, was used to close the incisions in conjunction with an 805 nm diode laser. Blood flow was restored to the vessels immediately after the procedure and the incision sites were checked for patency. The new adhesives were flexible enough to be wrapped around the vessels while their solid nature avoided the problems associated with 'runaway' of the less viscous liquid protein solders widely used by researchers. Assessment parameters included measurement of the ex vivo intraluminal bursting pressure one to two hours after surgery, as well as histology. The acute intraluminal bursting pressures were significantly higher in the laser-solder group (greater than 300 mmHg) compared to the suture control group (less than 150 mmHg) where four evenly spaced sutures were used to repair the vessel (n equals 4). Histological analysis showed negligible evidence of collateral thermal damage to the underlying tissue in the laser-solder repair group. These initial results indicated that laser-assisted vascular repair using the new adhesives is safe, easy to perform, and contrary to conventional suturing, provides an immediate leak-free closure. In addition, the flexible and moldable nature of the new adhesives should allow them to be tailored to a wide range of tissue geometries, thus greatly improving the clinical applicability of laser-assisted tissue repair.
© (2000) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Karen M. McNally-Heintzelman, Brian S. Sorg, Daniel X. Hammer, Douglas L. Heintzelman M.D., Diane E. Hodges, and Ashley J. Welch "Improved laser-assisted vascular tissue fusion using solder-doped polymer membranes on a canine model", Proc. SPIE 3907, Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems X, (17 May 2000); https://doi.org/10.1117/12.386230
Lens.org Logo
CITATIONS
Cited by 8 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Polymers

Proteins

Laser tissue interaction

Arteries

Laser welding

Adhesives

Tissues

Back to Top