Paper
30 January 2002 Markov chain Monte Carlo algorithms for optimizing grazing incidence optics for wide-field x-ray survey imaging
Peter W. A. Roming, John C. Liechty, David H. Sohn, Jared R. Shoemaker, David N. Burrows, Gordon P. Garmire
Author Affiliations +
Abstract
We have been working on the design of a wide-field, short focal length, grazing incidence mirror shell set with a desired rms image spot size of 15 arcsec. The baseline design consists of Wolter I type mirror shells with polynomial perturbations applied to the baseline design. The overall optimization technique is to efficiently optimize the polynomial coefficients that directly influence the angular resolution without stepping through the entire multi-dimensional coefficient space. We have previously investigated the use of Response Surface Designs and Artificial Neural Networks as a means for optimizing the polynomial coefficients. The results have been published elsewhere. Here we have investigated Markov chain Monte Carlo (MCMC) algorithms as a method for optimizing the multi-dimensional coefficient space. Although MCMC algorithms are traditionally used to explore probability densities that result from a particular model specification, they can be used to create irreducible algorithms for optimizing arbitrary, bounded functions. In situations where very little is known, a priori, about a function and where the function may have multiple minimums, the irreducible nature of the MCMC algorithm combined with the ability to adapt MCMC algorithms offers a promising framework for optimizing this multi-dimensional complex function.
© (2002) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Peter W. A. Roming, John C. Liechty, David H. Sohn, Jared R. Shoemaker, David N. Burrows, and Gordon P. Garmire "Markov chain Monte Carlo algorithms for optimizing grazing incidence optics for wide-field x-ray survey imaging", Proc. SPIE 4496, X-Ray Optics for Astronomy: Telescopes, Multilayers, Spectrometers, and Missions, (30 January 2002); https://doi.org/10.1117/12.454361
Lens.org Logo
CITATIONS
Cited by 3 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Mirrors

X-ray optics

Monte Carlo methods

Spatial resolution

Grazing incidence

X-rays

X-ray imaging

RELATED CONTENT

Kirkpatrick-Baez x-ray optics: a review
Proceedings of SPIE (May 24 2011)
Quest For Ultrahigh Resolution In X-Ray Optics
Proceedings of SPIE (August 09 1979)
X-ray focusing using microchannel plates
Proceedings of SPIE (January 01 1992)
Optics For The X Ray Imaging Concentrators Aboard The X...
Proceedings of SPIE (August 09 1988)
Wide-field x-ray imaging for future missions, including XEUS
Proceedings of SPIE (January 29 2004)

Back to Top