Paper
16 May 2005 Vibration isolation of automotive vehicle engine using periodic mounting systems
Author Affiliations +
Abstract
Customer awareness and sensitivity to noise and vibration levels have been raised through increasing television advertisement, in which the vehicle noise and vibration performance is used as the main market differentiation. This awareness has caused the transportation industry to regard noise and vibration as important criteria for improving market shares. One industry that tends to be in the forefront of the technology to reduce the levels of noise and vibration is the automobile industry. Hence, it is of practical interest to reduce the vibrations induced structural responses. The automotive vehicle engine is the main source of mechanical vibrations of automobiles. The engine is vulnerable to the dynamic action caused by engine disturbance force in various speed ranges. The vibrations of the automotive vehicle engines may cause structural failure, malfunction of other parts, or discomfort to passengers because of high level noise and vibrations. The mounts of the engines act as the transmission paths of the vibrations transmitted from the excitation sources to the body of the vehicle and passengers. Therefore, proper design and control of these mounts are essential to the attenuation of the vibration of platform structures. To improve vibration resistant capacities of engine mounting systems, vibration control techniques may be used. For instance, some passive and semi-active dissipation devices may be installed at mounts to enhance vibration energy absorbing capacity. In the proposed study, a radically different concept is presented whereby periodic mounts are considered because these mounts exhibit unique dynamic characteristics that make them act as mechanical filters for wave propagation. As a result, waves can propagate along the periodic mounts only within specific frequency bands called the "Pass Bands" and wave propagation is completely blocked within other frequency bands called the "Stop Bands". The experimental arrangements, including the design of mounting systems with plain and periodic mounts will be studied first. The dynamic characteristics of such systems will be obtained experimentally in both cases. The tests will be then carried out to study the performance characteristics of periodic mounts with geometrical and/or material periodicity. The effectiveness of the periodicity on the vibration levels of mounting systems will be demonstrated theoretically and experimentally. Finally, the experimental results will be compared with the theoretical predictions.
© (2005) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
S. Asiri "Vibration isolation of automotive vehicle engine using periodic mounting systems", Proc. SPIE 5760, Smart Structures and Materials 2005: Damping and Isolation, (16 May 2005); https://doi.org/10.1117/12.599031
Lens.org Logo
CITATIONS
Cited by 5 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Wave propagation

Lawrencium

Vibration isolation

Signal attenuation

Matrices

Mechanical engineering

Control systems

Back to Top