Paper
16 May 2005 Electrical impedance modeling of ionic polymer transducers
Author Affiliations +
Abstract
Ionic polymer transducers are a class of active material that exhibit interesting chemoelectromechanical coupling capabilities. Initially recognized for their chemoelectric properties, these materials have begun to receive notice as electromechanical transducers. This electromechanical coupling provides the fundamental mechanism for both actuator and sensor applications. Under relatively low electric stimuli (1-10kV/m) these materials are capable of achieving large bending strains (1-5%). Similarly these transducers provide effective sensing capabilities when subject to an applied external load or deformation. Recent studies indicate that the transducer's performance can be directly related to changes in the polymer's electrical impedance. An analytical model is proposed based upon these findings. The basic tenet of this model is that ion motion is induced as an electric field is applied across the polymer membrane. Transport theory is employed to model this ion motion through an electrostatics approach. This method yields a series of analytical expressions for charge density, electric field and electric potential across the polymer's thickness. The solution of the charge density profile is then used to calculate the isothermal transient ionic current (ITIC). Corresponding to the measured current, this ITIC expression is related to the applied voltage to yield a relationship between the applied voltage and the resultant current.
© (2005) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Kevin M. Farinholt and Donald J. Leo "Electrical impedance modeling of ionic polymer transducers", Proc. SPIE 5761, Smart Structures and Materials 2005: Active Materials: Behavior and Mechanics, (16 May 2005); https://doi.org/10.1117/12.600229
Lens.org Logo
CITATIONS
Cited by 7 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Polymers

Transducers

Motion models

Ions

Electrodes

Differential equations

Astatine

Back to Top