Paper
6 April 2007 Microstructural modeling of ferroic switching and phase transitions in PZT
Author Affiliations +
Abstract
Niobium doped Lead Zirconate Titanate (PZT) with a Zr/Ti ratio of 95/5 (i.e., PZT 95/5-2Nb) is a ferroelectric with a rhombohedral structure at room temperature. A crystal (or a subdomain within a crystal) exhibits a spontaneous polarization in any one of eight crystallographically equivalent directions. Such a material becomes polarized when subjected to a large electric field. When the electric field is removed, a remanent polarization remains and a bound charge is stored. A displacive phase transition from a rhombohedral ferroelectric phase to an orthorhombic anti-ferroelectric phase can be induced with the application of a mechanical load. When this occurs, the material becomes depoled and the bound charge is released. The polycrystalline character of PZT 95/5-2Nb leads to highly non-uniform fields at the grain scale. These local fields lead to very complex material behavior during mechanical depoling that has important implications to device design and performance. This paper presents a microstructurally based numerical model that describes the 3D non-linear behavior of ferroelectric ceramics. The model resolves the structure of polycrystals directly in the topology of the problem domain and uses the extended finite element method (X-FEM) to solve the governing equations of electromechanics. The material response is computed from anisotropic single crystal constants and the volume fractions of the various polarization variants (i.e., three variants for rhombohedral anti-ferroelectric and eight for rhomobohedral ferroelectric ceramic). Evolution of the variant volume fractions is governed by the minimization of internally stored energy and accounts for ferroelectric and ferroelastic domain switching and phase transitions in response to the applied loads. The developed model is used to examine hydrostatic depoling in PZT 95/5-2Nb.
© (2007) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Joshua Robbins, Tariq A. Khraishi, and Pavel M. Chaplya "Microstructural modeling of ferroic switching and phase transitions in PZT", Proc. SPIE 6526, Behavior and Mechanics of Multifunctional and Composite Materials 2007, 652607 (6 April 2007); https://doi.org/10.1117/12.715159
Lens.org Logo
CITATIONS
Cited by 1 scholarly publication.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Ferroelectric materials

Crystals

Switching

Polarization

Finite element methods

Protactinium

Solids

Back to Top