We model an interaction of femtosecond laser pulses (800 nm, 100 fs, 10E12-10E14 W/cm2) with metal targets (Al, Au, Cu and Ni). A detailed analysis of laser-induced phase transitions, melting wave propagation and material decomposition is performed using a thermodynamically complete two-temperature equation of state with stable and metastable phases. Material evaporation from the surface of the target and fast melting wave propagation into the bulk are observed. On rarefaction the liquid phase becomes metastable and its lifetime is estimated using the theory of homogeneous nucleation. Mechanical fragmentation of the target material at high strain rates is also possible as a result of void growth and confluence. In our simulation several ablation mechanisms are observed but the major output of the material is found to originate from the metastable liquid state. It can be decomposed either into a liquid-gas mixture in the vicinity of the critical point, or into droplets at high strain rates and negative pressure. The simulation results correlate with available experiments.
|