Paper
31 March 2011 Study of thinly sectioned melanoma skin tissues with mechanical scanning acoustic reflection microscopy
B. R. Tittmann, C. Miyaska, Y. Tian, E. Maeva, D. Shum
Author Affiliations +
Abstract
The contents of the present report are focused on characterizing a thinly sectioned skin tissue with a mechanical scanning acoustic reflection microscope (tone-burst-wave mode) and describes the quantitative data acquisition technique with V(z) analysis. The reflectance function for the tissue located on a substrate was theoretically determined, and fitted into the mathematical model of the V(z) curve. The V(z) curves with frequency at 200 MHz for thinly sectioned normal and abnormal tissues located on soda-lime glasses were theoretically and experimentally formed. Their leaky surface acoustic wave velocities were obtained by the experimentally formed V(z) curves through FFT analyses. Finally, a computer simulation with a parameter-fitting technique (i.e., matching the distances of the periods of the theoretical and experimental V(z) curves by inputting different longitudinal wave velocities and densities of the tissue) was implemented to obtain the longitudinal wave velocities and densities of the tissues. The obtained longitudinal wave velocity may be used to simulate contrast analysis.
© (2011) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
B. R. Tittmann, C. Miyaska, Y. Tian, E. Maeva, and D. Shum "Study of thinly sectioned melanoma skin tissues with mechanical scanning acoustic reflection microscopy", Proc. SPIE 7984, Health Monitoring of Structural and Biological Systems 2011, 798417 (31 March 2011); https://doi.org/10.1117/12.879233
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Tissues

Acoustics

Reflectivity

Skin

Melanoma

Reflection

Soda-lime glass

Back to Top