In this paper, the formation of self-organized conical structures in intercalation materials such as LiCoO2 and LiNi1/3Mn1/3Co1/3O2 is investigated in detail. For this purpose, the cathode materials are exposed to excimer laser radiation with wavelengths of 248 nm and 193 nm leading to cone structures with outer dimensions in the micrometer range. The process of cone formation is investigated using laser ablation inductively coupled plasma mass spectrometry and laser-induced breakdown spectroscopy (LIBS). Cone formation can be initiated for laser fluences up to 3 J/cm2 while selective removal of lithium was observed to be one of the key issues for starting the cone formation process. It could be shown that material re-deposition supports the cone-growth process leading to a low loss of active material. Besides the cone formation process, laser-induced chemical surface modification will be analysed by LIBS. |
ACCESS THE FULL ARTICLE
No SPIE Account? Create one
CITATIONS
Cited by 3 scholarly publications.
Liquid crystal on silicon
Electrodes
Laser induced breakdown spectroscopy
Lithium
Cobalt
Excimer lasers
Pulsed laser operation