A high-magnification image of a biological sample can generally be obtained by an optical microscope with an objective lens, moving the image sensor with a sub-pixel shift and the subsequent image processing for super-resolution. However, to obtain a high-resolution image, a large number of images will be required for the super-resolution, and thus it is difficult to achieve real-time operation, and the field-of-view (FOV) is not sufficiently wide. The currently proposed digital holography technique places a sample on the image sensor and captures the interference fringe (hologram) to reconstruct a 3D high-resolution image in a computer. This technique ensures the features of a wide FOV, whereas the high resolution obtained by image processing cannot ensure real-time operation, because it requires recursive calculations of light propagation and adequate computer resources. To realize wide FOV and the real-time operation at the same time, we have developed a new technique: Lensfree on-chip high-resolution imaging using two-way lighting. High-resolution image is immediately obtained by image processing of the low-resolution images of the samples. This makes it possible to ensure a wide FOV, a deep depth of focus without the need for focus adjustment, and a continuously expanding operation. We also discuss the limitations of the high resolution.
|