|
1.INTRODUCTIONUntil very recently, graduates of Montana State University interested in optics and photonics had little choice but to move out of Montana to seek employment in other regions, typically in big cities with a large number of high-technology companies. However, today’s students are finding increasing opportunities for employment in the rapidly growing optics and photonics industry in and around Bozeman, Montana. Similar growth is occurring in optics and photonics research programs at Montana State University (MSU) and the university and industry are growing in a synergistic pattern. This growth began in the 1980s and continues today. This growth is particularly notable because it is occurring in a small town in Montana, a state that has historically been better known for cattle ranching, copper and coal mining, and hunting than for any kind of modern technology. Straddling the Rocky Mountains in the northwestern United States and extending eastward into the Great Plains, Montana has the fourth-largest area but the third-lowest population density of the 50 states. Its largest city has only approximately 100,000 people and Bozeman is only the third- or fourth-largest city in the state (its population was listed in the 2010 census as 37,280). Prior to the Internet age, it was nearly impossible to run a competitive technology-based company or university research group in this relatively remote location. However, that has changed dramatically since the parallel establishment in the 1980s of optics-related university research and companies in Bozeman. This paper summarizes some of the key events in this parallel development and identifies the key elements that have allowed this somewhat unlikely development to continue. 2.BEGINNINGS OF THE OPTICS INDUSTRY IN MONTANAThe growth of optics-related companies in Montana is shown graphically in the timeline of Figure 1, which shows the year of establishment of each optics-related company in the area. Interviews with the founders1,2 indicated that these first optics companies came to Bozeman for a combination of the outstanding quality of life and the reputable engineering and science programs at Montana State University. Orionics Inc. arrived in 1980 after Roger Robichaud left Los Alamos National Lab in New Mexico to manufacture optical fiber splicing and test equipment. He learned of Bozeman from his engineer, who was an MSU graduate. In 1981, MSU physics graduate Ed Teppo returned to Montana from the U.S. Navy facility at China Lake, California and founded Big Sky Laser Technologies to manufacture rugged solid-state lasers. In 1984, Toomay-Mathis and Associates (TMA) was established by a pair of retired Air Force generals and Dr. John Stover, a young faculty member in the MSU Electrical Engineering Department, to develop scatterometers for measuring surface roughness on precision optical components. ILX Lightwave was started in 1986 by Dr. Larry Johnson, who discovered Bozeman when he was invited to use Orionics equipment at their Bozeman facility while they built a system for his employer in Minnesota. The final two optics-related companies arriving in the 1980s were Scientific Materials Corp. and Lattice Materials Corp., both beginning operations in 1989. Lattice Materials Corp. was founded by John Tengelsen as a supplier of infrared optical materials and components. Scientific Materials was founded by Ralph Hutcheson, an MSU mechanical engineering graduate who earlier at Union Carbide Corp. had grown the ruby crystal used in the world’s first laser, invented by Dr. Ted Maiman in 1960. Orionics was purchased by Ametek in 1985 and ended operations in 1987. By 1990, the five remaining optics companies in Bozeman were beginning to provide the first signs of what the future could hold, and the university was making some wise moves that would help create that future. 3.BEGINNINGS OF OPTICS RESEARCH AND EDUCATION IN MONTANAAlthough the first few companies were established in a seemingly chaos-driven, rapid series of unpredictable events, the university was involved directly or indirectly from the very beginning. The most direct early university involvement was with the optical scatterometry company TMA & Associates. Somewhat ironically, the same week he was awarded tenure in the MSU Electrical Engineering (EE) Department, Dr. John Stover resigned his faculty position to devote his efforts to the new company. However, even after leaving the university he continued to teach an electro-optics course in the EE Department and to collaborate with Dr. Fred Cady who remained at MSU. Together they recruited the best students to work at the company and at least one graduate thesis was completed as part of this mid-1980s collaboration. Before joining TMA, John Stover called Dr. John Carlsten at Los Alamos National Lab (LANL) to encourage him to apply for an open faculty position in the MSU Physics Department. Dr. Carlsten arrived at MSU in 1984 with a truckload of optical equipment supplied by LANL to help establish a collaborative laser physics program. Soon after arriving in Montana, John Carlsten happened to meet Larry Johnson from ILX Lightwave Corp. while sharing a lunch table at the local ski hill. Larry’s company soon began funding a small research effort in John’s lab to study stability and noise performance of diode lasers. Not much later, another collaborative relationship grew up between the newly established laser crystal company Scientific Materials Inc. and Dr. Rufus Cone, a laser spectroscopist in the MSU Physics Department. In fact, this opportunity for collaboration was one reason behind the choice of Bozeman as the location for this new company, which needed exactly the expertise provided by Dr. Cone. The fledgling partnerships established in the 1980s easily could have stagnated or withered instead of continuing to grow and spin off more companies, but instead there were several key investments of time, effort, and funding by the university and by the state. The most important characteristic of these investments was that they were designed to benefit a larger group than just the individual people involved. These unselfish efforts resulted in the growth of a broader and more diverse optics program than could have been possible with only single-investigator research efforts. In 1990 and 1991, two people involved with growing the research enterprise at MSU, Vice-President for Research Bob Swenson and Plant Sciences Professor Gary Strobel, took notice of the fledgling optics collaborations and encouraged John Carlsten to build on them by hiring additional optics faculty and establishing an optics center. Dr. Strobel was leading an effort to invigorate MSU research through the National Science Foundation’s Experimental Program to Stimulate Competitive Research (EPSCoR) and this is the program through which John Carlsten submitted an important proposal in 1992.3 This proposal was entitled “Optical Science and Laser Technology” and had the goal of forming a “group in optical science and laser technology at Montana State University” for the “development of nationally competitive optical programs that have the possibility of leading to technology transfer to the local optical industry in Bozeman and the state.” The five-year proposal requested $1,033,453 from the NSF and committed an additional $981,250 from the Montana Science and Technology Alliance (MSTA, created by the Montana Legislature in 1989) and $867,516 from MSU, for a total budget of $2,882,219. The NSF funds were used for faculty summer salary, postdoctoral researcher salary, and graduate student stipends, along with associated indirect costs. The MSTA funds were used for equipment, travel, supplies and associated indirect costs, while the MSU funds were used for new faculty salary, benefits, a small amount of equipment, supplies, travel, and associated indirect costs. The primary lesson to learn from these details is that there was an essentially equal three-way investment made by Montana State University, the State of Montana, and the National Science Foundation during the period 1993 – 1998. Another key lesson to be learned from this proposal is the long-term value of an investment in faculty with strategically chosen research expertise. The proposal provided funding to strengthen the research capabilities of four faculty members in three university departments, focusing on activities that could benefit local industry (see Table 1), but it accomplished much more by also coordinating the university-funded hire of at least one additional faculty member in each of these three departments. In fact, these efforts and related funding eventually led to the hiring of even more faculty members across campus. While the 1992 NSF proposal led directly to the hiring of Aleksander Rebane in Physics, David Singel in Chemistry, and David Dickensheets and Chris Yakymyshyn in Electrical and Computer Engineering (ECE), it later led indirectly to further hires so that as of the writing of this manuscript MSU has eighteen tenure-track faculty, at least eight research faculty or professional research staff, and several dozen students working on optics-related research. Table 1.Faculty research activities funded by the 1992 NSF proposal that launched the MSU optics program
The importance of the balance across academic disciplines in these hires cannot be overstated: the strategically invested funding was used to hire and establish new faculty covering the spectrum of basic optical science to optical engineering and applications. This diversity has resulted in numerous new opportunities for collaboration, both among the optics faculty and with faculty in other departments (e.g., optical remote sensing with Agriculture and Land Resources and Environmental Sciences, bio-optical imaging with the Center for Biofilm Engineering, etc.). In August 1992, a workshop was held at Montana State University to explore strategies and opportunities for university-industry collaboration in optics. This began the tradition of an annual conference to review optics activities on campus and in local industry. This tradition continues today and is widely recognized as one of our most important activities because of the continual opportunities these conferences present for establishing and maintaining personal relationships. Students, faculty, and local business leaders spend time together in the same room, getting to know each other and having discussions that often launch new collaborations. Furthermore, the conferences and frequent colloquia provide opportunities for current students to meet and listen to previous students and other company leaders tell how they started and are running their companies. This instills in students an entrepreneurial spirit that helps maintain the continuing growth of the local industry. The annual conference tradition continues today under the direction of the Optical Technology Center (OpTeC), formally designated as an interdisciplinary center by the Montana Board of Regents in 1995 with John Carlsten as Director (John led the formation of the center and served as director until 1997, Lee Spangler was director from 1997 to 2004, and Joseph Shaw became director in 2004 and continues in that position as of the writing of this paper in 2015).4 Figure 2 shows a sampling of photographs from prior conferences.5 MSU optics faculty remain in traditional departments, but the Optical Technology Center serves as an umbrella-like organization, bringing together students and faculty doing optics-related research and promoting optics education, research, and technology transfer into local industry. In 2013, the Montana Photonics Industry Alliance6 (MPIA) was created for the larger purpose of promoting policies to support the photonics industry and for helping to recruit employees into local companies and students into MSU optics programs. The founding MPIA President was Dr. Larry Johnson, who had recently sold his company ILX Lightwave to Newport Corporation. Together, OpTeC and MPIA provide valuable communication and interconnections among the university, companies, and city and state government. There has been steady growth of optics in industry and at the university since the establishment of the first optics companies and university projects. Many of these companies were started by MSU graduates, often after they explored opportunities elsewhere and then returned to Montana. Some companies have licensed MSU technologies, others have collaborated with MSU, and others have remained independent. An important lesson to note in all of this is that nearly all the MSU graduates who started optics and photonics companies held Ph.D. or master’s degrees. This highlights the crucial role of graduate education and research, not only for creating new technologies that can be licensed or adopted by companies, but also for training students with the advanced skills required to establish and operate a high-technology-based company. Although the majority of company founders have been Ph.D. graduates, the growing companies now need a broader range of education. Therefore, in recent years MSU has been increasing the educational offerings for master’s degree and undergraduate students, as shown in Table 2. The optics and photonics courses available to students at the time of this writing are listed in Table 3 (there is currently in development a photonics technician degree program at Gallatin College, a two-year community college affiliated with MSU, which is not included in the tables). Finally, Table 4 lists the primary optics and photonics research activities being undertaken at MSU. Table 2.Degree options for students to study optics and photonics at Montana State University as of Fall 2015.
Table 3.Optics and photonics classes available at MSU as of Fall 2015.
Table 4.Primary optics and photonics research activities at MSU as of Fall 2015.
Finally, it is important to note the added value that has been created as our community has become home to a cluster of companies. This added value is manifest in at least three ways. First, employees can move from one company to another as demand increases in one place and decreases in another. Second, when larger out-of-state companies buy our existing companies, they now tend to leave them in Montana because of the vitality of the local optics and photonics community (for example, FLIR Systems, Inc. purchased Scientific Materials in 2005 and Newport Corp. purchased ILX Lightwave in 2011, and both deals resulted in the companies not only remaining in Montana, but also growing beyond their pre-purchase size). Third, other companies have seen what is going on in Montana and have chosen to create an office here. The number of companies is continuing to increase, as are the number and variety of exciting applications of optical science and technology being developed in a small Montana town where only three decades ago this was all unexpected. 4.CONCLUSIONA new, dynamic center of activity in optics and photonics is developing in Bozeman, Montana - a small university town in southwestern Montana in the northwestern United States. Over a period of thirty-five years, more than thirty optics and photonics companies have been established in Bozeman and similar numbers of faculty and research staff have been hired at the university to conduct vigorous research programs. Since the beginning and continuing today, there has been a very collegial relationship between the university and local industry, with many leaders and employees at local companies being graduates of the Montana State University optics programs. The growth has occurred in a parallel and synergistic fashion at the university and in local industry. A careful, retrospective examination of this growth, including interviews with some of the principal people involved in this growth, has identified the following critical elements that must be considered if one wishes to understand or replicate this process.
REFERENCESRoberts, S.,
“Optics in the Gallatin Valley,”
(2011). Google Scholar
Roberts, S. and J. A. Shaw,
“video interviews with some of the early and recent leaders of optics in Montana,”
Optics in the Gallatin Valley,
(2011). Google Scholar
Carlsten, J. L.,
“Optical science and laser technology,”
National Science Foundation, available through personal communication with1992). Google Scholar
,
(2015) www.optics.montana.edu Google Scholar
,Optical Technology Center online photo album,
(2015) http://optics.montana.edu/photos.html Google Scholar
,Montana Photonics Industry Alliance (MPIA),
(2015) http://www.montanaphotonics.org/ Google Scholar
|