Field Guide to

Terahertz Sources, Detectors, and Optics

Créidhe O'Sullivan J.Anthony Murphy

> SPIE Field Guides Volume FG28

John E. Greivenkamp, Series Editor

Bellingham, Washington USA

Library of Congress Cataloging-in-Publication Data

O'Sullivan, Créidhe M. M. Field guide to terahertz sources, detectors, and optics / Créidhe O'Sullivan, J. Anthony Murphy. p. cm. – (The field guide series ; FG28) Includes bibliographical references and index. ISBN 978-0-8194-9167-1
1. Millimeter wave devices–Handbooks, manuals, etc.
2. Terahertz technology–Handbooks, manuals, etc.
3. Infrared equipment–Handbooks, manuals, etc.
4. Submillimeter waves–Handbooks, manuals, etc.
I. Murphy, J. Anthony, II. Title.

TK7876.5.088 2012 621.381'33–dc23

2012012372

Published by

SPIE P.O. Box 10 Bellingham, Washington 98227-0010 USA Phone: +1.360.676.3290 Fax: +1.360.647.1445 Email: books@spie.org Web: http://spie.org

Copyright @ 2012 Society of Photo-Optical Instrumentation Engineers (SPIE)

All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means without written permission of the publisher.

The content of this book reflects the work and thought of the author. Every effort has been made to publish reliable and accurate information herein, but the publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Printed in the United States of America.

First Printing

Introduction to the Series

Welcome to the SPIE Field Guides—a series of publications written directly for the practicing engineer or scientist. Many textbooks and professional reference books cover optical principles and techniques in depth. The aim of the SPIE Field Guides is to distill this information, providing readers with a handy desk or briefcase reference that provides basic, essential information about optical principles, techniques, or phenomena, including definitions and descriptions, key equations, illustrations, application examples, design considerations, and additional resources. A significant effort will be made to provide a consistent notation and style between volumes in the series.

Each SPIE Field Guide addresses a major field of optical science and technology. The concept of these Field Guides is a format-intensive presentation based on figures and equations supplemented by concise explanations. In most cases, this modular approach places a single topic on a page, and provides full coverage of that topic on that page. Highlights, insights, and rules of thumb are displayed in sidebars to the main text. The appendices at the end of each Field Guide provide additional information such as related material outside the main scope of the volume, key mathematical relationships, and alternative methods. While complete in their coverage, the concise presentation may not be appropriate for those new to the field.

The *SPIE Field Guides* are intended to be living documents. The modular page-based presentation format allows them to be easily updated and expanded. We are interested in your suggestions for new Field Guide topics as well as what material should be added to an individual volume to make these Field Guides more useful to you. Please contact us at **fieldguides@SPIE.org**.

John E. Greivenkamp, *Series Editor* College of Optical Sciences The University of Arizona Keep information at your fingertips with all of the titles in the Field Guide Series:

Field Guide to Adaptive Optics, Robert Tyson & Benjamin Frazier Atmospheric Optics, Larry Andrews Binoculars and Scopes, Paul Yoder, Jr. & Daniel Vukobratovich Diffractive Optics, Yakov Soskind Geometrical Optics, John Greivenkamp Illumination, Angelo Arecchi, Tahar Messadi, & John Koshel Image Processing, Khan M. Iftekharuddin & Abdul Awwal Infrared Systems, Detectors, and FPAs, Second Edition, Arnold Daniels Interferometric Optical Testing, Eric Goodwin & Jim Wyant Laser Pulse Generation, Rüdiger Paschotta Lasers, Rüdiger Paschotta Microscopy, Tomasz Tkaczyk **Optical Fabrication**. Ray Williamson Optical Fiber Technology, Rüdiger Paschotta *Optical Lithography*, Chris Mack **Optical Thin Films**, Ronald Willey Polarization. Edward Collett Probability, Random Processes, and Random Data Analysis, Larry C. Andrews & Ronald L. Phillips Radiometry, Barbara Grant Special Functions for Engineers, Larry Andrews Spectroscopy, David Ball Visual and Ophthalmic Optics, Jim Schwiegerling

The region of the electromagnetic spectrum between microwaves and infrared radiation has come to be known as the "THz gap," mainly due to the lack of readily available laboratory sources and detectors. For many years technology development was driven by astronomers and planetary scientists, but other potential uses, particularly in medical and security applications, have led to increased activity by the mainstream physics and engineering community in recent times. Because diffraction is important at these frequencies, THz systems cannot be successfully designed using traditional optical techniques alone.

The primary objective of this Field Guide is to provide the reader with a concise description of the quasi-optical techniques used at THz frequencies, as well as the basic principles of operation of the most common THz system components in use today. More detailed accounts of specific devices can be found in the bibliography and references therein.

We would like to thank our families and our colleagues at NUI Maynooth, in particular Neil Trappe, Marcin L. Gradziel, and Ian McAuley of the THz Optics group and also Stafford Withington of the Cavendish Laboratory at Cambridge.

> Créidhe O'Sullivan J. Anthony Murphy Department of Experimental Physics National University of Ireland, Maynooth

Glossary of Symbols and Acronyms	xi
Introduction	1
The THz Band	1
The THz Gap	2
THz Absorption in Air	3
Reflection and Transmission	4
THz Sources	5
Natural Sources of THz Radiation	5
THz Generation Techniques	6
Gunn Diodes	8
IMPATT Diodes	9
TUNNETT Diodes	10
Resonant Tunnel Diodes	11
Difference Frequency Generation	12
Electro-optic Crystals (Optical Rectification)	13
Execution Farametric Oscillators	10
Photoconductive Antennas	10
Photomixing	18
Ontically Pumped Far-IR Gas Lasers	19
p-Type Germanium Lasers	20
Quantum Cascade Lasers	$\overline{21}$
Gyrotrons	$\overline{22}$
Synchrotrons	23
Free-Electron Lasers	24
Backward Wave Oscillators	25
Smith–Purcell Emitters	26
THz Detectors	27
THz Detection Techniques	27
Responsivity and Signal-to-Noise Ratio	29
Noise Equivalent Power	30
Shot and Thermal Noise	31
Extrinsic Semiconductor Detectors	32
Photoconductive Detectors	33
Photomixers	34
Schottky Diodes	35
Schottky Diode Mixers	37
SIS Mixers	38
Electro-optic Sampling	39
Semiconductor Bolometers	41 19
Micropolonieter Arrays	40

Table of Contents

Table of Contents

Transition-Edge Sensors	44
SQUIDS Het Fleetnen Belemeteur	40
Hot-Electron Dolometers	41
Hot-Electron Bolometer Mixers	48
Pyroelectric Detectors	49
Golay Cells	50
THz Optics	51
Gaussian Beam Propagation	51
Complex Radius of Curvature	52
Gaussian Beam Parameters	53
Beamwidth	55
Edge Taper	56
Truncation and Spillover (Gaussian Beams)	57
Truncation and Spillover	
(Non-Gaussian Beams)	58
Confocal Distance	59
Far-Field Divergence	60
Ray Matrices and Gaussian Beam	
Ťransformation	61
Higher-Order Modes (Cylindrical	
Coordinates)	64
Higher-Order Modes (Rectangular	
Čoordinates)	65
Mode Coefficients	66
Power Coupling Efficiency	69
Gaussicity	70
Mismatched Beams and Tolerancing	71
Scattering Matrix Formulism	72
Transmission Matrices	73
Linear Scattering Operators	74
Truncation at an Aperture	75
Perfect Lenses and Pure Propagation	76
Reflections at Dielectric Interfaces	
(Lens Surfaces)	77
Standing Waves in Horn-Fed Systems	78
Cascading Scattering and Transmission	
Matrices	79
Off-Axis Mirrors (Ellipsoidal)	80
Off-Axis Mirrors (Parabolic)	81
Off-Axis Mirrors (Distortion and	
Cross-Polarization)	82
Polarizing Grids	83
Roof Mirrors as Polarization Rotators	84

Field Guide to Terahertz Sources, Detectors, and Optics

Table of Contents

Dual-Beam Interferometers (Tunable Filters)	85
Diffraction Losses in Interferometers	86
Diplexers and Multiplexers	87
Four-Port Dual-Beam Interferometer	0.
(Diplexer)	88
Horn Antenna Feeds	89
Corrugated Conical Horns (Scalar Feed)	90
Smooth-Walled Horns (Pyramidal	
and Diagonal)	91
Conical Smooth-Walled Horns (Single	
and Dual Mode)	92
Shaped Horns and Multimode Feeds	93
Lens Antennas	94
System Design	95
Modeling Techniques	96
THz Applications	97
THz Imaging	97
THz Spectroscopy	99
THz Time-Domain Spectroscopy	100
Equation Summary	101
Bibliography	114
Index	117

A	absorbance
A	detector area
Α	profiled horn parameter
a	aperture radius
a	horn aperture side length
a	semi-major axis of an ellipse
a	wire radius
A_n, A_n^h, A_n^v	n^{th} mode coefficient of beam a , n^{th} mode
	coefficient of orthogonal components
\mathbf{a}_n	mode coefficients for beam n at the input
	port
ac	alternating current
A_{12}, A_{21}	scattering matrices for an absorbing stop
B	magnetic field
В	magnetic field strength
b	horn aperture side width
b	semi-minor axis of an ellipse
B_n, B_n^h, B_n^v	n^{th} mode coefficient of beam b , n^{th} mode
	coefficient of orthogonal components
\mathbf{b}_n	mode coefficients for beam n at the
	output port
BWO	backward wave oscillator
C	capacitance
C	heat capacity
с	speed of light
C_e, C_{ph}	electron heat capacity, phonon heat
	capacity
c.c.	complex conjugate
CMOS	complementary metal-oxide-
	semiconductor
CW	continuous wave
D	detectivity
d	diameter
d	distance between the focal point and the
	apex of a lens antenna
d	propagation distance

D^*	specific detectivity
D_{12}, D_{21}	scattering matrices for pure propagation
dc	direct current
DFG	difference frequency generation
\mathbf{E}, \mathbf{E}_a	electric field
$\mathbf{E}(t), \mathbf{E}(r)$	electric field
E, E_0	electric field amplitude
$E(x, y, z), E(\mathbf{r})$	electric field amplitude
е	elementary charge
E_a, E_b	electric field amplitude
\mathbf{E}_{ap}	electric field across an aperture
\mathbf{e}_{F}	vector field
\mathbf{e}_G	vector Gaussian field
E_g, E_C, E_V, E_F	energy gap, conduction band energy,
C .	valence band energy, Fermi energy
$\hat{\mathbf{e}}_h, \hat{\mathbf{e}}_v$	unit orthogonal vectors
E_i, E_j, E_k	electric field amplitude
$E_{inc}, E_{refl}, E_{trans}$	incident, reflected, transmitted electric
·	field
E_L, E_H	light-, heavy-hole energy
E _{OP}	optical phonon energy
Eout	output electric field
$E_{p,t}, E_{p,r}, E_{p,i}$	transmitted, reflected, incident electric
	field amplitude for p-polarization
$E_{s,t}, E_{s,r}, E_{s,i}$	transmitted, reflected, incident electric
	field amplitude for s-polarization
E_{THz}	terahertz electric field amplitude
E_{p}^{+}, E_{p}^{-}	forward and reverse traveling $p^{ m th}$
	symmetric Laguerre mode
EO	electro-optic
F	Fresnel number
f	focal length
FEL	free-electron laser
\mathbf{FS}	free space
FWHM	full width half maximum

G	thermal conductance
g	wire spacing
GBMA	Gaussian beam mode analysis
GBT	Gaussian beam telescope
$\mathbf{H},\mathbf{H}_a,\mathbf{H}_b$	magnetic field
h	Planck's constant
$H_m(x)$	$m^{\rm th}$ Hermite polynomial
HEB	hot electron bolometer
HIFI	Heterodyne instrument for the
	far-infrared
HPBW	half-power beamwidth
Ι	current
Ι	intensity, transmitted intensity
I	identity matrix
i	$\sqrt{-1}$
i	angle of incidence
I_c	critical current
I_x, I_y	x, y component of intensity
I_0	incident intensity
IF	intermediate frequency
IMPATT	impact ionization avalanche transit time
IR	infrared
J	free current density
J	rotational state number
J	screening current
K	power coupling coefficient
k	wavenumber $(2\pi/\lambda)$
K_{ab}	power coupling between two beams
k_B	Boltzmann constant
K_G	power coupling to a pure Gaussian
	(Gaussicity)
K _{lost}	power lost due to truncation
$\mathbf{k}_P, \mathbf{k}_S, \mathbf{k}_I$	pump wavevector, signal wavevector,
	idler wavevector
K _{spillover}	power lost due to spillover
K_{Xpol}	power scattered into the cross-polar direction

inductance
slant length, slant length along <i>x</i>
direction, slant length along <i>y</i> direction
grating period
operator representing a transfer function
coupling to reflected modes at port <i>n</i>
generalized Laguerre polynomials
walk-off length
coherence length
path length
local oscillator
low-temperature-grown gallium
arsenide
magnification
n^{th} matrix
electron mass
multiplication factor of a frequency
multiplier
number density
number of photons, signal photons, noise
photons detected
refractive index
rms noise level
spectral order
optical, terahertz refractive index
negative differential resistance
noise equivalent power
neutron-transmutation doped
optical phonon
optical parametric oscillator
optically pumped THz laser
polarization
power contained within a radius r
vertex-focus distance of a parabola
noise power, signal power
total power

Field Guide to Terahertz Sources, Detectors, and Optics

PCA	photoconductive antenna
p-Ge	p-type germanium laser
q	charge
$q(z), q_0$	complex radius of curvature (also known as complex beam parameter or Gaussian beam parameter)
q_{in}, q_{out}	complex radius of curvature of input, output beam
q_{1}, q_{2}	complex radius of curvature of beam 1, 2
QCL	quantum cascade laser
R(z)	Gaussian beam phase radius of
	curvature
R	radius
R	reflectivity
R	resistance
R	surface radius of curvature
r	complex reflection amplitude coefficient
R_{in}, R_{out}	phase radius of curvature
r_{in}, r_{out}	ray displacement
R _{surf}	surface radius of curvature
r_T	truncation radius
R_V	responsivity
R_{1}, R_{2}	surface radius of curvature
R_{1}, R_{2}	distances to foci of an ellipse
RF	radio frequency
rms	root-mean-square
RTD	resonant tunnel diode
$\mathbf{S}, \mathbf{S}^{a}, \mathbf{S}^{b}, \mathbf{S}^{c}$	full scattering matrix
\$	phase error
$egin{array}{llllllllllllllllllllllllllllllllllll$	scattering matrices
SIS	superconductor-insulator-superconductor
SNR	signal-to-noise ratio
SNR_{dB}	signal-to-noise ratio in dBs

G D I	
S/N	signal-to-noise ratio
SPR	Smith–Purcell radiation
SQUID	superconducting quantum interference
	device
T	temperature
Т	transmittance
Т	fractional power transmission
t	complex transmission amplitude
	coefficient
$\mathbf{T}, \mathbf{T}^a, \mathbf{T}^b, \mathbf{T}^c$	full transmission matrix
T_b, T_s	bath, heat sink temperature
T_c	critical temperature
T_{e}	edge taper
T_e (dB)	edge taper expressed in dB
T_e, T_{ph}	electron temperature, phonon
	temperature
$T_{11}, T_{12},$	
T_{21}, T_{22}	transmission matrices
TCR	thermal coefficient of resistance
TE, TM	transverse electric, magnetic
TES	transition edge sensor
THz-TDS	terahertz time-domain spectroscopy
TUNNETT	tunnel injection transit time
$u(x, y, z), u_0$	non-plane-wave part of the electric field.
	constant
V.V.me	voltage, root-mean-square voltage
v	vibrational state number
V_{bi}	built-in potential
Vgan	gap voltage
w,w(z)	Gaussian beam radius
Wm	beam radius at a mirror
w_{0}, w_{0a}, w_{0b}	Gaussian beam waist radius
$w_{0 in}, w_{0 out}$	Gaussian beam waist radius
WG	waveguide
x	path length
x_c	point of intersection, x coordinate

y_c	point of intersection, y coordinate
z_c	confocal distance, Rayleigh range
α	absorption coefficient
α	diffraction parameter
α	incident beam polarization angle
$\alpha, \alpha(T)$	thermal coefficient of resistance
α	tilt of grid wires
β	mode balance constant
$\beta_{trans}, \beta_{refl}$	transmitted, reflected beam polarization
	direction
х	electron affinity (volts)
$\chi^{(2)}, \chi^{(2)}_{iik}$	second-order susceptibility
Δ	path length difference
Δ_{IF}	IF bandwidth
Δ_{max}	path length difference for maximum
	transmission
Δ_{min}	path length difference for minimum
	transmission
Δ_{SSB}	single-sideband path length difference
Δ_1, Δ_2	energy gap of a semiconductor
ΔE	energy gap
Δx	lateral shift
Δz	relative displacement
Δz	position of beam waist behind aperture
$\Delta \theta$	cone angle
$\Delta \gamma$	bandwidth
δν	frequency of successive transmission
	bands
ε	permittivity of free space
Φ_0	flux quantum
φ	grid inclination angle
ϕ_c	critical emission angle
$\phi_m, \phi_{sc}, \phi_B$	metal, semiconductor, barrier work
	function
$\phi_0(z), \phi_{in}, \phi_{out}$	Gaussian beam phase slippage
γ	Lorentz factor $(1/\sqrt{(1-\beta^2)}, \beta = v/c), v$ is
	velocity

γ	reflection coefficient at an interface
η _{spillover}	Gaussian beam spillover efficiency
λ	wavelength
λ_{FEL}	wavelength of radiation from an FEL
$\lambda_{IF}, \lambda_{LO}, \lambda_s$	IF, LO, signal wavelength
λ_w	wiggler magnet spacing wavelength
γ	frequency
$\gamma_{IF}, \gamma_{LO}, \gamma_s$	IF, LO, signal frequency
v_{THz}, v_{pump}	terahertz, pump frequency
θ	angle from normal
θ	angle with respect to propagation axis
θ	incident field polarization angle
θ	grid tilt angle
θ′	projected grid tilt angle
θ_c	critical angle
$\theta_{in}, \theta_{out}$	ray angle with respect to normal
θ_0	asymptotic beam growth angle
θ_1, θ_2	angle of incidence, reflection
σ	absorption cross-section
τ	transmission
τ_{diff}	diffusion time
$\tau_{ep}, \tau_{pe}, \tau_{es}$	electron-phonon, phonon-electron,
	electron-substrate energy transfer time
$ au_p$	pulse length
$\omega, \omega_1, \omega_2, \omega_3$	angular frequency
Ψ_n	$n^{ m th}$ Gaussian beam mode
$\Psi_{mn}(x,y,z)$	Gaussian–Hermite beam mode
	amplitude (rectangular coordinates)
$\Psi_{pm}(r,\phi,z)$	Gaussian–Laguerre beam mode
	amplitude (cylindrical coordinates)
Ψ_n^{SC}	n th scattered Gaussian beam mode
ψ_a,ψ_b,ψ_F	scalar field
ψ_G	scalar Gaussian field