PHOTONICS Rules of thumb

Third Edition

Library of Congress Cataloguing-in-Publication Data

Names: Miller, John Lester, 1959- author. | Friedman, Edward, author.
Title: Photonics rules of thumb : optics, electro-optics, fiber optics, and lasers / John Lester Miller, Ed Friedman, Jack Sanders-Reed, Katie Schwertz, Brian McComas.
Description: Third edition. | Bellingham, Washington : SPIE Press, [2020] | Revised edition of: Photonics rules of thumb : optics, electro-optics, fiber optics, and lasers / Ed Friedman, John Lester Miller. 2nd ed. c2004. | Includes bibliographical references and index. |
Identifiers: LCCN 2019059788 (print) | LCCN 2019059789 (ebook) | ISBN 9781510631755 (paperback) | ISBN 9781510631762 (pdf) |
Subjects: LCSH: Photonics.
Classification: LCC TA1520 .F75 2020 (print) | LCC TA1520 (ebook) | DDC 621.36/5--dc23
LC record available at https://lccn.loc.gov/2019059788
LC ebook record available at https://lccn.loc.gov/2019059789

Published by SPIE P.O. Box 10 Bellingham, Washington 98227-0010 USA Phone: +1 360.676.3290 Fax: +1 360.647.1445 Email: books@spie.org Web: http://spie.org

Copyright © 2020 Society of Photo-Optical Instrumentation Engineers (SPIE)

All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means without written permission of the publisher.

The content of this book reflects the work and thought of the authors. Every effort has been made to publish reliable and accurate information herein, but the publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Printed in the United States of America. Last updated 22 May 2020 For updates to this book, visit http://spie.org and type "PM314" in the search field.

PHOTONICS RULES OF THUMB

Third Edition

John Lester Miller, Ed Friedman, Jack Sanders-Reed, Katie Schwertz, and Brian McComas

> SPIE PRESS Bellingham, Washington USA

Contents

Preface	xvii
Acknowledgements	xxi
1 Astronomy	1
Introduction	1
Blackbody Temperature of the Sun	2
Number of Stars as a Function of Wavelength	3
A Simple Model of Stellar Populations	3
Number of Infrared Sources per Square Degree	6
Number of Infrared Stars above a Given Radiance	9
Direct Lunar Radiance	10
Atmospheric Seeing	12
Comparison of Resonant Fluorescence and Rayleigh Guide Stars	13
Number of Actuators in an Adaptive Optic	16
Bandwidth Requirement for Adaptive Optics	18
Photon Rate at a Focal Plane	19
Reduction of Magnitude by Airmass	20
Night-Sky Exposure Time with a Fixed Camera	22
2 Atmospherics	23
Introduction	23
Vertical Profiles of Atmospheric Parameters	25
Visibility Distance for Rayleigh and Mie Scattering	26
Atmospheric Effects at 10.6 Microns	26
C_n^2 Estimates	30
C_n^2 as a Function of Weather	33
Impact of Weather on Visibility	35
Bufton Vertical Profile of Wind Speed	37
Index of Refraction of Air	
Fried Parameter	41
Fried Parameter Horizontal-Path Fried Parameter	41 43
Fried Parameter Horizontal-Path Fried Parameter Phase Error Estimation	41 43 44
Fried Parameter Horizontal-Path Fried Parameter Phase Error Estimation Day vs. Night Scintillation Models for Laser Beams	41 43 44 45
Fried Parameter Horizontal-Path Fried Parameter Phase Error Estimation Day vs. Night Scintillation Models for Laser Beams Resolution Looking Down	41 43 44 45 47
Fried Parameter Horizontal-Path Fried Parameter Phase Error Estimation Day vs. Night Scintillation Models for Laser Beams Resolution Looking Down Isoplanatic Angle	41 43 44 45 47 49
Fried Parameter Horizontal-Path Fried Parameter Phase Error Estimation Day vs. Night Scintillation Models for Laser Beams Resolution Looking Down	44

	A dentine Oction Influence Francis	59
	Adaptive Optics Influence Function Shack–Hartmann Noise	59 59
		39
	Laser Beam Wander Variance is Approximately Proportional to the Cube of the Pathlength	61
	Pulse Stretching in Scattering Environments	64
	Optimal Truncation of a Gaussian Beam Propagating in the Atmosphere	64
	Increased Requirement for Rangefinder SNR to Overcome Atmospheric	01
	Effects	67
	Free-Space Link Margins	69
	Summary of Phase Modulators for Adaptive Optics	70
	Telescope Seeing Created by a Dome Floor	71
	Telescope Seeing Due to Still or Ventilated Air	71
3	Acquisition, Tracking, and Pointing	73
	Introduction	73
	Correct Measure of Detection Performance	74
	Tracker vs. Detection	75
	Detection Criteria	78
	Signal-to-Noise Ratio Requirements	79
	Psychometric Function	80
	Optical Blur Should Be Oversampled by FPA Pixels (Don't Overdo It!)	82
	Dwell in Cell	83
	Probability of Detection Estimation	84
	Limits of Position Estimation	87
	Multisensor Tracking	91
	Johnson Criteria	92
	Extension of the Johnson Criteria to Other than 50 Percent	96
	Identification and Recognition Improvement for Interpolation	99
	Resolution Requirement	101
	Resolution Required to Read a Letter	102
	Detection Nomograph	105
	Correcting for Probability of Chance	106
	National Image Interpretability Rating Scale	108
4	Backgrounds	111
	Introduction	111
	Clutter and Signal-to-Clutter Ratio	113
	Clutter Power Spectral Density	114
	Infrared Clutter Behavior	115
	Frame Differencing Gain	116
	Earth's Emission and Reflection	117
	Illuminance at Earth's Surface from Various Sources	119
	Illuminance Changes during Twilight	121
	Emissivity Approximations	122
	Reflectivity of a Wet Surface	123

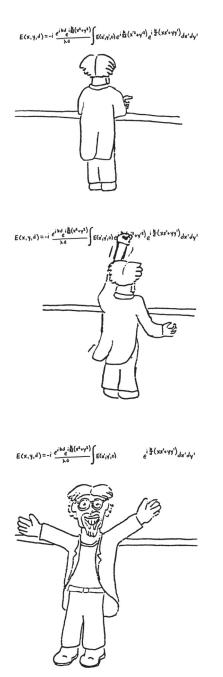
Effective Sky Temperature	125
Sky Irradiance	126
Zodiacal Light	127
Backgrounds from Asteroids	127
5 Cost and Economics	129
Introduction	129
Moore's Law	130
Metcalfe's Law	133
Englebart's Law	134
The Value of Early Investment	135
Cost Reduction Techniques	138
Learning Curves	139
Learning Curves for Optics	140
Optics Cost	142
Cost Function of a Lens	143
Tolerance Cost Examples	145
Price of a Custom vs. Off-the-Shelf Optic	146
Telescope Component Costs	147
Impact of Tolerances on the Cost of Optics	150
Stahl Segmented Cost Rule	152
Tolerancing Guidelines for Glass Spherical Optics	153
Tolerancing Guidelines for Plastic Optics	154
Cost of Digital Image vs. Film	156
Small Pixels Reduce Cost	156
System Percentage Costs	157
Length of a Job Search	158
Photolithography Yield	158
6 Degraded Visual Environments	161
Introduction	161
Basic Attenuation and Visibility: Beer's Law	162
Atmospheric Attenuation Curves	164
Atmospheric Visibility Curves	166
Attenuation vs. Particle Size	167
Visibility in Smoke	168
Equations for Empirical Visibility	169
Penetration vs. Resolution	172
Mandatory Mitigation for Sensor Blindness	173
Deep Wells Are Good	174
7 Focal Plane Arrays	175
Introduction	175
Infrared Detector Characterization	180
Responsivity and Quantum Efficiency	183
ROIC Charge Capacity	184

Low Quantum Efficiency Detectors Are Useful	185
Silicon Quantum Efficiency	186
HgCdTe x Concentration	188
Quantum Dot Fundamentals Diverge from Conventional Detectors	191
Avalanche Photodiode Performance	193
Responsivity of Avalanche Photodiodes	193
Peak vs. Cut-off	195
CMOS Depletion Scaling	196
Focal Plane Array Noise Sources	197
Rule 07	200
Law 19	204
Radiative Estimate of Dark Current	204
Defining Background-Limited Performance for Focal Planes	205
The Concepts of D and D^*	207
Ideal D^* and View Angle	207
Dependence on R_0A	209
Shot Noise Rule	211
Infrared Detector DC Pedestal	212
Digitizer Sizing	213
Noise as a Function of Temperature	214
Noise Bandwidth of Detectors	216
Noise Equations for CMOS	217
Specifying 1/f Noise	218
Nonuniformity Effects on SNR	221
Correlated Double Sampling	223
8 Human Vision	225
Introduction	225
Retinal Illumination	228
Diffraction Effects in the Human Eye	230
Energy Flow into the Eye	231
Pupil Size	233
Quantum Efficiency of Cones	234
Rod and Cone Response	236
Cone Density	238
Rod Density Peak	239
Eye Resolution	242
Optical Fields of View	243
Contrast Performance	245
Simplified Optical Transfer Functions for Eye Components	246
Eye Motion during the Formation of an Image	247
Visual Performance as a Function of Age	249
Old-Age Rules	250
Superposition of Colors	252
Dyschromatopic Vision	254

Eye Adaptation Time	258
Eat Your Vegetables	259
Stereograph Distance	261
Assorted Eye Facts	262
Head-Mounted-Display Latency	264
9 Lasers	267
Introduction	267
Lidar Basic Equations	269
Laser Brightness	271
Laser Beam Quality	272
Gaussian Beam Radius	274
On-Axis Intensity of a Beam	276
Aperture Size for Laser Beams	278
Laser Beam Divergence	278
Laser Beam Spread vs. Diffraction	280
Types of Lidars	280
Laser Radar Range Equation	282
Lidar Bidirectional Reflectance Distribution Function	282
Thermal Focusing in Laser Rods	283
Cross-Section of a Retroreflector	285
Air Breakdown	286
10 Materials and Structures	289
Introduction	289
Diameter-to-Thickness (Aspect) Ratio	291
The Influence of the Mounting Method on Plate Deflection	293
Self-Weight Deflection of Mounted Mirrors	295
Mirror Support Criteria	298
Fundamental Frequency of a Vibrating Plate	301
Fundamental Frequency of a Deformable Mirror	302
Design Guidelines for Pressure Windows	303
Dome Collapse Pressure	305
Glass Does Not Flow	306
Allowable Stress in an Optic	306
Relationship between Tensile and Compressive Stress	308
Estimation of Preload Torque	309
Stress Birefringence Induced by an Applied Load	310 311
Maximum Stress on an Optic Due to a Metal Retainer	511
A Bonded Mirror Is Three Times More Stable in Tension or Compression than Shear	313
Mechanical Stability Rules	313
Mass Is Proportional to the Element Size Cubed	315
Deflection of a Mirror at the End of a Beam	313
Scan Mirror Deflection	320
Figure Change of Metal Mirrors	320
r igare change of mean minions	541

ix

Foam Core Mirrors Spin-Cast Mirrors Serrurier Truss Spacecraft Issues Related to Space Optics Damage Mechanisms Associated with Micrometeoroids Black Coatings Index of Refraction Resources Carbon-Silicon Carbide Coefficient of Thermal Expansion Properties of Aluminum as a Function of Temperature Permeability of Gases through Thin Films of Aluminum Time to Uniform Temperature	324 327 328 330 333 335 337 340 342 346 347
Temperature Dependence of the Verdet Constant Modeling Cryo Multilayer Insulation	350 351
11 Miscellaneous IntroductionPosition of the SunDistance to HorizonContrastDigital Pixel Equivalent of Chemical FilmCommon Image and Video Compression FormatsThe Power of Dimensional AnalysisScissor IntegrationNumber of Seconds in a YearSolid AnglesSpeed of LightWater Weighs a TonAvoid Galling MetalFailure of Cylinders and Spheres under External PressureDefining Screw ThreadsFriction-Induced Pointing Error after Rate ReversalShipping EnvironmentsClean Room ClassificationsConverting Resolution	355 355 357 358 360 361 364 366 367 369 369 369 370 370 370 370 372 373 374 375 376
Safety Factors for Optics Use Speckle to Focus 90 Percent of Anything Is Plumbing Arrhenius Equation Miller's Rule of Test Failure Cooling with Liquid or Solid Cryogen Joule–Thomson Cool-Down Time Low-Earth-Orbit Thermal Changes Crickets as Thermometers Image Intensifier Resolution	377 378 378 379 381 381 383 383 383 384 384
Photomultiplier Tube Power Supply Noise	386


Quantization Error	386
12 Ocean Optics	389
Introduction	389
Index of Refraction of Seawater	391
Absorption Coefficient	393
Absorption of Ice at 532 nm	394
Absorption Caused by Chlorophyll <i>a</i>	395
Bathymetry	396
<i>f</i> -Stop under Water	397
Underwater Detection	398
Underwater Glow	400
Ocean Reflectance	401
Wave Slope	402
13 Optical Design and Analysis	405
Introduction	405
Small-Angle Approximation	408
Effects from Light Passing Through a Plane Parallel Plate	409
Beam Deviation Due to a Thin Wedge Prism	411
Impacts of Optical Element Motion	412
Defocus for a Telescope Focused at Infinity	414
Hyperfocal Distance	416
Focal Length and Field of View	417
Limit on FOV for Reflective Telescopes	417
Maximum Useful Pupil Diameter	418
Minimum <i>f</i> -Number	419
<i>f</i> -Number for Circular Obscured Apertures	421
Light Refraction in a Cube	422
Aberration Scaling	423
Spherical Aberration and <i>f</i> -Number	424
Blur vs. Field-Dependent Aberrations	425
Reducing Optical Design Sensitivities	426
Separate the Centers of Curvature	427
Reduce the Ray Angles of Incidence	428
Efficient Reflective Triplet Layout for Feasibility Checks	429
Efficient Three-Mirror Anastigmat Layout for Feasibility Checks	430
Properties of Visible Glass	432
Per Pixel Resolution of a Spectrometer	434
Smith's Modern Optical Engineering Design Rules of Thumb	434
Diffraction Graph	436
Diffraction Is Proportional to Perimeter	438
Diffraction Principles Derived from the Uncertainty Principle	439
Diffraction Spikes	440
Estimating Surface Scatter	442

Power Spectral Density of Surface Roughness	444
In-Field Source Contribution to Stray Light in the Focal Plane	445
Fest's Stray Light Rules of Thumb	446
Performance Budgeting Using the Hopkins Ratio	450
Linear Approximation for the Optical Modulation Transfer Function	451
Strehl Ratio and Telescope Aberrations	452
Strehl for Obscured Apertures	456
Total Error Using the Root-Sum-Squared Approach	461
Optical Performance of a Telescope	463
Visible Imaging System Resolution	464
Optimal Telescope Resolution for the Human Eye	464
Peak-to-Valley Approximates Four Times the Root Mean Square	465
Ritchey–Chretien Telescope Aberrations	467
Spectral Bandwidth and Resolution of Acousto-optical Tunable Filters	468
Circular Variable Filters	471
Blazed Grating Performance	472
Fabry–Pérot Etalons	474
Pulse Broadening in a Fabry–Pérot Etalon	477
Hollow Waveguides	477
Inflated Mirrors	479
Handheld Binocular Efficiency	481
Stop Down Two Stops	482
Anti-reflection Coating Index	484
Coating Shift with Angle of Incidence	485
Coating Shift with Temperature	486
Grating Blockers	488
Far-Field Model of a Light Source, or the "Rule of 5"	489
Lambertian Source Illumination of a Detector	491
Detecting Linear Polarization	493
Modeling an Optical System Using the Fast Fourier Transform	494
A Collection of Optical Engineering Rules of Thumb	496
Use a "Pencil Bounce" to Determine Image Orientation	506
Thermal Gradients in a Primary Mirror	507
Thermal Lensing	509
14 Optical Manufacture and Test	511
Introduction	511
Progress in the Fabrication of High-Quality Mirrors	513
Caution while Cleaning Optics	515
Thickness of a Doublet Bond	516
Sag of an Optic	517
Scratch-Dig Specifications	518
Oversizing an Optical Element for Producibility	520
Mind Your Karow Factor	520
Cyanoacrylate Usage	522

Surface Tilt Is Typically the Worst Error	522
Diamond-Turned Mirror Substrate Design	523
Diamond-Turned Mirror Figure Error	524
Surface Figure and Wavefront Error Requirements	525
Determining if a Surface Is Convex or Concave Using Fringe Movement	527
Approximations for the Foucault Knife-Edge Test	527
Effect of Surface Irregularity on a Wavefront	529
Hartmann Test for Pinhole Size	530
Maximum Size of the Opening for an Integrating Sphere	531
Choosing an Eyepiece for Star Tests	532
Collimator Design	532
Temperature Control Is Critical for Accurate Inhomogeneity Testing	533
Optical Table Displacement Requirements	533
Detection of Flatness by the Human Eye	535
Lesser-Known Lab Tools	535
Yoder's Rules of Thumb	536
15 Photogrammetry	539
Introduction	539
Basic Optical Equations	540
Triangulation vs. Model-Based Pose Estimation	543
Stereo vs. Triangulation	543
Basic Triangulation Equations	544
Two-Camera Triangulation Accuracy	545
Triangulation Error Tree	549
Sensor Placement for Triangulation	550
Maximum Triangulation Range	552
Triangulation Equations for Cameras	553
Azimuth Corrections for Euclidean Coordinate Systems	555
Model-Based Pose Estimation: Number of Points and Spatial Distribution	556
From What Point in an Optical System Is Range Measured?	558
16 Radiometry	561
Introduction	561
The Electromagnetic Spectrum	564
Photons-to-Watts Conversion	566
Brightness of Common Sources	567
The Blackbody Equation	567
Logarithmic Blackbody Functions	570
Narrow-band Approximation to Planck's Law	571
Peak Wavelength of Wien's Displacement Law	573
Choice of Waveband	573
Lambert's Law	575
Etendue	576
In-Band Solar Irradiance at the Top of the Atmosphere $P_{rad} = \int A(G^{\mu})^2$	579
Rule of $4(f/\#)^2$	580

Relationship between Minimum Resolvable Temperature and	
Noise-Equivalent Temperature Difference	581
Ideal NEAT Simplification	582
Cavity Emissivity	584
Incorrectly Sizing Radiometric Areas	587
No Ice Cream Cones	588
Calibrate under User's Conditions for Best Results	590
Radiometry of a Spherical Cow	591
Quick Test of NEAT	593
17 Systems	595
Introduction	595
Pick Any Two	597
Divide by the Number of Visits	598
Dawes Limit	599
BLIP Limiting Rule	600
Rayleigh Criterion	600
Focal Length and Resolution	602
Diffraction Limit in LWIR	603
Procedures to Reduce Narcissus in Infrared Systems	603
System Off-Axis Optical Rejection	604
Signal-to-Noise Ratio for Different Targets	606
Simplified Range Equation	608
General Image Quality Equation	609
Mechanical Shock Response	611
Estimating rms Acceleration Response due to Random Vibrations	612
Typical Values of Electro-optical System Parameters	614
Vibration Isolation	615
Wind Loading	617
18 Target Phenomenology	619
Introduction	619
Emissivity Approximations	620
Solar Reflection Always Adds to the Signature	621
Lambertian vs. Specular	623
Bidirectional Reflectance Distribution Function	624
Hagen–Rubens Relationship for the Infrared Reflectivity of Metals	627
Causes of White Pigment Color	628
Human Body Signature	629
Infrared Skin Characteristics	630
Jet Plume Phenomenology	631
Plume Thrust Scaling	632
Rocket Plume Rules	633
Temperature as a Function of Aerodynamic Heating	634
Laser Cross-Section	636
Chlorophyll Absorptance	636

Normalized Difference Vegetation Index	637
Appendix	639
Glossary	639
Tables of Numerical, Physical, and Material Properties (or Other Information)	667
Properties of Infrared Materials	683
Thermal and Structural Properties of Materials	689
CIE Chromaticity Diagram	693
Basic Equations	694
Blackbody Nomograph	695
Nomograph of Telescope Performance	696
Azimuth and Elevation Conventions	697
Photonic Noise Sources	697
Guidelines for Writing SI Units	702
Derivation of the Third Equation in the Rule "The Relation of Ideal D*	
to View Angle"	702
Index	707
Author Biographies	715

With the stroke of an eraser, Fraunhofer made diffraction calculations tractable (reprinted with permission from Brigham Young University).

Preface

The evolution of the photonic sciences parallels, and feeds from, developments in a number of somewhat unrelated fields, including astronomy, satellite and remote sensing technology, materials science, electronics, biomedical sciences, optical communications, military developments, and many others. The common thread of all of this effort, which was defined in the 1950s, is that scientists and engineers have been able to combine highly successful electronic technologies with the more ancient concepts and methods of optics and electromagnetic wave propagation. The merging of these fields has provided an unprecedented capability for instruments to "see" targets and communicate with them in a wide range of wavelengths for the benefit of security systems, science, defense, and (more recently) consumers. In the future, we see the rise of autonomous systems as a sea change that will drive a significant increase in the need for sensing systems to allow the autonomous system to sense and understand its environment.

Major departments at universities are now devoted to producing new graduates with specialties in this field. There is no end in sight for the advancement of these technologies, especially with the continued development of electronics and computing as increasingly integral parts of photonic instrumentation. One of the disturbing trends in this technology is the constant narrowing of the role of engineers. As the technology matures, it becomes more difficult for anyone working in an area of photonics to understand all that is being done in the related sciences and engineering. This book has been assembled to make a first, small step to expose anyone working in the optics and photonics community to a wide range of critical topics through simple calculations and explanations.

There is no intent to compete with classic texts or the many journals or conferences devoted to the photonics field, all of which provide considerable detail in every area. Rather, this book is intended to allow any engineer or scientist, regardless of specialty, to make rapid and accurate estimations on a wide range of topics that might be encountered in system design, modeling, or fabrication, as well as to provide a guide for choosing which details to consider more diligently. This book will help any electro-optics (EO) team to make quick assessments, generally requiring no more than a calculator, so that they quickly find the right solution for a design problem.

The book is also useful for managers, marketeers, and other semi-technical folks who are new to the optics industry (or are on its periphery) to develop a feel for the difference between the chimerical and the real. Students may find the same type of quickcalculation approach valuable, particularly in the case of oral exams in which the professor is pressuring the student to do a complex problem quickly. Using these assembled rules, you can keep your wits about you and provide an immediate and nearly correct answer, which usually will save the day. But after the day is saved, you should go back to the question and perform a rigorous analysis. These rules are useful for quick sanity checks and basic relationships. Being familiar with the rules allows one to rapidly pinpoint trouble areas or ask probing questions in meetings. They aid in thinking on your feet and in developing a sense of what will work and what won't. Another potential application of the contents is to provide a checklist for reviewers asked to assess the completeness of a design or resolve trade studies early in the development of a system. But they are not, and never will be, the last word.

Dear reader, it is fully recognized that errors may still be present, and for that we apologize in advance to you and to those from whom the material was derived. We try to the best of our abilities to remove errors we inherit from the references we used and in new material we created. To assist us in this endeavor, we have solicited the cooperation of as many experts as would agree to help. Their input gives us a wide variety of experience from many different technical points of view. Alas, technology advances, and all of us wonder how we can possibly keep up. Hopefully, this book will not only provide some specific ideas related to photonics technology, it will also suggest some ways of thinking about things that will lead to a whole new generation of such rules and ideas.

As we discovered with the previous editions of this book, not everyone has the same thing in mind when considering "a rule of thumb." To qualify for our definition of a rule of thumb, a rule should be useful to a practitioner and possess at least most of the following attributes:

- It should be easy to implement.
- It should provide roughly the correct answer.
- The main points should be easy to remember.
- It should be simple to express.
- It should highlight the important variables and diminish the role of generally unimportant variables.
- It should provide useful insight to the workings of the subject matter.

As in earlier editions of books in this series, we found it valuable to create a detailed standard form and stick to it as closely as possible. We did in this edition as well. References are provided whenever possible. In addition, reference material is mentioned that can be considered as recommended reading for the reader with a desire for more detail than could be presented in the "rule" and "discussion." The reader should note that each rule "stands on its own," so the abbreviations and terminology may not be entirely consistent throughout. This is intentional; we use the notation of the reference whenever we can so that if you read the original material you will recognize what that author defined. Some rules are derived from the laws of physics, and some represent existing technology trends. Many derive from observations made by researchers in the field, augmented by curve fitting that results in polynomial approximations.

The authors of the previous versions of this book arrived at the same place by very different paths. John (now retired, but busy consulting) spent some of his career in infrared astronomy before joining the aerospace industry to work on infrared sensors for space surveillance. He later worked on tactical sensors for search-and-rescue, self-driving cars, active imaging and enhanced vision systems. Ed (now retired, but very busy teaching) spent

most of his career working on remote sensing technologies applied to Earth, its atmosphere and oceans, and, more recently, astronomical instruments and advanced pointing systems. John and Ed met in Denver in 1985, both working for a major government contractor on exotic electro-optical systems.

Those were halcyon days, with money flowing like water, and contractors winning billions of dollars for some concepts that were overly optimistic or barely possible at best. In the center of the whole fray were bureaucrats, politicians, and managers who were demanding that we design systems that would be capable of the impossible. We saw many requirements and goals being levied on our systems that were far from realistic, often resulting from confusing (and poorly understood) interpretations of the capabilities of optical and electro-optical systems and the properties of targets or backgrounds.

We found a common ground when managers discovered that many co-workers, in an attempt to outdo the competition, were promising to perform sensor demonstrations that violated many rules of engineering, if not physics. On one multibillion-dollar program, after some consistent exposure to neophytes proposing all sorts of undoable things, we decided to try to educate everyone by creating a half-serious, half-humorous posting for the local bulletin board (this was before websites were ubiquitous) called "Dr. Photon's Rules of Thumb." It was a list of basic rules that apply when optics or electro-optics are used. Figure 1 shows the first version that we found all across the company, and even among competitors.

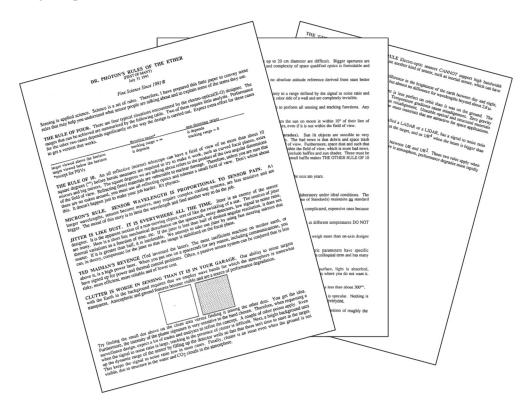


Figure 1 The original Rules of Thumb that started this book.

For the current version, John and Ed invited (maybe some would say tricked) three other younger authors to modernize, enhance, and yield a new perspective. These luminaries are Jack Sanders-Reed, Brian McComas, and Katie Schwertz, whose bios appear in the back matter of this book.

Katie is a hybrid optical and optomechanical designer, drawing from her time at both the University of Rochester and University of Arizona optics programs. She primarily works on commercial and industrial optical subsystems. Her time spent under the tutelage of Jim Burge in Arizona taught her the value of a good estimation, which she didn't fully appreciate until her time spent in industry. Her Master's work involved optomechanics "rules of thumb." Jack has 40 years of experience ranging from medical imaging, to surface science, to pilot vision systems and atmospheric phenomenology, to target detection, tracking, and photogrammetry and covering the electromagnetic spectrum from hard x-ray through visible and infrared to millimeter-wave with both passive and active imaging. Brian has over 30 years of experience working on EO systems for military, astronomical, remote sensing, and industrial use. His Ph.D. was developed under the direction of Ed Friedman.

To summarize, this collection of rules and concepts represents an evolving, idiosyncratic, and eclectic toolbox. The rules, like tools, are neither good nor bad; they can be used to facilitate the transition of whimsical concepts to mature hardware or to immediately identify a technological path worth pursuing. Conversely, misused, they can obfuscate the truth and, if improperly applied, derive incorrect answers. Our job was to refine complex ideas to simplified concepts and present these rules to you with appropriate cautions. However, it is your responsibility to use them correctly. Remember, it is a poor worker who blames their tools and we hope you will find these tools useful.

> John Lester Miller Ed Friedman Jack Sanders-Reed Katie Schwertz Brian McComas 2020

Acknowledgments

The authors would like to acknowledge the help given by the following people:

- James Contreras
- Eric Fest
- Paris and Sophie Kiehl
- Scott McNeill
- Peter Scott
- Charles Silver
- Paul Spyak
- Dave Strong
- William Sundermeier
- William Tennant
- Dan Vukobratovich
- Lucy Zhang

We are also thankful to Dave Mudrick who contributed the cartoons (except for one). His website is <u>tomduckandharry.com/home</u>.

Mudrick '20

"Yes, applying short, approximation equations is a useful technique, but your analysis section was all thumbs."

Copyright © David Mudrick, 2020