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Preface 
 
The evolution of the photonic sciences parallels, and feeds from, developments in a number 
of somewhat unrelated fields, including astronomy, satellite and remote sensing 
technology, materials science, electronics, biomedical sciences, optical communications, 
military developments, and many others. The common thread of all of this effort, which 
was defined in the 1950s, is that scientists and engineers have been able to combine highly 
successful electronic technologies with the more ancient concepts and methods of optics 
and electromagnetic wave propagation. The merging of these fields has provided an 
unprecedented capability for instruments to “see” targets and communicate with them in a 
wide range of wavelengths for the benefit of security systems, science, defense, and (more 
recently) consumers. In the future, we see the rise of autonomous systems as a sea change 
that will drive a significant increase in the need for sensing systems to allow the 
autonomous system to sense and understand its environment. 

Major departments at universities are now devoted to producing new graduates 
with specialties in this field. There is no end in sight for the advancement of these 
technologies, especially with the continued development of electronics and computing as 
increasingly integral parts of photonic instrumentation. One of the disturbing trends in this 
technology is the constant narrowing of the role of engineers. As the technology matures, 
it becomes more difficult for anyone working in an area of photonics to understand all that 
is being done in the related sciences and engineering. This book has been assembled to 
make a first, small step to expose anyone working in the optics and photonics community 
to a wide range of critical topics through simple calculations and explanations. 

There is no intent to compete with classic texts or the many journals or conferences 
devoted to the photonics field, all of which provide considerable detail in every area. 
Rather, this book is intended to allow any engineer or scientist, regardless of specialty, to 
make rapid and accurate estimations on a wide range of topics that might be encountered 
in system design, modeling, or fabrication, as well as to provide a guide for choosing which 
details to consider more diligently. This book will help any electro-optics (EO) team to 
make quick assessments, generally requiring no more than a calculator, so that they quickly 
find the right solution for a design problem. 

The book is also useful for managers, marketeers, and other semi-technical folks 
who are new to the optics industry (or are on its periphery) to develop a feel for the 
difference between the chimerical and the real. Students may find the same type of quick-
calculation approach valuable, particularly in the case of oral exams in which the professor 
is pressuring the student to do a complex problem quickly. Using these assembled rules, 
you can keep your wits about you and provide an immediate and nearly correct answer, 
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which usually will save the day. But after the day is saved, you should go back to the 
question and perform a rigorous analysis. These rules are useful for quick sanity checks 
and basic relationships. Being familiar with the rules allows one to rapidly pinpoint trouble 
areas or ask probing questions in meetings. They aid in thinking on your feet and in 
developing a sense of what will work and what won’t. Another potential application of the 
contents is to provide a checklist for reviewers asked to assess the completeness of a design 
or resolve trade studies early in the development of a system. But they are not, and never 
will be, the last word.  

Dear reader, it is fully recognized that errors may still be present, and for that we 
apologize in advance to you and to those from whom the material was derived. We try to 
the best of our abilities to remove errors we inherit from the references we used and in new 
material we created. To assist us in this endeavor, we have solicited the cooperation of as 
many experts as would agree to help. Their input gives us a wide variety of experience 
from many different technical points of view. Alas, technology advances, and all of us 
wonder how we can possibly keep up. Hopefully, this book will not only provide some 
specific ideas related to photonics technology, it will also suggest some ways of thinking 
about things that will lead to a whole new generation of such rules and ideas. 

As we discovered with the previous editions of this book, not everyone has the 
same thing in mind when considering “a rule of thumb.” To qualify for our definition of a 
rule of thumb, a rule should be useful to a practitioner and possess at least most of the 
following attributes: 

 It should be easy to implement. 
 It should provide roughly the correct answer. 
 The main points should be easy to remember. 
 It should be simple to express. 
 It should highlight the important variables and diminish the role of generally 

unimportant variables. 
 It should provide useful insight to the workings of the subject matter. 

As in earlier editions of books in this series, we found it valuable to create a 
detailed standard form and stick to it as closely as possible. We did in this edition as well. 
References are provided whenever possible. In addition, reference material is mentioned 
that can be considered as recommended reading for the reader with a desire for more detail 
than could be presented in the “rule” and “discussion.” The reader should note that each 
rule “stands on its own,” so the abbreviations and terminology may not be entirely 
consistent throughout. This is intentional; we use the notation of the reference whenever 
we can so that if you read the original material you will recognize what that author defined. 
Some rules are derived from the laws of physics, and some represent existing technology 
trends. Many derive from observations made by researchers in the field, augmented by 
curve fitting that results in polynomial approximations.  

The authors of the previous versions of this book arrived at the same place by very 
different paths. John (now retired, but busy consulting) spent some of his career in infrared 
astronomy before joining the aerospace industry to work on infrared sensors for space 
surveillance. He later worked on tactical sensors for search-and-rescue, self-driving cars, 
active imaging and enhanced vision systems. Ed (now retired, but very busy teaching) spent 



Preface  xix 

most of his career working on remote sensing technologies applied to Earth, its atmosphere 
and oceans, and, more recently, astronomical instruments and advanced pointing systems. 
John and Ed met in Denver in 1985, both working for a major government contractor on 
exotic electro-optical systems. 

Those were halcyon days, with money flowing like water, and contractors winning 
billions of dollars for some concepts that were overly optimistic or barely possible at best. 
In the center of the whole fray were bureaucrats, politicians, and managers who were 
demanding that we design systems that would be capable of the impossible. We saw many 
requirements and goals being levied on our systems that were far from realistic, often 
resulting from confusing (and poorly understood) interpretations of the capabilities of 
optical and electro-optical systems and the properties of targets or backgrounds. 

We found a common ground when managers discovered that many co-workers, in 
an attempt to outdo the competition, were promising to perform sensor demonstrations that 
violated many rules of engineering, if not physics. On one multibillion-dollar program, 
after some consistent exposure to neophytes proposing all sorts of undoable things, we 
decided to try to educate everyone by creating a half-serious, half-humorous posting for 
the local bulletin board (this was before websites were ubiquitous) called “Dr. Photon’s 
Rules of Thumb.” It was a list of basic rules that apply when optics or electro-optics are 
used. Figure 1 shows the first version that we found all across the company, and even 
among competitors. 

 

 

Figure 1 The original Rules of Thumb that started this book. 
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For the current version, John and Ed invited (maybe some would say tricked) three 
other younger authors to modernize, enhance, and yield a new perspective. These 
luminaries are Jack Sanders-Reed, Brian McComas, and Katie Schwertz, whose bios 
appear in the back matter of this book.  

Katie is a hybrid optical and optomechanical designer, drawing from her time at 
both the University of Rochester and University of Arizona optics programs. She primarily 
works on commercial and industrial optical subsystems. Her time spent under the tutelage 
of Jim Burge in Arizona taught her the value of a good estimation, which she didn’t fully 
appreciate until her time spent in industry. Her Master’s work involved optomechanics 
“rules of thumb.” Jack has 40 years of experience ranging from medical imaging, to surface 
science, to pilot vision systems and atmospheric phenomenology, to target detection, 
tracking, and photogrammetry and covering the electromagnetic spectrum from hard x-ray 
through visible and infrared to millimeter-wave with both passive and active imaging. 
Brian has over 30 years of experience working on EO systems for military, astronomical, 
remote sensing, and industrial use. His Ph.D. was developed under the direction of Ed 
Friedman. 

To summarize, this collection of rules and concepts represents an evolving, 
idiosyncratic, and eclectic toolbox. The rules, like tools, are neither good nor bad; they can 
be used to facilitate the transition of whimsical concepts to mature hardware or to 
immediately identify a technological path worth pursuing. Conversely, misused, they can 
obfuscate the truth and, if improperly applied, derive incorrect answers. Our job was to 
refine complex ideas to simplified concepts and present these rules to you with appropriate 
cautions. However, it is your responsibility to use them correctly. Remember, it is a poor 
worker who blames their tools and we hope you will find these tools useful. 

 

John Lester Miller 

Ed Friedman 

Jack Sanders-Reed 

Katie Schwertz 

Brian McComas 

2020 
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