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Characterization of layered scattering media using
polarized light measurements and neural networks
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Abstract. Measurements of the spatial distributions of polarized light
backscattered from a two-layer scattering medium are used to train a
neural network. We investigated whether the absorption coefficients
and thickness of the layer can be determined when the scattering
properties are known. When determining the absorption of the upper
layer or the layer’s thickness, polarized light measurements provide
better performance than unpolarized measurements, demonstrating
the sensitivity of polarized light to superficial tissue. Determination of
the lower layer’s absorption coefficient is not improved by polarized
light measurements. Prior knowledge of the tissue under investigation
is also beneficial because errors are reduced if the range of absorption
or thickness is restricted. © 2003 Society of Photo-Optical Instrumentation Engineers.
[DOI: 10.1117/1.1578090]
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1 Introduction
There is a great deal of interest in the development of nonin
vasive optical techniques for tissue diagnosis.1 The main
drawback is that light is heavily scattered within tissue and
this leads to uncertainty about the volume from which infor-
mation is retrieved. Our recent research2,3 has focused on the
use of polarized light to characterize layered media for such
applications as measurement of burn and melanoma thick
nesses. In burn treatment, thickness is the most important p
rameter for clinicians diagnosing the need to perform a skin
graft;4 e.g., a deep second-degree burn penetrates into the de
mis to a depth on the order of 1 to 2 mm.5 Thickness is
important in melanoma prognosis because the cancer ma
spread if the epidermis–dermis boundary is broken.6

Polarized light techniques7–12 utilize the property that light
depolarizes as it propagates and the initial polarization of in
cident light is lost within relatively few scattering events. This
can be used to localize volumes close to the surface. In add
tion, it has been observed that there are varying rates of de
polarization of different initial polarization states with
scattering13 and it has been demonstrated2,3 that this has the
potential to characterize layered scattering media and mak
coarse optical sectioning possible. Previously3 we showed that
the spatial distribution of polarized light backscattered from a
layered medium is sensitive to variations in optical absorption
and thickness of the layer. This represents only part of the
problem, and in this work we investigated whether such mea
surements can be used to determine the absorption coef
cients and thickness of a two-layer scattering medium.

Other research groups have investigated methods, to dete
mine the optical properties of layered media. Most notably
Pham et al.14 fitted a layered diffusion model to obtain the
optical properties from frequency-domain measurements

Address all correspondence to Steve Morgan. Tel: +44-115-951-5570; Fax: +44-
115-951-5616.
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They varied one parameter at a time to determine the accu
of their approach and then increased the number of variab
This allows the effectiveness of the fitting algorithm at diffe
ent stages of complexity of the medium to be established.
results are considered quantitatively accurate if the errors
less than 10% and qualitatively useful if they are between
and 20%. When three or more parameters are varied, the
sults become inaccurate. Alexandrakis et al.15 investigated a
similar problem but used a frequency-domain hybrid Mon
Carlo diffusion model to obtain the scattering and absorpt
of both layers and the thickness of the layers simultaneou
It was found that the hybrid model is more accurate tha
diffusion model in recovering optical properties of the upp
layer and the thickness, but the errors are still fairly lar
~.30%!. However, diffusion theory cannot be used to mod
polarized light and so we considered using neural netwo
trained on data obtained from Monte Carlo simulations
recover the optical properties of layered media. Encourag
results have been obtained when neural networks are use
extract the optical coefficients of semi-infinite media,16,17 but
in this work the more difficult problem of layered media wa
considered.

The following section presents the analysis methods,
cluding details of the Monte Carlo simulation; the samp
used; and the neural network applied. Section 3 presents
results of an investigation to determine whether a neural n
work trained on polarized light measurements can be use
characterize layered scattering media. Discussions and
clusions follow in Secs. 4 and 5, respectively.

2 Theory
2.1 Monte Carlo Simulation
The polarization Monte Carlo model simulates illuminatio
with a pencil beam of polarized light perpendicular to t

1083-3668/2003/$15.00 © 2003 SPIE
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Fig. 1 General geometry of the sample.
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surface of the medium and models individual photons~or
light packets! propagating through a layered scattering me-
dium composed of Mie scattering particles. The details of this
model have been discussed previously18,19 and therefore are
addressed only briefly here. Photons are individually tracked
through the medium, and at each photon–particle collision th
direction and polarization are modified by adjusting the direc-
tional cosines and Stokes parameters. The characteristics
photons backscattered from the medium are recorded. Spati
intensity distributions,I (r ), are obtained by measuring the
frequency of photons emerging within annuli centered on the
source and normalized by the annular area. The Monte Carl
data that are used to train the neural networks in this study ar
presented elsewhere.3

2.2 Samples and Sample Geometries
Figure 1 shows the general form of the sample under invest
gation. The model is capable of simulating multiple layers,
each infinite in thex–y plane with a semi-infinite lower layer.
However, for simplicity here we consider only a two-layer
medium, with an upper planar layer of thicknessd and a semi-
infinite lower layer. There is a mismatch of 1.4 in the refrac-
tive index at the air–tissue interface; at the tissue–tissue in
terface the layers are index matched. The medium is
composed of a monodispersion of Mie scatterers with the
mean cosine of the scattering angle,g50.92 and a size pa-
rameterka513.9, which are consistent with typical tissue
f
l

scatterers.1,20 Each layer has different scattering(ms) and ab-
sorption(ma) coefficients and absorption is added postsim
lation using Lambert-Beer’s law, depending on the propa
tion distance within each layer. The absorption and scatte
properties of the media analyzed are stated in mean-free p
~mfp! where 1 mfp51/ms so that the results can be easi
scaled for a wide range of media.

2.3 Polarization Analysis
A four-channel detection scheme is used with different illum
nation and detection arrangements~Table 1!. These channels
can be easily measured experimentally using a simple de
tion scheme.2,11 The different channels allow various categ
ries of backscattered photons to be detected and these
described in detail previously.3 The subtraction of the differ-
ent channels allows light to be separated into its compon
parts, i.e., light that has maintained its original polarizati
state or has been multiply scattered.

2.4 Moments of Distributions
Moment analysis is a widely used technique for curve ana
sis and provides a useful method of characterizing the spa
intensity distributions used in this study. In the cases con
ered, we found that moments are more robust to noise t
training the networks with measurements at discrete dete
positions. The first-order moment,M1 , and normalized
second-order moment,N2 , are defined as

M15E
r 50

`

P~r !rdr ~1!

N25
* r 50

` P~r !r 2dr

M1
2

, ~2!

where P(r ) is a probability density function estimated b
normalizing the area under the photon frequency histog
I (r ) to unity @ I (r ) is obtained by the procedure described
Sec. 2.1#. M1 represents a measure of the width of the dis
bution andN2 is characteristic of the shape of the distributio
it is more heavily influenced by photons emerging furth
from the source. In practice, the maximum detector positio
at r 51000 mfp.Moments are advantageous because they
Table 1 Polarization-discriminating detection schemes. Forward scattered light is defined as light that
has emerged from the scattering medium via a series of forward scattering events. Weakly scattered
(opposite helicity) describes light that has emerged via backscattering.

Channel Illumination Detection Categories of Light

1 Linear (horizontal) Linear (horizontal) Polarization maintaining
and multiply scattered light

2 Linear (horizontal) Linear (vertical) Multiply scattered light

3 Circular (right) Circular (right) Forward scattered and
multiply scattered light

4 Circular (right) Circular (left) Weakly scattered (opposite
helicity) and multiply

scattered light
Journal of Biomedical Optics d July 2003 d Vol. 8 No. 3 505
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dependent on the shape of the distribution, not on the absolu
intensity. Absolute intensity measurements are highly depen
dent on surface reflections and accurate calibration of both th
light source and detector, and are therefore not considered
this study. The moments of the different polarization channels
are used to train the neural networks. The moments of inten
sity measurements alone, i.e., unpolarized light, are also use
for comparison to determine whether polarized light measure
ments are necessary.

2.5 Neural Network
The neural network is implemented using a backpropagatio
architecture with three layers of nodes: an input layer, a hid
den layer, and an output layer.21,22 To ensure that the network
training is generalized, rather than a lookup table that recog
nizes features in the noise, independent Monte Carlo simula
tions are used for training and testing. In the work reported in
Secs. 3.1 to 3.3, four training and four testing sets of data ar
used, each consisting of 562,500 photons. In Secs. 3.4 to 3.
two training and two testing sets, each containing 25e6 pho
tons, are used as the data have also been used for polarizati
subtraction studies.3 As in other neural network applications,
all input data ~i.e., moments! are scaled to an appropriate
range~between 0 and 1! before being fed into the network.
Conversely, all output data predicted in testing by the network
are subsequently rescaled to obtain meaningful values. Pe
centage errors are calculated for all predicted values to evalu
ate the sensitivity of the measurements.

3 Results
We investigated the ability of a neural network to determine
ma1 , ma2 , andd of a two-layer scattering medium from po-
larized light measurements. In all cases we assumed that th
values ofg and the scattering coefficients of both layers are
known from in vitro studies. We used an approach similar to
that of Pham et al.14 and initially varied one parameter at a
time and then extended the number of variables. This allow
better characterization of the performance of the neural ne
works at different stages in the complexity of the inversion.
Sections 3.1 and 3.2 describe measurements varyingma2 only
and ma1 only, respectively, keeping one layer at a constan
absorption. In Sec. 3.3, bothma1 andma2 are varied. In Sec.
3.4, the measurement of the layer is thickness alone is con
sidered. Recovery of bothma1 andd is discussed in Sec. 3.5.
Finally, the effects of restricting the range of variables are
considered in Sec. 3.6. For all the tables, data are presented
two significant digits.

3.1 Varying Absorption (ma2) of the Lower Layer
This section describes the ability of a neural network to re-
coverma2 over the range 7.55e-3 to 0.04005 mfp21 in steps of
2.5e-4 mfp21. The remaining optical coefficients are fixed at
ma150.001 mfp21, ms151 mfp21, and ms250.5 mfp21.
Three thicknesses are considered;d55, 10, and 30 mfp. A
typical plot(d55 mfp, network trained on the first-order mo-
ments of channels 1 and 2! of actual versus recoveredma2 is
shown in Fig. 2 to demonstrate the effectiveness of the
method. A straight line representing the ideal case is als
506 Journal of Biomedical Optics d July 2003 d Vol. 8 No. 3
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shown to aid visualization. As observed by Pham,14 at low
absorption values the percentage of errors is high even tho
the absolute errors are small.

The percentage error for networks trained with differe
combinations of the first- and second-order normalized m
ments for different thicknesses of a layer is shown in Table
In principle, the network should be able to take all input p
rameters and weight each input accordingly to provide
optimum performance. However, to gain a better physical
sight into the problem, the network is also trained using eit
the first- or second- or both first- and second-order mome
of the linear channels~1 and 2! or the circular channels~3 and
4!. This will reveal whether all the required information
contained in a particular combination of measurements.
determine whether polarization measurements are esse
the moments of the total intensity~unpolarized! measure-
ments are also included. The mean values of rows and
umns are shown to emphasize trends in the results.

For thed55 mfp and d510 mfp layers, the majority of
the results are within the acceptable margins of error~,20%!.

Fig. 2 The ma2 values obtained with a neural network trained on
first-order moments of channels 1 and 2 (d55 mfp). A straight line is
shown to aid visualization.

Table 2 Percentage error in ma2 when it is varied over the range
7.55e-3 to 0.04005 mfp−1 and ma1 is constant (0.001 mfp−1).

d (mfp)
Training data

5
(%)

10
(%)

30
(%)

Mean
(%)

Channels 1 and 2, first-order moment 7.1 17 35 20

Channels 3 and 4, first-order moment 4.8 5.1 34 15

Total intensity, first-order moment 20 2.4 27 17

Channels 1 and 2, second-order moment 18 49 59 42

Channels 3 and 4, second-order moment 14 14 49 26

Total intensity, second-order moment 12 9.7 17 13

Channels 1, 2, 3, and 4, first- and
second-order moments

7.7 23 54 28

Total intensity, first- and second-order
moments

12 9.8 39 20

Mean (%) 12 16 39 22
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Characterization of layered scattering media . . .
In general, the polarized light measurements offer no signifi
cant improvement over total intensity measurements. For th
thinnest layer(d55 mfp), the error inma2 is lowest because
the upper layer has relatively little effect on the measure
ments.

3.2 Varying Absorption (ma1) of the Upper-Layer
In this casema1 is varied over the range 7.55e-3 to 0.04005
mfp21 in steps of 2.5e-4 mfp21 while keepingma2 at a con-
stant value of 0.001 mfp21. Again, three thicknesses are con-
sidered:d55, 10, and 30 mfp. Table 3 contains the percent-
age of errors for neural networks trained using the sam
parameters as in Sec. 3.1. Again for the polarized light mea
surements, the values obtained using networks trained on th

Table 3 Percentage error in ma1 when it is varied over the range
7.55e-3 to 0.04005 mfp−1 and ma2 is constant (0.001 mfp−1).

d (mfp)
Training data

5
(%)

10
(%)

30
(%)

Mean
(%)

Channels 1 and 2, first-order moment 7.9 18 5.6 11

Channels 3 and 4, first-order moment 13 2.2 1.3 5.6

Total intensity, first-order moment 2.4 2.1 41 15

Channels 1 and 2, second-order moment 19 29 19 22

Channels 3 and 4, second-order moment 16 2.9 49 22

Total intensity, second-order moment 6.8 6.0 14 8.8

Channels 1, 2, 3, and 4, first- and
second-order moments

1.8 13 25 13

Total intensity, first- and second-order
moments

9.0 8.6 15 11

Mean (%) 9.5 10 21 14
e

first-order moments are more accurate than those obta
with networks trained on the second-order moments. In
majority of cases considered, the results are within accept
error limits.

3.3 Varying Absorption of Both Layers (ma1 and ma2)
We now consider the more difficult case of recovering t
absorption coefficient of both the upper and lower layers. T
range ofma1 and ma2 is an order of magnitude less than
Secs. 3.1 and 3.2~6.9e-4 to 0.00405 mfp21 in steps of 1.6e-4
mfp21!, owing to the reduction in signal-to-noise ratio th
occurs when both media are heavily absorbing. Table 4 sh
the percentage errors over the 2-D grid ofma1 andma2 val-
ues. In the majority of cases the error inma1 is unacceptable
~.20%!, owing to the small thickness. As anticipated, wh
the thickness of the upper layer increases, the error inma1
decreases because the emerging light is spending a h
proportion of the time in the upper layer. The training s
using all the available data~both spatial and polarization! pro-
vides the optimum performance for obtainingma1 , although
only acceptable performance is achieved ford530 mfp.

The performance in determiningma2 is far better than that
of obtainingma1 because of the greater propagation time
the light in the lower medium. As the thickness of the upp
layer increases, the error inma2 increases. The best perfo
mance in obtainingma2 is provided by the total intensity mea
surements, indicating that polarized light provides little info
mation about the properties of the lower layer.

3.4 Varying Layer Thickness (d)
Previously3 we demonstrated the sensitivity of the differe
polarization channels to thickness where thickness was m
eled using a single-layer medium. This is equivalent to
upper layer with a varyingd above a second layer that i
totally absorbing. The advantage of this approach is tha
single Monte Carlo simulation can be used to model differ
d is by recording the maximum visitation depth of a phot
and discarding those absorbed in the second medium.
Table 4 Percentage error in ma1 and ma2 when both are varied simultaneously over the range 0.00069
to 0.00405 mfp−1.

d (mfp)
Training Data

5 10 30

Mean
(%)

ma1
(%)

ma2
(%)

ma1
(%)

ma2
(%)

ma1
(%)

ma2
(%)

Channels 1 and 2, first-order moment 92 14 88 48 88 86 69

Channels 3 and 4, first-order moment 99 10 79 23 60 68 57

Channels 1 and 2, second-order moment 109 44 66 38 62 21 57

Channels 3 and 4, second-order moment 88 15 24 7.2 23 17 29

All channels, first- and second-order
moments

41 24 32 12 17 19 24

Total intensity, first- and second-order
moments

97 5.0 100 7.9 97 7.3 52

Mean (%) 88 19 65 23 58 36 48
Journal of Biomedical Optics d July 2003 d Vol. 8 No. 3 507
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Fig. 3 Values of d obtained from networks trained on (a) first-order moments of channels 1, 2, 3, and 4; (b) second-order moments of channels 1,
2, 3, and 4. A straight line is shown to aid visualization.
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improves the efficiency of the simulations and allows the mo-
ments of the distributions over a range of layer thicknesses t
be calculated(d52 to 20 mfp in steps of 2 mfp andd520 to
60 mfp in steps of 5 mfp!. However, it should be noted that
this represents the extreme contrast for a two-layer medium
For typical tissue-scattering mean-free paths~0.1 mm!, this
corresponds to a thickness of 0.2 to 6 mm, which covers th
range of burn thicknesses and the thickness of many ski
lesions. For studies of superficial skin lesions, more investi
gation is required although we anticipate the trends observe
in this case to be valid. Figure 3 contains the values ofd for
networks trained on the first- and second-order moments o
the polarization channels 1, 2, 3, and 4@Figs. 3~a! and 3~b!#. A
straight line representing the ideal case is also shown to ai
visualization. When both scattering and absorption are fixed
all measurements accurately extract the layer’s thicknes
~first-order moment error52.5%, second-order moment error
51.2%!.

3.5 Varying d and ma1

The case considered in Sec. 3.4 is relatively straightforwar
because the optical coefficients are constant. Here,d is varied
over the same range of thicknesses as in Sec. 3.4, andma1 is
varied over 7.55e-3 to 0.04005 mfp21 ~in steps of 2.5e-4
mfp21!. Four networks are trained on the data from~1! first-
order moment, channels 1, 2, 3, and 4;~2! second-order mo-
ment, channels 1, 2, 3, 4;~3! combined first- and second-order
moments, channels 1, 2, 3, and 4; and~4! combined first- and
second-order moments, total intensity. Table 5 shows that ove
the range of values considered, the only training set capab
of obtaining a thickness value of acceptable accuracy consis
of the combined first- and second-order moments of the fou
channels. The error in retrievingd using the total-intensity
value is particularly poor. Similarly, the error in absorption
coefficient is lowest for the first- and second-order moments
of the four channels and highest for the total-intensity first-
and second-order moments. The networks trained on firs
order moments outperform those trained using second-orde
moments.
508 Journal of Biomedical Optics d July 2003 d Vol. 8 No. 3
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3.6 Restricting the Range of d and ma1

In the work reported in Sec. 3.5,d andma1 were varied over
a relatively wide range. This section describes the per
mance of networks trained on data where the range ofd or
ma1 was restricted Table 6 shows the error inma1 andd when
the absorption range is restricted to~1! 7.55e-3 to 0.04005
mfp21, ~2! 7.55e-3 to 0.03005 mfp21, ~3! 7.55e-3 to 0.02005
mfp21, and~4! 7.55e-3 to 0.01005 mfp21. In practice this will
occur when there is prior knowledge of the tissue’s opti
properties. It can be seen that for networks trained on
polarized light data, restricting the range ofma1 offers no
significant improvement in the accuracy of the values ofma1
or d obtained, and the performance is acceptable for m
ranges. For the total-intensity measurements, restricting
range has a significant effect on the performance of the
works in obtaining bothma1 and d, improving from 67 to
8.7% forma1 and from 197 to 33% ford.

When the range ofd is restricted~Table 7!, improvements
are obtained for polarized and unpolarized light measu
ments in bothma1 andd. For all ranges considered, the pe

Table 5 Percentage error in ma1 and d when ma1 and d are varied
simultaneously over the range 7.55e-3 to 0.04005 mfp−1 and 2 to 60
mfp, respectively.

Training Data
d

(%)
ma1
(%)

Channel 1, 2, 3, and 4, first-order
moment

41 10

Channels 1, 2, 3, and 4, second-order
moment

78 20

Channels 1, 2, 3, and 4, first- and
second-order moments

18 4.0

Total intensity, first- and
second-order-moments

197 67
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Characterization of layered scattering media . . .
formance of polarized light measurements is better than tha
of unpolarized measurements.

4 Discussion
We have investigated whether polarized light measuremen
can be used to determine the absorption coefficient and thick
ness of a two-layer scattering medium. Inversion of the mea
sured data cannot be achieved by analytical solutions such
diffusion theory, owing to the presence of weakly scattered
polarization-maintaining light. A neural network therefore
provides a useful tool for analyzing such data and determinin
the measurable parameters that are most sensitive to abso
tion or thickness of the layer.

Our results show that polarized light measurements ar
more sensitive to the properties of superficial tissue than un

Table 6 Percentage error in ma1 and d when ma1 and d are varied
simultaneously. The thickness is varied over the range of 2 to 60 mfp,
but the absorption is varied for different ranges, i.e., (1) 7.55e-3 to
0.04005 mfp−1, (2) 7.55e-3 to 0.03005 mfp−1, (3) 7.55e-3 to 0.02005
mfp−1, and (4) 7.55e-3 to 0.01005 mfp−1.

Error in ma1

(1)
(%)

(2)
(%)

(3)
(%)

(4)
(%)

Channels 1, 2, 3, and 4, first- and
second-order moments

5.8 9.3 10 11

Total intensity, first- and second-order
moments

67 57 21 8.7

Error in d
(1)
(%)

(2)
(%)

(3)
(%)

(4)
(%)

Channels 1, 2, 3, and 4, first- and
second-order moments

18 30 17 12

Total intensity, first- and second-order
moments

197 164 59 33

Table 7 Percentage error in ma1 and d when ma1 and d are varied
simultaneously. The absorption is varied over the range of 0.015 to
0.025 mfp−1, but the thickness is varied for different ranges, i.e., (1) 2
to 60 mfp, (2) 10 to 60 mfp, (3) 10 to 30 mfp, (4) 20 to 30 mfp, and (5)
fixed 30 mfp.

ma1 (mfp21) (1) (2) (3) (4) (5)

Channels 1, 2, 3, and 4, first-
and second-order moments

7.6 4.7 2.9 2.2 0.18

Total intensity, first- and
second-order moments

12 9.7 13 5.2 0.86

d (mfp) (1) (2) (3) (4) (5)

Channels 1, 2, 3, and 4, first-
and second-order moments

22 28 12 6.5 0.0

Total intensity, first- and
second-order moments

70 87 26 17 0.0
t

-

s

p-

polarized measurements. This is demonstrated by the lo
errors obtained with polarized light measurements when
upper layer’s absorption is extracted as described in Secs.
3.5, and 3.6, andd is obtained as described in Sec. 3.5 a
3.6. This is because the destruction of polarization inform
tion by scattering causes sensitivity to superficial tissue.2,3,9,10

However, for the same reason, polarized light measurem
offer no significant improvement over unpolarized measu
ments when they are used to obtainma2 .

In the majority of cases, training the network on all th
available polarized data provides the best performance.
advantage of using combined first- and second-order mom
rather than only the first- or second-order moments was
cussed in a previous paper3 using a method in which contour
were plotted for measured values of first- and second-or
moments for different values ofma1 andma2 . The steep gra-
dients and orthogonal contours that were observed indic
that the data are robust and suitable for inversion. There
although networks trained using data from only the first-ord
moments generally outperform those trained using only n
malized second-order moment data, there is still more in
mation to be obtained by combining the two sets. This in
cates that this application benefits from the ability of neu
networks to extract subtleties from the data.

To completely characterize a two-layer scattering mediu
seven parameters need to be determined:d, ma1 , ma2 , ms1 ,
ms2 , and the values ofg in both layers. This is an ill-
conditioned problem and so it is necessary to assume p
knowledge of some of the parameters. In this paper we c
sidered the recovery of absorption and thickness while leav
g and the scattering coefficients constant. In the majority
cases considered, polarized light measurements are capab
determining the absorption coefficient relatively well. Clear
when only the absorption of a single layer is varied~Tables 2
and 3!, it is a comparatively simple problem to determine t
absorption coefficient, and the only significant increase in
ror occurs when the top layer is thin~5 mfp! and light does
not adequately sample this region. In the more difficult ca
of varying the absorption and thickness of the layer, it is s
possible to determine the absorption coefficient to an acc
able accuracy if the most appropriate measurables are
lected. Tables 4 and 5 show that if neural networks are trai
using both the first- and second-order moments of the po
ized light measurements, then acceptable accuracy can
achieved. The only exception is obtainingma1 when bothma1
andma2 are varied~Table 3! and in this case neural network
trained using both the first- and second-order moments of
polarized light measurements still provide the lowest error

Determination of the thickness of a layer is more difficu
than determining absorption because when both absorp
and thickness are varied,d can only be determined when a
the available polarized light data are used~Table 5!. When the
range of absorption is restricted~Table 6!, the accuracy of
unpolarized light measurements is improved significantly,
the improvement in polarized light measurements is insign
cant. When the range of thickness is restricted, signific
improvements in the performance of both polarized and
polarized measurements are observed. It is not unreason
to make assumptions about the optical properties of the tis
under investigation since these are well documented.1 For cer-
tain applications, it is useful to restrict the range of absorpt
Journal of Biomedical Optics d July 2003 d Vol. 8 No. 3 509
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values to knownin vitro measurements to provide accurate
inversion, e.g., necrotic tissue overlying healthy tissue in
characterization of burns or a lesion containing melanin over
lying melanin-free tissue. Further improvements could possi
bly be achieved by using a larger training set since at presen
relatively few independent Monte Carlo simulations are used
in the training process.

We have presented preliminary results that demonstrate th
potential of using polarized light and neural networks for
characterizing layered media. However, several factors nee
to be considered for practical implementation. As previously
discussed, some assumption of the optical properties or th
range of optical properties from knownin vitro values is nec-
essary. In addition, we have assumed an ideal geometry wit
layers that are uniform in thickness and infinite in the latera
dimension. In this case photons that are multiply scattered an
sample a large volume provide better data for training the
neural networks. In practice, the layer’s thickness will vary
and the spatial localization obtained by the subtraction of dif-
ferent polarization channels may be beneficial. As an indica
tion of the potential of this approach, we have obtained pre
liminary results for networks trained on data from subtracted
polarization channels for the case considered in Table 5. Th
error in ma1 was 5%, but the error ind was relatively high
~35%!. Future research will investigate this approach further.

One potential approach is to obtain the properties of the
upper layer using polarized light measurements and then us
this knowledge to obtain the properties of the lower layer
from unpolarized light measurements. To ensure accurate d
termination of the moments, a high dynamic range detector i
required, owing to the range of intensities observed in back
scattered distributions. First-order moments are more easil
measured because the normalized second-order moments
more heavily weighted by photons emerging further from the
source and are susceptible to noise. An alternative method w
are currently investigating is whether the neural network ap
proach can be applied to single-point polarized light measure
ments at a range of wavelengths. This would be advantageou
because it would allow a full-field measurement to be ob-
tained using a simple CCD camera configuration.10 In the spe-
cific case of diagnosis of melanoma, other parameters,6,23

such as melanoma shape or size, could also be useful add
tions to the neural network training data. Other issues tha
need to be resolved before implementation of such technique
becomes practical include the effects of the birefringence o
collagen,24 layer nonuniformity, and a mismatch of the refrac-
tive index between the tissue layers.

5 Conclusions
The potential use of neural networks for determining the
properties of a two-layer scattering medium has been demon
strated. Polarized light measurements provide better perfo
mance than unpolarized measurements in obtaining the a
sorption coefficient of the upper layer and the layer’s
thickness because of the sensitivity of polarized light to su
perficial tissue. However, polarized light measurements offe
no significant benefit in obtaining the absorption of the lower
layer. Improvements in performance can be achieved by re
stricting the range of optical coefficients to those correspond
ing to the documented range of tissue values.
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