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1 Introduction They varied one parameter at a time to determine the accuracy
of their approach and then increased the number of variables.
This allows the effectiveness of the fitting algorithm at differ-
g ent stages of complexity of the medium to be established. The
results are considered quantitatively accurate if the errors are
less than 10% and qualitatively useful if they are between 10
use of polarized light to characterize layered media for such and 20%. Whe_n three or more parameters are vgrled, the re-
sults become inaccurate. Alexandrakis et°ahvestigated a

applications as measurement of burn and melanoma thick->. | blem but daf 4 in hvbrid Mont
nesses. In burn treatment, thickness is the most important pa—SImI ar problem but used a frequency-domain hybrid Monte

rameter for clinicians diagnosing the need to perform a skin Carlo diffusion model to obtain the scattering and absorption

graft? e.g., a deep second-degree burn penetrates into the derpf both layers and the thickness of the layers simultaneously.

mis ,to ;sllcljepth on the order of 1 to 2 ninThickness is It was found that the hybrid model is more accurate than a

important in melanoma prognosis because the cancer maydiffusion model in recovering optical properties of the upper

spread if the epidermis—dermis boundary is broken layer and the thickness, but the errors are still fairly large

. 0 o

Pofrze ight techicuds e he propery ha g - 30%. However difusin heoy cannot e used o model
depolarizes as it propagates and the initial polarization of in- po! 9 . g net )

trained on data obtained from Monte Carlo simulations to

cident light is lost within relatively few scattering events. This . . . :
. . recover the optical properties of layered media. Encouraging
can be used to localize volumes close to the surface. In addi- ;
. . . results have been obtained when neural networks are used to
tion, it has been observed that there are varying rates of de- ) - o 7
extract the optical coefficients of semi-infinite medfia’ but

polarization of different initial polarization states with . oo .
13 . . in this work the more difficult problem of layered media was
scattering® and it has been demonstratédhat this has the considered

28;?22?: E(?C;P saéitci:)enrier]e Iiﬁiggli SSﬁL?;'g&ygiﬂae%n&;ake The following section presents the analysis methods, in-
P gp : cluding details of the Monte Carlo simulation; the samples

fgeesggt'rileg'.ﬁr:']bu“Oenno.ft.pgl?(;'ZZ?.;?:; bacgsiigle;ebd :)rrOToi used; and the neural network applied. Section 3 presents the
yer Ium IS sensitiv variations in opt SOrptoN o suits of an investigation to determine whether a neural net-

andblthlcknezs_ OIht_he Iaier. T_h|s rf_pretszntsh Ot?]ly parthof the work trained on polarized light measurements can be used to
pro em,tan n b IS Word \t/vetljn\t/es I9a ethw eb er st_uc me?f-_ characterize layered scattering media. Discussions and con-
surements can be used 1o determine thé absorption Coeltl- \siqns follow in Secs. 4 and 5, respectively.

cients and thickness of a two-layer scattering medium.

Other research groups have investigated methods, to deter2 Theory
mine the optical properties of layered media. Most notably, 2.1
Pham et al’ fitted a layered diffusion model to obtain the =°

optical properties from frequency-domain measurements. The polarization Monte Carlo model simulates illumination
with a pencil beam of polarized light perpendicular to the

There is a great deal of interest in the development of nonin-
vasive optical techniques for tissue diagndsifhe main
drawback is that light is heavily scattered within tissue an
this leads to uncertainty about the volume from which infor-
mation is retrieved. Our recent resedrthas focused on the

Monte Carlo Simulation
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Ilumination scatterer$:? Each layer has different scatterifgs) and ab-
sorption(u,) coefficients and absorption is added postsimu-
lation using Lambert-Beer’s law, depending on the propaga-
tion distance within each layer. The absorption and scattering
properties of the media analyzed are stated in mean-free paths
(mfp) where 1 mfp=1/us so that the results can be easily
Ksl Hal d scaled for a wide range of media.

2.3 Polarization Analysis

s a2 A four-channel detection scheme is used with different illumi-
nation and detection arrangemelitable 1. These channels
can be easily measured experimentally using a simple detec-
tion schemé&:!! The different channels allow various catego-
Fig. 1 General geometry of the sample. ries of backscattered photons to be detected and these were
described in detail previousfyThe subtraction of the differ-
ent channels allows light to be separated into its component
surface of the medium and models individual photdos parts, i.e., light that has maintained its original polarization

light packetg propagating through a layered scattering me- state or has been multiply scattered.
dium composed of Mie scattering particles. The details of this

model have been discussed previotfsly and therefore are 2.4 Moments of Distributions
addressed only briefly here. Photons are individually tracked
through the medium, and at each photon—particle collision the
direction and polarization are modified by adjusting the direc-
tional cosines and Stokes parameters. The characteristics o
photons backscattered from the medium are recorded. Spatia
intensity distributions|(r), are obtained by measuring the
frequency of photons emerging within annuli centered on the
source and normalized by the annular area. The Monte Carlo
data that are used to train the neural networks in this study are

Moment analysis is a widely used technique for curve analy-
sis and provides a useful method of characterizing the spatial
]Lntensity distributions used in this study. In the cases consid-

red, we found that moments are more robust to noise than
raining the networks with measurements at discrete detector
positions. The first-order momentyl;, and normalized
second-order momenly,, are defined as

presented elsewhefe. Ml:f Op(r)rdr (1)
=
2.2 Samples and Sample Geometries
Figure 1 shows the general form of the sample under investi- Ji_oP(r)r#dr
gation. The model is capable of simulating multiple layers, N2= M2 ’ 2
1

each infinite in thex—y plane with a semi-infinite lower layer.
However, for simplicity here we consider only a two-layer where P(r) is a probability density function estimated by
medium, with an upper planar layer of thicknesand a semi- normalizing the area under the photon frequency histogram
infinite lower layer. There is a mismatch of 1.4 in the refrac- 1(r) to unity[I(r) is obtained by the procedure described in
tive index at the air—tissue interface; at the tissue—tissue in- Sec. 2.1. M, represents a measure of the width of the distri-
terface the layers are index matched. The medium is bution andN, is characteristic of the shape of the distribution;
composed of a monodispersion of Mie scatterers with the it is more heavily influenced by photons emerging further
mean cosine of the scattering angles 0.92 and a size pa-  from the source. In practice, the maximum detector position is
rameterka=13.9, which are consistent with typical tissue atr=1000 mfp.Moments are advantageous because they are

Table 1 Polarization-discriminating detection schemes. Forward scattered light is defined as light that
has emerged from the scattering medium via a series of forward scattering events. Weakly scattered
(opposite helicity) describes light that has emerged via backscattering.

Channel llumination Detection Categories of Light

1 Linear (horizontal) Linear (horizontal) Polarization maintaining
and multiply scattered light

2 Linear (horizontal) Linear (vertical) Multiply scattered light

3 Circular (right) Circular (right) Forward scattered and
multiply scattered light

4 Circular (right) Circular (left) Weakly scattered (opposite
helicity) and multiply
scattered light
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dependent on the shape of the distribution, not on the absolute <& 0.045 -
intensity. Absolute intensity measurements are highly depen- E 0.04 1
dent on surface reflections and accurate calibration of both the  § g03s
light source and detector, and are therefore not considered in & 4 ]
this study. The moments of the different polarization channels  § 0025 4
are used to train the neural networks. The moments of inten- &

sity measurements alone, i.e., unpolarized light, are also used § 0027
for comparison to determine whether polarized light measure- & 00151
ments are necessary. § 001

& 0005 . . . .
0.005 0015 0025 0.035 0.045

2.5 Neural Network

The neural network is implemented using a backpropagation

architecture with three layers of nodes: an input layer, a hid- Fig. 2 The u,, values obtained with a neural network trained on
den layer, and an output Iay@r?zTo ensure that the network ~ first-order moments_of c_hannels 1 and 2 (d=5 mfp). A straight line is
training is generalized, rather than a lookup table that recog- $"0Wn t© aid visualization.

nizes features in the noise, independent Monte Carlo simula-

tions are used for training and testing. In the work reported in gho\wn to aid visualization. As observed by Ph4nat low

Secs. 3.1to 3.3,.fo'ur training and four testing sets of data are apsorption values the percentage of errors is high even though
used, each consisting of 562,500 photons. In Secs. 3.4 t0 3.64a absolute errors are small.

two training and two testing sets, each containing 256 pho-  1he percentage error for networks trained with different
tons, are used as the data have also been used for polarizatiopympinations of the first- and second-order normalized mo-
subtraction studie$As in other neural network applications,  mengs for different thicknesses of a layer is shown in Table 2.
all input data(i.e., moments are scaled to an appropriate |, principle, the network should be able to take all input pa-
range(between O and)lbefore being fed into the network.  ameters and weight each input accordingly to provide the

Conversely, all output data predicteq in testirjg by the network optimum performance. However, to gain a better physical in-
are subsequently rescaled to obtain meaningful values. Per-

A sight into the problem, the network is also trained using either
centage errors are calculated for all predicted values to evalu-yhq first- or second- or both first- and second-order moments
ate the sensitivity of the measurements.

of the linear channelgl and 2 or the circular channel8 and

4). This will reveal whether all the required information is
contained in a particular combination of measurements. To
3 Results determine whether polarization measurements are essential,
We investigated the ability of a neural network to determine the moments of the total intensitfunpolarized measure-
Ma1, Ma2, andd of a two-layer scattering medium from po- ments are also included. The mean values of rows and col-
larized light measurements. In all cases we assumed that theymns are shown to emphasize trends in the results.

values ofg and the scattering coefficients of both layers are For thed=5 mfp and d=10 mfp layers, the majority of
known fromin vitro studies. We used an approach similar to the results are within the acceptable margins of er20%).

that of Pham et &i? and initially varied one parameter at a

time and then extended the number of variables. This allows

better characterization of the performance of the neural net- Table 2 Percentage error in u,, when it is varied over the range
works at different stages in the complexity of the inversion. 7-55¢-3 t© 0.04005 mfp™ and s, is constant (0.001 mfp™).

Sections 3.1 and 3.2 describe measurements vagyia®nly

Actual Absorption (mfp'")

and w,1 only, respectively, keeping one layer at a constant d (mfp) 5 10 30 Mean
absorption. In Sec. 3.3, botf,; and u,, are varied. In Sec.  Training data (%) (%) (%) (%)
3.4, the measurement of the layer is thickness alone is con-

sidered. Recovery of both,; andd is discussed in Sec. 3.5.  Channels 1 and 2, firstorder moment 711735 20
Final_ly, the_eﬁects of restricting the range of variables are Channels 3 and 4, firstorder moment 48 51 34 15
considered in Sec. 3.6. For all the tables, data are presented to

two significant digits. Total intensity, firstorder moment 20 24 27 17

Channels 1 and 2, second-order moment 18 49 59 42
3.1 Varying Absorption (u,,) of the Lower Layer

This section describes the ability of a neural network to re-

coveru,, over the range 7.55e-3 to 0.04005 mfin steps of Total intensity, second-order moment 12 97 17 13
_ _1 . . . . . .

2.5e_4 mfp . Trjtle remaTlng opfllcal coefﬂueits are f'i“fd at Channels 1, 2, 3. and 4, first and 77 23 54 928

Ma1=0.001mfp~, ug=1mfp *, and wsp,=0.5mfp - second-order moments

Three thicknesses are considered: 5, 10, and 30 mfp. A

typical plot(d=5 mfp, network trained on the first-order mo-  Total intensity, first- and second-order 12 9.8 39 20

ments of channels 1 and &f actual versus recoveread,, is moments

shown in Fig. .2 to. demonstrate. the effgctlveness pf the Mean (%) 12 16 139 22

method. A straight line representing the ideal case is also

Channels 3 and 4, second-order moment 14 14 49 26
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Table 3 Percentage error in u,; when it is varied over the range first-order moments are more accurate than those obtained

7.55e-3 to 0.04005 mfp™" and u,, is constant (0.001 mfp™). with networks trained on the second-order moments. In the
majority of cases considered, the results are within acceptable

d (mfp) 5 10 30 Mean error limits.

Training data (%) (%) (%) (%)

3.3 Varying Absorption of Both Layers (., and w;)

Channels 1 and 2, firstorder moment 79 18 56 11 We now consider the more difficult case of recovering the

Channels 3 and 4. firstorder moment 13 22 13 56 absorption coefficient of both the upper and lower layers. The
' range ofu,; and w4, is an order of magnitude less than in
Total intensity, first-order moment 2.4 2.1 41 15 Secs. 3.1 and 3.86.9e-4 to 0.00405 mfp in steps of 1.6e-4

mfp~1), owing to the reduction in signal-to-noise ratio that

Channels T and 2, second-order moment 19 29 19 22 occurs when both media are heavily absorbing. Table 4 shows

Channels 3 and 4, second-order moment 16 29 49 22 the percentage errors over the 2-D gridof; and u,, val-

ues. In the majority of cases the errorn; is unacceptable
Total intensity, second-order moment 68 60 14 88 (>20%), owing to the small thickness. As anticipated, when
Channels 1, 2, 3, and 4, first- and 18 13 25 13 the thickness of the upper Iaygr inqreas_es, the e_rrquajp _
second-order moments decreases because the emerging light is spending a higher

proportion of the time in the upper layer. The training set
Total intensity, first- and second-order 90 86 15 11 using all the available dat@oth spatial and polarizatipmpro-
moments vides the optimum performance for obtainipg;, although
Mean (%) 95 10 21 14 only acceptable performance is achievedder 30 mfp.

The performance in determining,, is far better than that
of obtaining u,; because of the greater propagation time of
the light in the lower medium. As the thickness of the upper
In general, the polal'ized ||ght measurements offer no S|gn|f|' |ayer increasesl the error maZ increases. The best perfor-
cant improvement over total intensity measurements. For the mance in obtainingt,, is provided by the total intensity mea-
thinnest layei(d=5 mfp), the error inu,; is lowest because  syrements, indicating that polarized light provides little infor-
the upper layer has relatively little effect on the measure- mation about the properties of the lower layer.
ments.

3.4 Varying Layer Thickness (d)

Previously we demonstrated the sensitivity of the different
In this caseu,; is varied over the range 7.55e-3 to 0.04005 polarization channels to thickness where thickness was mod-
mfp ! in steps of 2.5e-4 mfpt while keepingu,, at a con- eled using a single-layer medium. This is equivalent to an
stant value of 0.001 mfgt. Again, three thicknesses are con- upper layer with a varyingl above a second layer that is
sidered:d=5, 10, and 30 mfp. Table 3 contains the percent- totally absorbing. The advantage of this approach is that a
age of errors for neural networks trained using the same single Monte Carlo simulation can be used to model different
parameters as in Sec. 3.1. Again for the polarized light mea- d is by recording the maximum visitation depth of a photon
surements, the values obtained using networks trained on theand discarding those absorbed in the second medium. This

3.2 Varying Absorption (u,;) of the Upper-Layer

Table 4 Percentage error in u,, and u,, when both are varied simultaneously over the range 0.00069
to 0.00405 mfp~'.

5 10 30

d (mfp) Mal Ma2 Mal Ma2 Mal Ma2 Mean
Training Data (%) (%) (%) (%) (%) (%) (%)
Channels 1 and 2, first-order moment 92 14 88 48 88 86 69
Channels 3 and 4, first-order moment 99 10 79 23 60 68 57
Channels 1 and 2, second-order moment 109 44 66 38 62 21 57
Channels 3 and 4, second-order moment 88 15 24 7.2 23 17 29
All channels, first- and second-order 41 24 32 12 17 19 24
moments

Total intensity, first- and second-order 97 50 100 79 97 7.3 52
moments

Mean (%) 88 19 65 23 58 36 48
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Fig. 3 Values of d obtained from networks trained on (a) first-order moments of channels 1, 2, 3, and 4; (b) second-order moments of channels 1,
2, 3, and 4. A straight line is shown to aid visualization.

o

improves the efficiency of the simulations and allows the mo- 3.6 Restricting the Range of d and 4

ments of the distributions over a range of layer thicknesses t0 |, the work reported in Sec. 3.8,and u,; were varied over

be calculatedd=2 to 20 mfp in steps of 2 mfp and=20t0 ;4 rejatively wide range. This section describes the perfor-
60 mfp in steps of 5 mfp However, it should be noted that  mance of networks trained on data where the rangd of

this represents the extreme contrast for a two-layer medium. ,  \yas restricted Table 6 shows the erropig, andd when

For typical tissue-scattering mean-free patisl mm, this the absorption range is restricted (b 7.55e-3 to 0.04005
corresponds to a thickness of 0.2 to 6 mm, which covers the -1 (2) 7 55¢-3 to 0.03005 mff, (3) 7.55e-3 to 0.02005
range of burn thicknesses and the thickness of many skin mfpfl, and(4) 7.55e-3 to 0.01005 n,"lfpl- In practice this will

Iesi.ons.. For sFudies of superficial §I§in lesions, more investi- 5.cur when there is prior knowledge of the tissue’s optical
gation is required although we anticipate the trends Observedproperties It can be seen that for networks trained on the

in this case t_o be valid. Figure 3 contains the valued fdr polarized light data, restricting the range af, offers no
networks trained on the first- and second-order moments of significant improvement in the accuracy of the valuesugf

the polarization channels 1, 2, 3, anfFgs. 3@ and 3b)l. A o' ghtained, and the performance is acceptable for most
straight line representing the ideal case is also shown 10 aid,5nge5. For the total-intensity measurements, restricting the
visualization. When both scattering and absorption are fixed, range has a significant effect on the performance of the net-

all measurements accurately extract the layer’s thickness,,q 1< in obtaining bothu,, and d, improving from 67 to
(first-order moment erret2.5%, second-order moment error 8.7% for u,, and from 19§ to 330/(; fod
. a .

=1.2%. When the range odl is restricted(Table 7, improvements

are obtained for polarized and unpolarized light measure-

. ments in bothu,; andd. For all ranges considered, the per-
3.5 Varying d and w

The case considered in Sec. 3.4 is relatively straightforward

because the optical coefficients are constant. Heigyaried

Ove.r the same range of tthknESSE§ as. in Sec. 3.4uants Table 5 Percentage error in u,; and d when u,; and d are varied
varied over 7.55e-3 to 0.04005 mib (in steps of 2.5e-4 simultaneously over the range 7.55e-3 to 0.04005 mfp~' and 2 to 60

mfp~?). Four networks are trained on the data fréh first- mfp, respectively.
order moment, channels 1, 2, 3, and(2), second-order mo-
ment, channels 1, 2, 3, 43) combined first- and second-order d fho
moments, channels 1, 2, 3, and 4; ddgdcombined first- and Training Data (%) (%)
second-order moments, total intensity. Table 5 shows that over
the range of values considered, the only training set capable Channel 1, 2, 3, and 4, firstorder 41 10
of obtaining a thickness value of acceptable accuracy consists moment
of the combined first- and second-order moments of the four

Channels 1, 2, 3, and 4, second-order 78 20

channels. The error in retrievind using the total-intensity
value is particularly poor. Similarly, the error in absorption
coefficient is lowest for the first- and second-order moments Channels 1, 2, 3, and 4, first- and 18 4.0
of the four channels and highest for the total-intensity first- second-order moments

and second-order moments. The networks trained on first-
order moments outperform those trained using second-order
moments.

moment

Total intensity, first- and 197 67

second-order-moments
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Table 6 Percentage error in u,; and d when u,; and d are varied
simultaneously. The thickness is varied over the range of 2 to 60 mfp,
but the absorption is varied for different ranges, i.e., (1) 7.55e-3 to
0.04005 mfp_1, (2) 7.55e-3 to 0.03005 mfp_1, (3) 7.55e-3 to 0.02005
mfp~', and (4) 7.55e-3 to 0.01005 mfp~".

(1) 20 () (4
Error in w1 (%) (%) (%) (%)
Channels 1, 2, 3, and 4, first- and 5.8 93 10 11

second-order moments

Total infensity, first- and second-order 67 57 21 8.7
moments

(1) 20 () (4
Error in d (%) (%) (%) (%)
Channels 1, 2, 3, and 4, first- and 18 30 17 12

second-order moments

Total infensity, first- and second-order 197 164 59 33

moments

formance of polarized light measurements is better than that

of unpolarized measurements.

4 Discussion

Characterization of layered scattering media . . .

polarized measurements. This is demonstrated by the lower
errors obtained with polarized light measurements when the
upper layer’s absorption is extracted as described in Secs. 3.3,
3.5, and 3.6, andl is obtained as described in Sec. 3.5 and
3.6. This is because the destruction of polarization informa-
tion by scattering causes sensitivity to superficial tisstiet®
However, for the same reason, polarized light measurements
offer no significant improvement over unpolarized measure-
ments when they are used to obtaig, .

In the majority of cases, training the network on all the
available polarized data provides the best performance. The
advantage of using combined first- and second-order moments
rather than only the first- or second-order moments was dis-
cussed in a previous papersing a method in which contours
were plotted for measured values of first- and second-order
moments for different values qf,; andu,,. The steep gra-
dients and orthogonal contours that were observed indicated
that the data are robust and suitable for inversion. Therefore
although networks trained using data from only the first-order
moments generally outperform those trained using only nor-
malized second-order moment data, there is still more infor-
mation to be obtained by combining the two sets. This indi-
cates that this application benefits from the ability of neural
networks to extract subtleties from the data.

To completely characterize a two-layer scattering medium,
seven parameters need to be determimkgli,y, waz, Mst
Ms2, and the values ofg in both layers. This is an ill-
conditioned problem and so it is necessary to assume prior

We have investigated whether polarized light measurementsknowledge of some of the parameters. In this paper we con-
can be used to determine the absorption coefficient and thick-sidered the recovery of absorption and thickness while leaving
ness of a two-layer scattering medium. Inversion of the mea- g and the scattering coefficients constant. In the majority of
sured data cannot be achieved by analytical solutions such agases considered, polarized light measurements are capable of
diffusion theory, owing to the presence of weakly scattered determining the absorption coefficient relatively well. Clearly,
polarization-maintaining light. A neural network therefore When only the absorption of a single layer is vari@dbles 2
provides a useful tool for analyzing such data and determining and 3, it is a comparatively simple problem to determine the
the measurable parameters that are most sensitive to absorpabsorption coefficient, and the only significant increase in er-
tion or thickness of the layer. ror occurs when the top layer is thid mfp) and light does

Our results show that polarized light measurements are not adequately sample this region. In the more difficult cases

more sensitive to the properties of superficial tissue than un- of varying the absorption and thickness of the layer, it is still
possible to determine the absorption coefficient to an accept-

able accuracy if the most appropriate measurables are se-
lected. Tables 4 and 5 show that if neural networks are trained

using both the first- and second-order moments of the polar-

ized light measurements, then acceptable accuracy can be
achieved. The only exception is obtainipg,; when bothuw

Table 7 Percentage error in u,, and d when u,; and d are varied
simultaneously. The absorption is varied over the range of 0.015 to
0.025 mfp”, but the thickness is varied for different ranges, i.e., (1) 2
to 60 mfp, (2) 10 to 60 mfp, (3) 10 to 30 mfp, (4) 20 to 30 mfp, and (5)

fixed 30 mfp. . . .

e mp and u,, are variedTable 3 and in this case neural networks
» trained using both the first- and second-order moments of the

Ko (mfp” ) m @ B © () polarized light measurements still provide the lowest errors.

Determination of the thickness of a layer is more difficult
than determining absorption because when both absorption
and thickness are varied,can only be determined when all
the available polarized light data are ug@dble 5. When the
range of absorption is restrictedable 6, the accuracy of
unpolarized light measurements is improved significantly, but
the improvement in polarized light measurements is insignifi-
cant. When the range of thickness is restricted, significant

Channels 1, 2, 3, and 4, first- 7.6 47 29 22 0.18

and second-order moments

Total intensity, first- and 12 9.7 13 52 0.86
second-order moments

d (mfp) n @ 6B @ 6

Channels 1, 2, 3, and 4, first- 22 28 12 6.5 0.0 improvements in the performance of both polarized and un-
and second-order moments polarized measurements are observed. It is not unreasonable
Total intensity, first- and 70 87 26 17 00 to make assumptions about the optical properties of the tissue

under investigation since these are well documehfeat. cer-

second-order moments . . . . .
tain applications, it is useful to restrict the range of absorption
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We have presented preliminary results that demonstrate the
potential of using polarized light and neural networks for
characterizing layered media. However, several factors need
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dimension. In this case photons that are multiply scattered and 3,
sample a large volume provide better data for training the
neural networks. In practice, the layer’s thickness will vary
and the spatial localization obtained by the subtraction of dif-
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this knowledge to obtain the properties of the lower layer
from unpolarized light measurements. To ensure accurate de-
termination of the moments, a high dynamic range detector is 9
required, owing to the range of intensities observed in back-
scattered distributions. First-order moments are more easily
measured because the normalized second-order moments aret.
more heavily weighted by photons emerging further from the
source and are susceptible to noise. An alternative method we
are currently investigating is whether the neural network ap-
proach can be applied to single-point polarized light measure-

ments at a range of wavelengths. This would be advantageous!3-

because it would allow a full-field measurement to be ob-
tained using a simple CCD camera configurafibm the spe-
cific case of diagnosis of melanoma, other paramététs,
such as melanoma shape or size, could also be useful addi-

tions to the neural network training data. Other issues that 15.

need to be resolved before implementation of such techniques
becomes practical include the effects of the birefringence of

collagen?* layer nonuniformity, and a mismatch of the refrac- 16.

tive index between the tissue layers.

17.

5 Conclusions

The potential use of neural networks for determining the
properties of a two-layer scattering medium has been demon-

strated. Polarized light measurements provide better perfor-18.

mance than unpolarized measurements in obtaining the ab-
sorption coefficient of the upper layer and the layer’s
thickness because of the sensitivity of polarized light to su-
perficial tissue. However, polarized light measurements offer

no significant benefit in obtaining the absorption of the lower 20

layer. Improvements in performance can be achieved by re-

stricting the range of optical coefficients to those correspond- 51

ing to the documented range of tissue values.
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