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Abstract. The study of short-pulse propagation through biological tis-
sues is important due to the medical applications of short-pulse lasers.
Techniques used for numerical study of short pulses through human tis-
sues include the Monte Carlo (MC) method, the finite-element method,
and the finite-difference time-domain (FDTD), but these are often time
consuming. Recently, the boundary integral method (BIM) was applied
to overcome this problem. The literature shows that the BIM is faster
than the other mentioned methods. We first investigate the precision of
results obtained by the BIM by comparison with those results obtained
by the MC and FDTD methods. Then we use the BIM to investigate the
short-pulse penetration into biological tissues. We also study the effects
of optical properties of tissues such as scattering, the absorption coeffi-
cient, the anisotropic factor on the penetrating pulse. We also, consider
the propagation of pulses emitted from extended sources with differ-
ent temporal evolutions. C©2010 Society of Photo-Optical Instrumentation Engineers.
[DOI: 10.1117/1.3526351]
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1 Introduction
Recently, short-pulse lasers have been widely used in non-
invasive optical tomography.1–6 As compared with contin-
uous wave imaging, more information can be achieved in
short-pulse imaging by studying the temporal distribution of
reflectance/transmittance.7–11 The temporal distribution of a re-
flected/transmitted signal is broadened due to multiple scattering
of photons into tissues.2, 12 The level of broadening depends on
optical properties of the tissue, i.e., absorption and scattering;
consequently, variations of those parameters can be investigated
by studying the temporal distribution of the scattered light. Thus,
the temporal distribution of the reflectance/transmittance can be
exploited to detect normal or malignant biological tissue, be-
cause the optical properties of normal tissues vary during ma-
lignant progress.13

Photon transport through biological tissues can be described
by a diffuse equation. Sometimes, this equation can be solved
analytically.14 But in most cases, numerical methods such as the
Monte Carlo (MC) method, the finite-element method (FEM),
and the finite-difference time-domain (FDTD) method are most
often used to solve that equation.15–22 In those methods, the
whole sample should be discritized and the calculation is time
consuming.15

The boundary integral method (BIM) can also be used to
solve a diffuse equation and to simulate a reflected pulse on
the surface of biological tissues. Since this method requires
surface tessellation, the computation time is reduced and the ac-
curacy of the results increases as compared to other numerical
methods.23–26 The effects of optical properties of biological tis-
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sues on the intensity of a reflected pulse were investigated and re-
ported in Ref. 26, but the behavior of a pulse penetrating through
biological tissues has not yet been studied by this method.

In this paper, pulse penetration into biological tissue is
studied using the BIM. First, the appropriate Green’s function
is obtained to convert the diffuse equation to integral form using
Green’s second theorem. Then, the surface integral is discretized
using the boundary element method (BEM). In this method, the
boundary of the sample is first discretized to elements. Then,
the observation point is located on the surface of tissue and an
equation containing fluence at that point is achieved. Locating
the observation point on different nodes, a system of equations
is obtained that gives the fluence at those points.23–25 By using
this technique, the photon intensity inside the sample and the
intensity of the diffusely penetrated pulse inside tissue are
calculated. To investigate the accuracy and precision of results,
they are compared with those obtained analytically and by other
numerical methods. Furthermore, the effects of the absorption
and scattering coefficients and the anisotropic factor on the dif-
fusely penetrating pulse are also studied. Finally, the penetration
of the short pulse with a arbitrary time shape is studied.

2 Review of Theory
Short-pulse laser propagation into biological tissue � with
boundary �s can be studied by a diffuse equation and Robin’s
boundary condition, which are, respectively, given by16

∂

c∂t
ϕ (r, t) − D∇2ϕ (r, t) + aϕ (r, t) = S (r, t) r ∈ �, (1)

ϕ (r, t) − 2CR D
∂ϕ (r, t)

∂z
= 0 r ∈ �s, (2)
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where ϕ (r, t) and S (r, t) are, respectively, the fluence and the
isotropic source term at position r and at moment t . The ve-
locity of light is shown by c. The parameter D = 1/3(a + σ ′)
is the diffusion coefficient, where a and σ ′ = σ (1 − g) are the
absorption and reduced scattering coefficients, respectively; and
σ and g are also the scattering coefficient and the anisotropic
factor, respectively. In Eq. (2), CR = (1 + R)/(1 − R), where R
is the Fresnel reflection coefficient.

The boundary integral method is based on using of Green’s
function.23 The Green’s function of Eq. (1) in domain � is the
solution of

∂

c∂t
g(r, r ′; t, t ′) − D∇2g(r, r ′; t, t ′) + ag(r, r ′; t, t ′)

= −δ(r − r ′)δ(t − t ′). (3)

Applying a Laplace transform on t in Eq. (3) and rearranging
the resulting equation, gives

∇2G(r, r ′; s, t ′) − κ2G(r, r ′; s, t ′) = δ(r − r ′)
D

exp (−st ′), (4)

where G(r, r ′; s, t ′) = L[g (r, r ′; s, t ′)], κ2 = (s/cD) + a/D,

and ∇2 operates on r . Next, applying Fourier transform on r
in Eq. (4) and doing some mathematics results in

G̃(k, r ′; s, t ′) = exp (−ik.r ′)
D(k2 + κ2)

exp (−st ′), (5)

where G̃ is Fourier transform of G.
The inverse Fourier and Laplace transforms of Green’s func-

tion stated in Eq. (5) gives the Green’s function as

g(r, r ′; t, t ′) = H (t − t ′)
c

{[4π Dc(t − t ′)]3}1/2

× exp[−ca(t − t ′)] exp

[
−

∣∣r − r ′∣∣2

4Dc (t − t ′)

]
, (6)

where H (t − t ′) is the Heaviside function.
For a short-point pulse where S (r, t) = δ (r) δ (t), the fluence

at any arbitrary point inside an infinite medium for t > 0 is equal
to26

ϕ(r, t) = c

[(4π Dct)3]1/2
exp(−cat) exp

(
− |r|2

4Dct

)
. (7)

Assuming the sample as a slab and by using Eq. (7), the trans-
mited intensity from it is given by27

T (d, t) = (4π Dct)−1/2 t−3/2 exp (−act)

×
{

(d − z0) exp

[
− (d − z0)2

4Dct

]

− (d + z0) exp

[
− (d + z0)2

4Dct

]

+ (3d − z0) exp

[
− (3d − z0)2

4Dct

]

− (3d + z0) exp

[
− (3d + z0)2

4Dct

]}
, (8)

where d is the thickness of the slab, and z0 = 1/σ ′. For an
extended source, the fluence is obtained by using Green’s second

theorem:

ϕ(r, t) =
∫ t

�

∫
0

S(r ′, t ′)g(r, t ; r ′, t ′) dr ′dt ′

−
∫ t

�s

∫
0

{ [
c

CR D
ϕ(rs, t ′)g(r, t ; rs, t ′)

]

−
[
ϕ(rs, t ′)

∂

∂n
g(r, t ; rs, t ′)

]}
drs dt ′, (9)

where rs is the observation point vector on the boundary �s .
The intensity of a diffused short pulse can be calculated from

Eq. (9), which is the integral form of diffuse equation. The BEM
can be used to solve Eq. (9). In this method, the boundary of the
sample is first discretized to elements. Then, observation point
rs is located on the surface of tissue and an equation containing
fluence at that point is achieved. Locating observation point on
different nodes, a system of equations is obtained which gives
the fluence at those points. Thus, the boundary �s is discretized
to square elements and the fluence ϕ is approximated as

ϕ (r, t) =
n∑

k=1

m∑
l=1

Nk (r) ϕkl (r, t), (10)

where k and l refer to node k and time step l, and Ni (r j ) = δi j

is the Kronecker symbol. If r j spans all the nodes on the surface
of the boundary, Eqs. (1) and (2) will give, respectively, the
following set of algebraic equations:

H u + �v = S̄,

v = −Ru + P,
(11)

where R = C−1
R , and u, v , P , and S̄ are column vectors of the

nodal values of the fluence ϕ, normal derivative q , the prescribed
boundary flux p, and the volume source S, respectively, which
are given by

un×1 =

⎡
⎢⎢⎣

φ1

· · ·
· · ·
φn

⎤
⎥⎥⎦ , vn×1 =

⎡
⎢⎢⎣

q1

· · ·
· · ·
qn

⎤
⎥⎥⎦ ,

Pn×1 =

⎡
⎢⎢⎣

p1

· · ·
· · ·
pn

⎤
⎥⎥⎦ , S̄n×1 =

⎡
⎢⎢⎣

s1

· · ·
· · ·
sn

⎤
⎥⎥⎦ , (12)

where

s j =
∫

�s

∫
g(ρ; t, t ′)S(r, t) drdt ′, (13)

and ρ = |r − r j |. The spatial and temporal shape of S (r, t)
can be arbitrarily chosen. The elements of matrices Hn×n×m

= {hi, j,l} and �n×n×m = {ξi, j,l} are as

hi, j,l = δi j I +
∫ t

�s

∫
0

∂g (ρ; τ )

∂n
Nkl (r, t) dr dt ′,

(14)

ξi, j,l = −
∫ t

�s

∫
0

g (ρ; τ ) Nkl (r, t) dr dt ′,

where τ = t − t ′. Locating observation point on different nodes
and using Eq. (11), a system of equations are obtained that give
the fluence at those surface points. Next, one can calculate the
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fluence at any arbitrary point inside and outside the sample.
According to Eq. (9), the fluence ϕ (r, t) inside the sample can
be calculated by using

ϕ∗(r, t) =
∫ t

�

∫
0

S(r ′, t ′)g(r, t ; r ′, t ′) dr ′ dt ′

−
∫ t

�s

∫
0

{ [
c

CR D
ϕ̄(rs, t ′)g(r, t ; rs, t ′)

]

−
[
ϕ̄(rs, t ′)

∂

∂n
g(r, t ; rs, t ′)

] }
drs dt ′, (15)

where ϕ∗ (r, t) and ϕ̄ (rs, t), respectively, represent the value
of the fluence at point r inside the sample and at point rs on
the surface at specified moment t . Note that to calculate of the
fluence at each internal points, we only need to use the solution
of the system of equations that were obtained on the boundary,
the values of ϕ̄, which we now know, so Eq. (15) can be used as
many times as desired, with only the surface integration required
to be calculated for every new internal point.

3 Numerical Results
The diffuse equation is used to study propagation of a short-
pulse laser in biological tissues. We use the BIM to solve diffuse
equation and to study behavior of light inside the biological
tissues.

First, to confirm precision of this method, the results obtained
by the BIM are compared with those obtained analytically using
Eq. (8) and the MC and FDTD methods. An interesting pa-
rameter in vivo time domain tomography is 〈ct〉, i.e., the mean
distance traversed by photons before exiting the tissues. Us-
ing Eq. (8), 〈ct〉 can be analytically found to be equal to 77.6
mm for a 10-mm slab tissue with a = 0.00434 mm−1, σ =
6 mm−1, and g = 0.72. Patterson et al. calculated this quantity as
80.6 mm, an error of 3.8% by the MC method.27 The same
quantity is calculated as method 81.6 mm, an error of only
5.1%, and 89.3 mm, an error of 15%, using the BIM and FDTD
method, respectively. However, the computational time of the
FDTD method is more 4 time longer than the BIM, whereas
the mesh resolution in the FDTD method and the BIM are
2.00 pS × 0.45 mm and 12.19 pS × 1.36 mm, respectively.

Note that Eqs. (7) and (8) can only be used for point
sources. However, it is not appropriate to study propagation
of a pulse originating from sources that are temporally ex-
tended. We assume a semi-infinite sample with a = 0.02 mm−1,
σ = 10 mm−1, and g = 0.9, which is illuminated by a Gaussian
pulse that is presented by

I (r, t) = I0 exp

[
−

(
t − t0

τ

)2
]

δ (r) , (16)

with duration of τ = 10.0 ps. In this paper, we assume resolution
of the sample is 12.19 pS × 1.36 mm, which gives the number
of 51 × 41 nodes (Fig. 1).

Next, we study the effect of different parameters on the tem-
poral evolution of a diffusely penetrating pulse into a phantom
like breast tissue with optical properties similar to that repre-
sented in Ref. 28. Temporal broadening of the penetrating pulse
is due to scattering and absorption of diffused photons in tis-

Fig. 1 Temporal evolution of diffuse photon intensity calculated using
the BIM at different depths.

sue. Therefore, it is important to study such an effect in more
detail. To study the effect of multiple scattering on the diffused
pulse, we assume a semi-infinite sample with a = 0.02 mm−1

to be illuminated by a Gaussian pulse with duration of
τ = 10.0 ps. Figure 2 shows that the peak value of the pulse
decreases for larger scattering coefficients. This is because by
increasing the scattering coefficient, more photons are scattered
from the illumination direction, and consequently, the intensity
of penetrating pulse decreases. The results are in agreement with
those reported in Ref. 29.

Figure 3 illustrates the temporal evolution of a penetrating
pulse for two different values of the anisotropic factors g. One
can see that the peak value of the pulse increases for larger
anisotropic factor values. This is because for a larger anisotropic
factor, the majority of launched photons are scattered along the
illumination direction, and therefore, its intensity increases.

Furthermore, to study effect of the absorption coefficient on
the penetrating pulse, the temporal distribution of penetrating

Fig. 2 Temporal distribution of diffuse photon intensity for different
scattering coefficient values.
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Fig. 3 Temporal distribution of diffuse photon intensity for two differ-
ent anisotropic factor values.

pulse is calculated and the results for three different absorption
coefficients values are calculated and depicted in Fig. 4. The
results show that by increasing the absorption coefficient, more
diffused photons are absorbed in tissue and the density of the
remaining photons decreases.

As mentioned earlier, using this technique, the temporal
evolution of the source can take arbitrary shape, and we also
consider a source emitting pulses with the following temporal
evolution:

I (r, t) = I0

{
exp

[
−

(
t − t0

τ

)2
]

+ exp

[
−

(
t − 2t0

2τ

)]}
δ(r),

(17)

and the penetration of arbitrary temporal source is calculated
by the BIM (Fig. 5). The shown results in Fig. 5 have been
calculated for three different depths. This result shows the BIM

Fig. 4 Temporal distribution of diffuse photon intensity for three dif-
ferent absorption coefficient values.

Fig. 5 Variation of the diffuse photon intensity with z for an arbitrary
input source.

can simulate the diffused photons inside biological sample with
arbitrary temporal evaluation.

4 Conclusion
Recently, the diffuse equation was solved by the BIM
(Refs. 24 to 26), and note that another paper30 solved the tran-
sient diffuse equation for turbine component by means of the
BEM.30 In Ref. 26, the BIM solution of transient diffuse equa-
tion for biological tissues was presented and the accuracy of this
method was inspected and the showed resulting emphasizing
that the BIM method is faster than the MC and FDTD methods
and more precise than the FDTD method. In Ref. 26, only the
reflected pulse on the surface of the tissue was calculated.

In this paper, the propagation of short pulses inside biological
tissue such as breast was studied. The BIM was used to study
the diffusion of short pulses penetrating inside biological sam-
ples and to calculate the photon density at any arbitrary point.
The effects of the optical properties of tissues on diffusely pen-
etrating pulses inside it were studied and it was observed those
parameters can alter the intensity and temporal distribution of
the penetrating pulse. Since the optical properties of malignant
tissues gradually changes, this offers an effective technique to
trace the progress of cancer.

Using this method, the propagation of pulse emitted from
extended sources with an arbitrary temporal evolution can be
studied, where in this paper, sources with Gaussian shape were
studied.

This method is suitable to study the interaction of a short-
pulse laser with biological tissue, especially for regions where
shock waves are produced.
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