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Abstract. The successful management of oral cancer depends upon early detection, which relies heavily on the
clinician’s ability to discriminate sometimes subtle alterations of the infrequent premalignant lesions from the more
common reactive and inflammatory conditions in the oral mucosa. Even among experienced oral specialists this
can be challenging, particularly when using new wide field-of-view direct fluorescence visualization devices clini-
cally introduced for the recognition of at-risk tissue. The objective of this study is to examine if quantitative cyto-
metric analysis of oral brushing samples could facilitate the assessment of the risk of visually ambiguous lesions.
About 369 cytological samples were collected and analyzed: (1) 148 samples from pathology-proven sites of SCC,
carcinoma in situ or severe dysplasia; (2) 77 samples from sites with inflammation, infection, or trauma, and (3) 144
samples from normal sites. These were randomly separated into training and test sets. The best algorithm correctly
recognized 92.5% of the normal samples, 89.4% of the abnormal samples, 86.2% of the confounders in the training
set as well as 100% of the normal samples, and 94.4% of the abnormal samples in the test set. These data suggest
that quantitative cytology could reduce by more than 85% the number of visually suspect lesions requiring further
assessment by biOpSy. © 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JBO.17.8.086004]
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1 Introduction

Like other epithelial neoplasms, oral cancer, is driven by the
clonal evolution and expansion of abnormal cells across the
mucosa, physically apparent as a heterogeneous group of lesions
in which appearance is not obviously linked to the genetics of
the underlying tissue. Successful management of the disease is
dependent upon the detection and treatment of the earlier stages
of the disease. However, early detection relies heavily on the
clinician’s ability to discriminate sometimes subtle alterations
associated with premalignant lesions and cancers from reactive
and inflammatory conditions that represent the majority of
mucosal abnormalities. This can be challenging, even among
experienced oral specialists.

Wide field-of-view direct fluorescence visualization (FV)
devices have been introduced to enhance the recognition of
at-risk tissue.! These devices utilize blue-violet (400 to
450 nm) excitation light, and detection of 460 nm and longer
emission light to visualize tissue autofluorescence. The selective
long-pass filter in the eyepiece allows the viewer to directly
visualize the pale green autofluorescence that is given off by
normal tissue. Tissue fluorescence appears altered (reduced in
intensity and altered in color) in areas of dysplastic or cancerous
tissue such that abnormal or suspicious tissue shows decreased
levels of normal autofluorescence, appearing as a dark brown to
black region by comparison to the surrounding healthy tissue.
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While these devices improve the detection of abnormal tis-
sue, inflammation, infection, and trauma can mimic changes
associated with premalignant/cancerous tissue. This situation
may be improved by optimizing the way in which light interacts
with lesions to extract the maximum amount of biologically
relevant information.>* An alternate strategy is to directly assess
the cells involved in the clonal expansion process through ana-
lysis of individual cell nuclear phenotypic changes using auto-
mated image analysis.

The DNA content of quantitatively stained nuclei has been
widely used to identify gross chromosomal alterations (larger
than 150 Megabases) in many organ sites associated with neo-
plasia.* We have previously reported that the organization of
DNA within nuclei is predictive of progression of dysplasia
to cancer’® and highly correlated with other indices of genetic
alteration, such as measured loss of heterozygosity (LOH) and
array comparative genomic hybridization.” The combination of
DNA content and subtle alterations in DNA organization have
been used to improve the detection of cervical and bronchial
cancers and precancers from cytological samples and has
demonstrated clinical utility.

The objective of this study was to develop and assess a high
throughput automated approach based on a combination of
subtle alterations in cell DNA amount and organization for
the recognition of high-risk oral lesions as detected by direct
FV and white light.
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2 Materials and Methods

2.1 Subjects and Sample Collection

This study included patients in three groups: 1. patients with
severe dysplasia, carcinoma in situ (CIS) and squamous cell car-
cinoma (SCC) lesions (denoted abnormal set), 2. patients with
normal mucosa (denoted normal set), and 3. patients with con-
founding lesions (denoted confounder set). The abnormal set
involved participants in the ongoing NIH/NIDCR-funded oral
cancer prediction longitudinal (OCPL) study at the British
Columbia Cancer Agency in Vancouver, Canada.® Normal con-
trol samples and confounders came from community clinics of
the Oral Mucosal Disease Program at the University of British
Columbia. All samples were collected between November 2004
and November 2008 through the application of a stiff brush
rubbed against the lesion in the oral cavity (brushing). The
study was approved by the Institutional Review Board of the
BC Cancer Agency and University of British Columbia.
Informed consent was obtained from all subjects. A total of
369 cytological samples (from 369 individuals) were analyzed:
(1) 148 samples from pathology-proven sites of SCC, CIS or
severe dysplasia (denoted abnormal set); (2) 77 samples from
sites with inflammation, infection, or trauma, either biopsy-
proven or clinically confirmed as such by an Oral Pathology
Specialist in lesions at a three-month follow-up examination
(denoted confounder set); and (3) 144 samples from normal
sites (denoted normal set).

In a conventional dental practice, the prevalence of abnormal
lesions is quite low (~0.5%) in most settings,9 the clinician
performing the brushing may not always recognize the area
of most severe change and may consequently not brush exactly
the same area an experienced oral specialist would target. In the
cervical screening programs the sample is frequently (5% to
20%) not taken from the targeted area at most risk of being
transformed.'®'! Thus, to more realistically represent these
conditions, approximately 1 cm of clinically normal oral surface
around the lesion as well as the lesion itself was intentionally
brushed to reduce the dependency of the system on perfectly
targeted brushing samples.

Exfoliated cells were collected by brushing the mucosal sur-
face with a soft interdental brush (Innovatek cytology brush
4201-CB8B, The Stevens Company), which had been manually
curved at the end prior to use. After 10 to 15 strokes of the brush,
the collected cells and the brush were put into a 1.5 ml cryovial
containing 800 ul of Preservcyte (Hologic Inc.) and stored at
4 °C until analysis.

2.2 QTP Imaging System for Quantitative Cytology

The oral brushings were cytospun down onto slides and stained
with a modified Feulgen-Thionin reaction,'> which quantita-
tively stains DNA such that the light absorbed at each location
in the nucleus is directly proportional to the amount of DNA at
that location. Stained slides were scanned using a modified ver-
sion of the Cyto-Savant automated quantitative system (Integra-
tive Oncology, BC Cancer Agency) currently used for cervical
and sputum screening.'® The software used in the Cyto-Savant
system is specifically designed for fully automatic slide scan-
ning and collection of correctly segmented and focused images
of all objects on the slide (stained nuclei and debris).'*'* Essen-
tially this is a fully automated microscopy system, which is cap-
able of loading individual slides from a slide box, automatically
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finding and focusing individual objects on the slide, acquiring
images of the objects found, and segmenting objects into nuclei-
like objects. The system calculates ~100+ features for each
object, passes these features through a multi-level binary clas-
sification tree to recognize and differentiate well-segmented, in
focus single epithelial cells from overlapping cells, cell clusters,
debris, white blood cells, etc. to finally end up with a collection
of epithelial cell images and data for each slide. The imaging
system performance characteristics follow the recommendation
of the European Society of Analytical Cellular Pathology for
ploidy analysis."> A strict quality control process involving
measurements of standard targets, power measurements, and
illumination stability evaluated using statistical quality control
processes is implemented to ensure the linearity and repeatabil-
ity of the system for each analysis.'®

The system used an illumination wavelength (600 4= 5 nm)
corresponding to the absorption peak of the Thionin stain.
The effective pixel sampling within the plane of the sample
was 0.34 um and the effective pixel sampling area was
0.116 um?>. Each object (cell or debris) scanned on a slide
had 110 features calculated and stored. Each object was sub-
jected to a cell recognition algorithm (originally trained for
cervical cell recognition)!’” to differentiate cells from debris
with a subsequent quick review by an experienced cytotechnol-
ogist to ensure that only intact well-focused single cells were
used in all subsequent analyses. The review typically takes less
than 5 min to perform per slide as the automated algorithms are
~99% accurate.'” Various subsets of these cell and slide data
were used to generate the algorithms described in this study.

2.3 Selection of Training Set

Samples were divided into both training and test sets. The train-
ing set consisted of a random selection of 120 of the 144 normal
samples and 109 of the 148 abnormal samples in addition to all
77 of the confounder samples. The remaining 24 normal sam-
ples and 39 abnormal samples were set aside as the test set to
evaluate the performance of the generated algorithms.

A random selection of ~ 10, 000 cells from the over 175,000
cells making up all the cells in only the normal and abnormal
samples in the training set was used to train the cell by cell clas-
sifiers and to determine the thresholds for the frequency of cells
displaying characteristics associated with the abnormal samples.
These thresholds were then applied to all the cells in both the
training and test samples.

2.4 Data Analysis

The system measures two major aspects of all the cells it detects,
the amount of DNA within a cell’s nucleus and how that DNA is
distributed within the nucleus.'® A cell’s DNA index is a mea-
sure of the amount of chromosomal material (total DNA) within
the cell: a value of 1 indicates the normal complement of DNA
(46 chromosomes in a GO/G1 cell, or 2.9 billion base pairs);
a value of 2 indicates twice the usual amount of DNA or 5.8
billion base pairs. It should be noted that a value of 1 does
not necessarily indicate a normal complement of chromosomes,
only the presence of ~3 billion base pairs. Also the uncertainty
in the measurement (<5%, or ~150 Mega bases in an imaging
cytometry system meeting the guidelines of the ESACP)"
means that almost a full chromosome could be missing without
being detected. Cell data in the training set were divided into
boxes within discrete DNA index ranges: less than 0.9, 0.9
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to1.1,1.1t01.35,1.35t0 1.6, 1.6 to 1.95, 1.95t0 2.15, and 2.15
and higher. These DNA content ranges are a superset of those
used by Bradley et al."” and are similar to those used in earlier
studies for the classification and grouping of cells in cervical
smears and sputum samples.?*?!

The second aspect measured by the system involved features
related to how the DNA was distributed within the nucleus, fre-
quently referred to as nuclear texture analysis. These measures
capture genetic and epigenetic alterations, which are not man-
ifest as large base pair gains or losses but result in changes in the
spatial arrangement and packaging of chromosomal strands
within the nucleus. To recognize which and how large these
measured spatial arrangement changes are needed to differenti-
ate between normal and abnormal cells, for each DNA index
range a separate cell by cell discriminate function analysis
(DFA) was performed. The DFAs so generated were used to dif-
ferentiate cells in normal samples from cells from abnormal
samples in that DNA index range (see supplemental material,
Appendix A). These DNA index boxes and DFAs were applied
to all samples, and a calculation was made of the frequencies of
cells in each category defined by the combination of DNA quan-
tity and DFA. In this fashion 17 cell categories were defined
(see Fig. 1).

2.5 Statistics

The overall approach used to differentiate normal samples from
abnormal samples was to use the normal set to define ranges
that represent normal limits; samples with characteristics out-
side these values were classified as “not” normal samples. The
thresholds on the frequency of cells in these categories were
used to separate normal samples from abnormal samples in the
training set. P values for the separation between the categories
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in the training sets were determined for all cell categories and
scatter plots were made of the cell category frequencies that
had the largest separation. The appropriate cutoffs for sample
classification were heuristically evaluated from these graphs.
Once these differentiating thresholds were set, the detection
algorithms were run on all the samples. All statistical calcula-
tions, nonparametric Mann-Whitney U tests and Komogorov-
Smirnov tests and scatter plots were produced using Statistica
version 8.0 (StatSoft Inc., Tulsa, Oklahoma). A P value of
less than 0.05 was considered to be statistically significant
and a value of less than 0.005 to be highly significant.

3 Results

Figure 2 shows conventional white light and direct FV images of
the oral cavity of a normal subject, a patient with a confounding
lesion, and a patient with a CIS. In each case, a display of the
most abnormal cell images (as called by the algorithm) collected
from the brushing sample is displayed with a histogram of DNA
content for the cells along with the number of cells classified
into the 17 different cell categories. In Fig. 2(a) to 2(c), the
oral tissue looks healthy under white light and has substantial
green autofluorescence in the direct FV image. The correspond-
ing cell images and narrow histogram show normal cells of
which all are in the GO/G1 state (peak at DNA content of 1)
and are classified into the cell categories associated with normal
samples. In Fig. 2(d) to 2(f), a small white lesion is apparent
under white light with a substantial loss of green autofluores-
cence immediately surrounding the lesion in the direct FV
image. This is an example of a confounding lesion. The corre-
sponding cell images and wider histogram (larger variance in
DNA content) show normal cells of which most are in the
GO/G1 state and are also classified into the cell categories asso-
ciated with normal samples but with some indication of a small

+ Cell Group 0
1 & Cell Group 1

» Cell Group 2

» Cell Group 3

+ Cell Group 4
1 4 Cell Group 5
+ Cell Group 6
# Cell Group 7
o Cell Group 8
. Cell Group 9
1 « Cell Group 10
. m | « Cell Group 11
[] « Cell Group 12
"y = Cell Group 13
- 1« Cell Group 14

Cell Group 15
m Cell Group 16

1.0 1.5 2.0 25 3.0
DNA_Index {Normal Complement)

(b)

Fig. 1 Definition of 17 cell categories: (a) Flow diagram of nuclei classification by DNA index thresholds and discriminate function analysis (DFA); and
(b) application of this process to the nuclei in a CIS sample. In (a) all cells get divided into one of seven sets depending upon the amount of DNA
detected in each cell (seven arrows leading away from all cells at top of figure). The cells in each of these sets gets further subdivided into two to three
groups by a linear discriminate function unique to that set. See supplemental material Appendix A for a detailed description of the cell classification
process. In (b) this process is applied to all the cells in a CIS sample, i.e. the cell classification process of initially separating cells into seven sets based
upon their DNA amount, followed by the application of a DF specific to the individual DNA amount sets is applied so that each cell is assigned a DF
score. The scatter plot of the cells in the CIS sample as a function of DNA amount and DF score is shown.
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Fig. 2 Images (a), (d), and (g) show direct fluorescence visualization (FV) images of normal, inflammation and cancer, respectively. Images (b), (e), and
(h) show the corresponding white light images of the same areas. The direct fluorescence visualization image of normal tissue has substantial green
autofluorescence (a), the small white lesion under white light in (e) has substantial loss of green autofluorescence immediately surrounding the lesion
(d) and similarly the lesion in (h) has a substantial loss of green autofluorescence immediately surrounding the lesion (g). Images (c), (f), and (i) display
images of nuclei from each of the areas/lesions sampled along with histograms of DNA content. Image (c) shows a narrow histogram of cells in the GO/
G state (peak at DNA content of 1), and most of the cells are classified into the cell category associated with normal samples (group 4, black arrow).
Image (f) shows a wider histogram (larger variance in DNA content) but most cells are still in the GO/G1 state (groups 3 and 4, blue arrows) and are also
classified into the cell categories associated with normal samples, but with some indication of a small cycling cell population (cells with DNA content
of 2, group 14 and group 9, thin blue arrows). These changes are all consistent with a response to wounding or infection. In (i) the DNA content
histogram indicates there are many cells which are not part of the peak at DNA content 1 and are also classified across all the cell categories (I, groups 7
to 16, red arrow). All the cell images in (i) show abnormal cells with approximately twice as much DNA as the normal complement, large in size, a few
multinucleated cells and irregular texture.
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cycling cell population (cells with DNA index of 1.4 to 2). These
changes are all consistent with a response to wounding or infec-
tion. In Fig. 2(g) to 2(i), we can see a lesion under white light
with substantial loss of green autofluorescence in the direct FV
image. The corresponding cell images and DNA content histo-
gram indicate many cells that are not part of the peak at DNA
content 1 and with classifications across all the cell categories.
Many of the cells have large nuclei with DNA that is very irre-
gularly distributed and disorganized indicating a substantial loss
of higher order DNA and chromosomal organization. These
changes are all consistent with the significant genetic alterations
associated with oral cancer.

4 Creation of Detection Algorithms

A set of discriminate functions (DF) was developed to differenti-
ate cells in the normal samples from cells from the abnormal
samples in the training set. Cells were separated into the
seven specific DNA content ranges as defined in Sec. 2. The
DF training process was allowed to select up to seven features
from within the 110 features available using a forward stepping
feature selection process as part of the discriminate analysis,
resulting in the creation of a DF for each of the DNA ranges.
Thresholds were applied to the DF scores to subdefine cell cate-
gories within each DNA index box based upon the DF score
as shown in Fig. 1. A visual display of the 17 cell categorizing
classifications across a scatter plot of DNA index versus

discriminate function score is shown in Fig. 1. All 17 cell cate-
gories showed a significant difference between normal and
abnormal samples, with 15 of the 17 cell categories having
P values less than 0.0001 (see Table 1).

The frequency of cells classified into the 17 cell categories for
the normal and abnormal cases was further examined, and cell
categories were identified in which the frequency of cells were
sufficiently different that a simple threshold could correctly clas-
sify at least 10% of one category while misclassifying none of the
other categories. Cell categories 12 and 16 were found to classify
the most abnormal cases while misclassifying none of the normal
samples. Figure 3 is a scatter plot of the frequency of cells in each
sample of the training set for these two categories. This graph was
used to determine thresholds that separated normal samples from
abnormal samples. In other words, if the frequency of cells in
either category 12 or category 16 exceeded that cell category’s
threshold, the sample would be classified as abnormal.

Previous studies have shown that a large number of cells
were needed to define a sample as negative; however, even a
few abnormal cells (“alarm” cells) are sufficient to recognize
an abnormal sample. Automated analysis of cells from the cer-
vix and sputum (previously reported) has found that 500 to 1000
cells per case were required for robust results.?*?! From an anal-
ysis of classification results using cell categories 12 and 16
(Fig. 3), a cut-off of at least 400 cells per case yielded good
performance while minimizing the exclusion of samples due
to inadequate cell numbers.

Table 1 Difference of frequency of cells in 17 categories between normal and abnormal samples in training set cases.

Mean frequency of cells

Mann-Whitney U test

Cell category Normal Abnormal P value

Group O 0.010511178 0.018951478 0.000000
Group 1 0.037046298 0.051932432 0.000001
Group 2 0.009049679 0.01079137 0.023056
Group 3 0.52122581 0.364937292 0.000000
Group 4 0.415536047 0.50558104 0.000061
Group 5 0.002262493 0.005457832 0.000039
Group 6 0.002899732 0.007573382 0.000000
Group 7 0.000592053 0.006387156 0.000000
Group 8 1.77672E-05 0.000690558 0.021916
Group 9 3.83826E-05 0.003395318 0.000000
Group 10 2.89755E-05 0.003335587 0.000000
Group 11 6.67876E-05 0.003536433 0.000000
Group 12 5.13911E05 0.007393085 0.000000
Group 13 0.000330301 0.002830031 0.000000
Group 14 0.000318862 0.004234772 0.000000
Group 15 1.43768E-05 0.001187955 0.000007
Group 16 9.86665E-06 0.001784281 0.000000
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Fig. 3 A scatter plot of the frequency that cells occur in cell groups 12
and 16 for the samples from normal and abnormal (severe dysplasia,
CIS, and SCC) sites in the training set. These are the two best cell groups
found to differentiate between normal from abnormal samples. The
inset graph is a magnified view of the lower left corner of the main
graph. Note how all the normal samples are in the lower left corner
of the graphs.

For a sample to be classified as normal, it could not have cell
frequencies exceeding the thresholds set for cell categories 12
and 16, and it had to have more than 400 cells measured. Other-
wise the sample would be classified as inadequate. Sample ade-
quacy across the different algorithms described below varied
from 97.3% to 99%.

Initially the confounders were part of the test set. Six differ-
ent algorithms of increasing complexity (increasing numbers of
cell categories used for case classification) were created. While
all six of these algorithms generalized well in that the normal
and abnormal test sets demonstrated the same sensitivity and
specificity results as achieved in the training sets, their perfor-
mance on the confounders decreased with increasing algorithm
complexity. For the normal and abnormal sets, the sensitivity of
the six algorithms ranged from 61% to 89% with specificity
from 90% to 100%; at the same time, the specificity on the con-
founder set dropped from 89% to 48% (for detailed results
please see supplemental material, Appendix B). Initially, we
assumed that the variability within the normal training set
would be representative of that present in the normal test set
samples and confounder samples. These results suggested that
this is not a valid assumption for the confounder set possibly
because the biology that causes the tissue to be detected as a
confounder alters the fraction of cycling cells within the tissue.
This would have the effect of increasing the DNA variability
observed within the cells from these samples. It is likely that
trauma/infection/inflammation cause some fraction of the cells
in the tissue to proliferate in response to the environmental
assault. The data show that the confounder set has increased
variability over the normal set and that thresholds designed
to define the limits of normal incorrectly recognize some of
the confounders as outside normal limits.

To adjust for the poor performance on the confounders using
the above approach, the threshold selection analysis was repeated,
but the confounders were included as part of the normal training
set when setting the category thresholds. Table 2 summarizes
the results of this modification to the training. It also subdivides
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the results across the different types of confounders: trauma
(23 sites), inflammation (49 sites), and infection (5 sites).
The inclusion of the confounders in the training set improved
the results for the confounders while maintaining the accuracy
on the normal and abnormal training and test sets. Algorithm 9
correctly classifies the most samples in the test set at the same
time yielding very good performance on the confounders.

Since Algorithm 9 was intended to be used in a future pro-
spective study, its performance was examined with respect to
patient demographics including gender and smoking status.
An analysis of the data shown in Table 3 resulted in no statis-
tically significant association with these demographic variables.

5 Use of Algorithms for FV Image Interpretation

One of the possible uses of quantitative cytology (QC) is to
facilitate the correct identification of confounders encountered
with FV. FV data was available for only 307 of 369 (83%) of the
samples in this study including 140 of 158 (89%) of the abnor-
mal samples, 65 of 77 (84%) of the confounder samples, and
158 of 161 (98%) of the normal samples. Data were limited for
some categories. Only two abnormals were FV-negative (no loss
of autofluorescence apparent), only one normal was FV positive
(loss of autofluorescence apparent), eight confounders were FV-
negative and 57 confounders were FV positive. Of the 57 FV
positive confounders, only seven were also positive using Algo-
rithm 9. Thus QC recognized 88% of the confounders correctly.

There is a positive correlation between QC and FV across the
normal and confounders sets (P = 0.01). This suggests that per-
haps inflammation/infection/trauma detected by FV correlates
with slightly increased cell proliferation. Further there was no
statistical difference (P = 1.0) between the performance of
QC within the FV positive and FV negative categories with
respect to the detection of positive at-risk tissue. There was
no correlation within the abnormal training and test sets
(P = 0.8) with respect to QC and FV. Thus QC and FV appear
to behave as independent detector methodologies.

6 Discussion

In British Columbia, the Oral Cancer Prevention Program has
evaluated several oral cancer screening technologies with the
intent of implementing a comprehensive screening system
that identifies patients within community dental practices for
referral to cancer care centers. Heterogeneity in the clinical pre-
sentation of oral lesions can make their assessment challenging
even for experienced oral specialists. Such ambiguous lesions
are more frequent in a community setting than true at-risk tissue
and as there is some morbidity associated with tissue removal
from the oral cavity, clinicians can be hesitant to biopsy. As part
of the evolution of new visualization technology, the focus has
been on ambiguous lesions more likely to be seen in the com-
munity setting with conventional examination or by direct fluo-
rescence visualization. This paper describes the development of
a minimally invasive brushing based tool for detection of lesions
that require subsequent follow-up.

The data presented in this paper demonstrate how the com-
bination of DNA quantity and organization/texture features can
be used to facilitate the differentiation of lesions with severe
dysplasia and higher pathology from infection and inflammation
without requiring the presence of frankly abnormal cells, which
can be rare even in samples collected directly from the most
altered area of the lesion and are even less abundant in less selec-
tively collected samples. The approach taken in this paper was
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Table 2 Classification performance for Algorithms 7 to 9.

Site pathology

Training Test
Algorithm Normal (%) Abnormal Trauma (%) Inflammation (%) Infection (%) Normal (%) Abnormal
7 88.3 91.7% (2) 52 69 80 91.7 91.7% (1)
8 95.5 77 1% (2) 100 96 80 95.8 80.6% (1)
9 92.5 89.9% (2) 91 90 80 100 94.4% (1)

Note: Algorithm 7 uses thresholds on the frequency of cells in cell groups 0 +1+2, 3 +4, 8 +9+ 10, 11 4+ 12, 13 4+ 14, and 15 + 16 (uses DNA
Index information only). Algorithm 8 uses slightly different thresholds on the frequency of cells in cell groups 0+1+2,3+4,8+9+10, 11 + 12,
13 + 14, and 15 + 16 (thus algorithm 8 only uses DNA Index information). Algorithm 9 uses thresholds on the frequency of cells in cell groups 3 + 4,
0to 4, 6 and 9 to 16. Percentages indicate the frequency of samples correctly classified. Values in brackets are the number of samples that were found

to be inadequate for analysis.

Table 3 Algorithm 9 classification performance stratified by gender and smoking status.

Group Total Male Female Smoker Former Never

Normal 1117120 (92.5%)  45/51 (88.2%)  66/69 (95.7%)  19/23(82.6%)  28/28 (100%)  63/67 (94%)
Abnormal 98/109 (89.4%  65/68 (95.6%  33/41 (80.5%)  26/30 (86.7%) 41742 (97.6%) 3137 (83.8%)
Confounders 69/77 (86.2%) 30/34 (88.2%)  39/43 (90.7%)  17/17 (100%)  25/28 (89.3%)  27/32 (80.8%)
Normal test 24/24 (100%) 8/8 (100%) 16/16 (100%) 2/2 (100%) 4/4 (100%) 18/18 (100%)
Abnormal fest 34/36 (94.4%) 20/21 (95.2%) 1415 (93.3%) 9/9 (100%) 9/10 (90%) 16/17 (94.1%)

Note: Each ratio represents a proportion of the samples in the stratification categories that were correctly classified. Smoker denotes current smokers

and Former denotes former smokers.
*Smoking status of two cases is not known.

designed from the beginning to be robust to a less than perfectly
targeted sample acquisition, i.e., enabling it to be able to recog-
nize cells coming from patients with at-risk tissue as opposed to
cells coming from sites of infection, inflammation, and trauma
even if the brushing was not taken directly from the target tissue
but from the immediate surrounding tissue.

6.1 Comparison with Other Oral Cytology
Assessment Approaches

Genetic instability is a central hallmark of cancer.”>> Muta-
tions, LOH, and aneuploidy can all play a role in the uncon-
trolled growth of cancer. Detecting these changes to the
genome is one important way to follow the progression of can-
cer and to catch clinical cancer (cancer and its precursor lesions,
which are at sufficient risk of becoming malignant that they are
treated clinically, usually surgically) early. Aneuploidy occurs
when a cell has an abnormal chromosomal content or number.
This can arise from gain or loss of whole chromosomes or by
gross alteration of one or more chromosomes through deletions,
translocations, end to end fusions, or other events.’®?’ Poly-
somes of chromosomes 7, 9, and 17 increase as oral epithelial
tissue progresses from low risk lesions (hyperplasia) to high risk
(severe dysplasia).”®** There is a long history for the use of
DNA amount measurements as detectors of malignancy. Several
research groups have attempted to quantify the large scale
genetic instability (aneuploidy) that develops with oral tumor-
genesis as a means to assess cancer risk. Using cells dissociated
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from formalin-fixed paraffin-embedded tissue from 45 primary
oral cancer, Diwakar et al. looked at not only the ploidy status of
the oral tumors, but the consistency of the ploidy classification
across the tumor.*® Their work demonstrated that a definition of
nondiploid would correctly identify 93.3% (42 out of the 45) of
oral cancers. Researchers from Diisseldorf have combined clin-
ical cytological examination and DNA image cytometry of dis-
aggregated tissue to differentiate high risk oral lesions (severe
dysplasia, CIS, cancer) from normal tissue in one study! and
in a separate study to assess the risk of cancer in confound-
ing lichen planus lesions.*> Using this combined cytological/
cytometric method, they reported a very encouraging sensitivity
of 100% and a specificity of 97.4% for high risk lesions that
were either DNA-aneuploidy, or cytologically suspicious.!
Furthermore, only 2 of 56 lichen planus were positive, and
these were shown to have an SCC component in complete agree-
ment with their histological findings. While this approach
showed high sensitivity and specificity, the heavily manual
aspects (pathology expertise) limits the high throughput needed
to be clinically relevant. In both of these studies, oral epithelial
cells were obtained by targeted brushing, then stained, and
graded by a pathologist. The DNA level was then quantified
on those samples deemed visually suspect using computer-
based image cytometry. In addition when Pektas et al. tried
to duplicate this approach, using a manual cytometric DNA
image analysis system coupled to expert clinical cytological
assessment, only 16.7% of malignant oral lesion samples col-
lected by cytobrushing were classified as aneuploid,* indicating
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that the sensitivity of this form of combined analysis can be
quite variable.

In contrast, our high throughput automated image processing
system requires very little human interaction, making it possible
for a single operator to assess many samples daily while main-
taining a performance similar to that reported by other groups
that required input from skilled clinical specialists to perform the
analysis.

6.2 Use of DNA Organization to Assist in
Sample Classification

To maximize the diagnostic information available beyond that
available in the DNA index from the cytological samples, algo-
rithms were developed that differentiated between normal
cycling cells and cells altered as part of the neoplastic process
as described previously. This approach, which is based upon the
direct detection of genetic and epigenetic alterations in the DNA
within nuclei, has been accomplished through the use of mea-
sures of nuclear DNA organization as recorded through image
texture features. Specifically, these algorithms attempted to
glean such further discriminating ability from the measured
cells by calculating linear discriminate functions (LDF) for
each DNA range to differentiate between cycling and aneuploid
cells. Similar to most epithelial tissue, the oral cavity has a high
enough tissue renewal rate that the presence of cells in non GO/
Gl states is not a rare event. As part of the neoplastic develop-
ment process, cells can acquire inheritable alterations, which
alter their DNA content such that it is discernibly more than
that of G2/M cells, making them easily identified as abnormal
cells. It is the altered cells without such frank DNA changes that
are challenging to recognize. If one can differentiate between
cycling cells and true aneuploid (abnormal) cells increased sam-
ple classification is possible. Our LDFs made use of five to
seven features selected from the over 100 available; generally
the selected features contained one or two nuclear shape features
with the rest being texture features that quantify the appearance
of the DNA within the nuclei. Specifically these features
describe  DNA organization deregulation (hyperchromasia)
associated with molecular and genetic alterations involved
with the neoplastic process at the cellular level.

This is the first time that nuclear hyperchromatism as quan-
tified by DNA texture measures has been integrated into the
interpretation of oral cytology. Others have shown that increased
proportion of heterochromatin condensation is a high-risk
nuclear characteristic for cancer.”® Our previous quantitative his-
tology work showed that the quantification of the many facets of
heterochromatin condensation and hyperchromatism is predic-
tive of cancer development and is strongly associated with
genetic level alterations within oral tissue.>”** Thus it was
not unexpected that the training process for the LDFs resulted
in the selection of features that are known to be measures of
nuclear hyperchromasia.

This approach can differentiate between oral brushing sam-
ples from normal and abnormal sites even when the sampling is
not directly targeted to only the area that an experienced oral
specialist would select. It is robust to even include cells from
the immediate surrounding tissue, such as those a clinician
who is infrequently exposed to oral lesions might select. For
brushing cytology samples collected only from the area selected
by an experienced oral specialist and hence not diluted by the
surrounding normal cells one would reasonably expect the
system to perform even better.
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The performance of the final algorithm while validated on the
normal and abnormal test sets has not been validated on a con-
founder test set. This work needs to be reproduced in an inde-
pendent test set. Such studies would be strengthened if they
occurred in dental practices with dental health professionals
as screeners. An efficient way to evaluate this next step
would be to use QC in high-risk community settings, where
cancer and dysplasia rates are known to be elevated, such as
in communities characterized by high frequencies of habit
usage and low socioeconomic status. Confounders are also
high in such settings making cancer detection more difficult
but making such a setting an excellent place for validation.
An ongoing study is running in this setting to further evaluate
the value of QC. Initial results on a subset of 20 cases of these
confounding cases (confounder test set) achieved essentially the
same results as shown in Table 2 for Algorithm 9.

6.3 Combining Macroscopic and
Microscopic Imaging

An important aspect of this study is that it demonstrates that the
layering of clinical evaluation of the oral cavity using wide-field
white light and/or FV with image cytometry of approximately
targeted brushings can differentiate reactive and inflammatory
conditions from true at-risk tissue (Fig. 2). In a clinical practice
setting one initially uses a wide-field examination (conventional
white light and/or fluorescence visualization) followed by a point
sampling methodology (currently biopsy). The technology intro-
duced here is a bridge in that it is not an invasive biopsy proce-
dure but does acquire some cellular material for interrogation.
The morbidity associated with brushing is minimal. As such it
will be better tolerated in the dental practice setting and is emi-
nently amenable to practice as a high throughput low-cost plat-
form. This is exactly how this same platform is being used for
cervical screening in resource-limited settings such as China®
where it has been used to screen more than 400,000 women.

A separate but related benefit associated with QC is that it is
readily scalable so it can handle a potential increase in referral of
confounding lesions such as might occur with the introduction
of a new wide field screening methodology such as FV. A stra-
tification of the results presented here by FV status showed no
difference in the ability of the QC to detect at risk tissue appro-
priately in the absence or presence of fluorescence loss
(P = 1.0). These data support the potential utility of the coupled
use of FV and automated image cytometry for the detection of
oral cancer. As such it is not intended to replace biopsy for the
obvious neoplastic high-risk tissue. We envisage its primary
usage in allowing dentists to query if the ambiguous lesion is
at-risk. The data suggest that QC could reduce by more than
85% the number of lesions required to go forward to further
assessment by biopsy.

In summary, opportunistic screening that takes place within a
routine dental check-up is widely considered the most cost-
effective screening strategy. However, correctly identifying
and classifying oral lesions, especially when inflamed, is diffi-
cult even for trained pathologists.*® Our data suggest that a high-
throughput automated cytological image analysis system, based
on targeted brushing of suspect lesions, could be an efficient and
effective second step in a comprehensive screening program,
directing the high risk patient populations to appropriate care
while not necessitating a large number of biopsies. Such an
approach could facilitate the widespread use of opportunistic
screening to effectively manage oral cancer.
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Appendix A: Cell by Cell Classification By DNA
Index Range and Discriminate Functions

Approximately 10,000 cells at random from the over 175,000
cells making up all the cell data in only the normal training
and abnormal training samples were selected to be used to
train the following cell by cell DFA classifiers. These 10,000
cells were subdivided into seven sets with discrete DNA
index ranges: less than 0.9 (set 1), 0.9 to 1.1 (set 2), 1.1 to
1.35 (set 3), 1.35 to 1.6 (set 4), 1.6 to 1.95 (set 5), 1.95 to
2.15 (set 6) and 2.15 and higher (set 7). Each of these sets
contains cells from normal samples and cells from abnormal
samples spanning the training sample set. For each of these
seven cell sets a forward stepping feature selection as part
of a linear discriminate function analysis was performed to
differentiate the cells from normal samples from cells from
abnormal samples. While the number of cells available is
large, we limited the number of features allowed to be in the
discriminate function by selecting large F to enter and F to
remove values to reduce the possibility of over training. The
F value for a variable used in a step wise analysis indicates
its statistical significance to discriminate between the groups;
it is a measure of the extent a variable could make a unique con-
tribution to the prediction of group membership. The actual fea-
tures included in each discriminate function for the seven DNA
ranges are listed below along with a brief description of the
features used (see Refs. 18 and 37 for more complete feature
descriptions).

A1 Set 1 DFA Results (Applied to Cells with DNA
Amount Less than 0.9)

Eight cell features were combined in a linear discriminate func-
tion (DF) to score the cells into normal or abnormal categories:
Elongation (shape feature), Harmon06_fft (shape feature, size of
6th harmonic from a fast Fourier transform, fft, of nucleus radius
as function of angle), DNA_Index (amount of DNA in cell), OD
variance (variance of OD of pixels in nuclei), hiDNAamount
(fraction of DNA in very condensed state in nucleus), Low
av dst (average distance from nucleus center of noncondensed
DNA), Correlation (cooccurrence matrix feature measuring
intensity correlation of adjacent pixels in nucleus) and fractal
dimension (measure of DNA texture). The range of the DF
scores for the cells was divided into three parts so that the
DF subdivided the cells in set 1 into 3 cell categories (0, 1,
and 2).

A2 Set 2 DFA Results (Applied to Cells with DNA
Amount from 0.9 to 1.1)

Seven cell features were combined in a linear discriminate func-
tion (DF) to score the cells into normal or abnormal categories:
OD skewness (skewness of OD of pixels in nuclei), mhDNA
amount (fraction of DNA in condensed state in nucleus),
cl_shade (cooccurrence matrix feature measuring degree of cor-
relation of adjacent pixels in nucleus), Den_drk_Spot (number
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of dark spots in nucleus/area of nucleus), Fractall_area (see
Ref. 18), Min_long _runs (see Ref. 18), and Min_gray_level
(see Ref. 18). The range of the DF scores for the cells was
divided into two parts such that the cells in set 2 were subdivided
into two cell categories (3 and 4).

A3 Set 3 DFA Results (Applied to Cells with DNA
Amount from 1.1 to 1.35)

Five cell features were combined in a linear discriminate func-
tion (DF) to score the cells into normal or abnormal categories:
Harmon03_fft (shape feature, size of 3rd harmonic from the fft
of nucleus radius as function of angle), DNA_Index (amount of
DNA in cell), OD maximum (maximum OD of pixels in nuclei),
hiDNAarea (fraction of area of nucleus in which the DNA is in
very condensed state), and Den_drk_Spot (number of dark spots
in nucleus/area of nucleus). The range of the DF scores for the
cells was divided into three parts so that the DF subdivided the
cells in set 3 into three cell categories (5, 6, and 7).

A4 Set 4 DFA Results (Applied to Cells with DNA
Amount from 1.35 to 1.6)

Five cell features were combined in a linear discriminate
function (DF) to score the cells into normal or abnormal cate-
gories: Freq_high_fft (shape feature-measure of small irregula-
rities in nuclear border, sum of the amplitudes of the higher
harmonics from fft of nucleus radius as function of angle),
OD variance (variance of OD of pixels in nuclei), Contrast
(cooccurrence matrix feature measuring intensity of contrast
between adjacent pixels in nucleus), Fractal2_area (see
Ref. 18) and Min_short_runs (see Ref. 18). The range of the
DF scores for the cells was divided into three parts so that
the DF subdivided the cells in set 4 into three cell categories
(8, 9, and 10)

A5 Set 5 DFA Results (Applied to Cells with DNA
Amount from 1.6 to 1.95)

Five cell features were combined in a linear discriminate func-
tion (DF) to score the cells into normal or abnormal categories:
Compactness (shape feature measuring closeness of nucleus
shape to a circle), HarmonQ7_fft (shape feature, size of 7th har-
monic from fft, of nucleus radius as function of angle), DNA_
Index (amount of DNA in cell) cl_shade (cooccurrence matrix
feature measuring degree of correlation of adjacent pixels in
nucleus) and size_txt_orientation (degree of orientation polari-
zation of the intensity changes in the nucleus).

The range of the DF scores for the cells was divided into two
parts such that the cells in set 5 were subdivided into two cell
categories (11 and 12).

A6 Set 6 DFA Results (Applied to Cells with DNA
Amount from 1.95 to 2.15)

Five cell features were combined in a linear discriminate func-
tion (DF) to score the cells into normal or abnormal categories:
Elongation (shape feature measuring ratio of major axis divided
by the minor axis of an ellipse fit to the nucleus), Harmon03_fft
(shape feature, size of 3rd harmonic from fft, of nucleus radius
as function of angle), medDNAamount (fraction of DNA
between a condensed and noncondensed state in nucleus),
Correlation (cooccurrence matrix feature measuring intensity
correlation of adjacent pixels in nucleus) and cl_prominence
(cooccurrence matrix feature measuring degree of correlation
of adjacent pixels in nucleus).

August 2012 « Vol. 17(8)



MacAulay et al.: High throughput image cytometry for detection of suspicious lesions. . .

Table 4 Classification of Samples Algorithms 1 to 6.

Site pathology

Training Test

Algorithm Normal (%) Abnormal Normal (%) Abnormal Confounders
1 98.5 77.5% (4) 96.2 61% (2) 88.7% (3)
2 90.1 87.4% (4) 96.2 71% (2) 75.8% (3)
3 98.5 78.2% (5) 96.2 75.6% (2) 88.7% (3)
4 95.6 85.8% (2) 96.2 80.5% (2) 58.4%

5 96.3 82% (3) 100 80.5% (2) 74.6% (2)
6 93.3 89.4% (2) 92.3 87.8% (2) 47 .6%

The range of the DF scores for the cells was divided into two
parts so that the DF scores could be used to subdivide set 6 into
two cell categories (13 and 14).

A7 Set 7 DFA Results (Applied to Cells with DNA
Amount Greater than 2.15)

Five cell features were combined in a linear discriminate func-
tion (DF) to score the cells into normal or abnormal categories:
Mean_radius (shape feature measuring average radius of the
nucleus), HarmonO6_fft (shape feature, size of 6th harmonic
from fft of nucleus radius as function of angle), lowDNAcomp
(compactness, perimeter/area, of DNA in a noncondensed state
in nucleus), lowVSmedDNA (ratio of DNA in noncondensed
state versus DNA between a condensed and noncondensed
state in nucleus) and center_of_grav (difference between geo-
metric center based only on nuclear shape and center of mass
of the DNA in the nucleus).

The range of the DF scores for the cells was divided into two
parts so that the cells in set 7 were subdivided into two cell cate-
gories (15 and 16).

Once all these discriminate functions were trained on the
10,000 cells selected from the training cases they were applied
to all cells in all samples classifying the cells from each case into
one of the 17 cell categories. The frequency of cells in these
categories was then used to classify the individual samples.

Appendix B: Case by Case Classification
Algorithms

The results for the first six algorithms are shown in Table 4.
Algorithm 1 uses thresholds on the frequency of cells in cell
groups 12 and 16. Algorithm 2 uses thresholds on the frequency
of cells in cell groups 12, 13, and 16. Algorithm 3 uses thresh-
olds on the frequency of cells in cell groups 11 4+ 12 and 15 +
16 (thus uses DNA Index information only). Algorithm 4 uses
thresholds on the frequency of cells in cell groups 3, 4, and 8 to
16. Algorithm 5 uses thresholds on the frequency of cells in cell
groups 8 + 9+ 10, 11 + 12, 13 4 14, and 15 + 16 (uses DNA
Index information only). Algorithm 6 uses thresholds on the fre-
quency of cells in cell groups 0, 3, 4, and 8 to 16. Percentages
indicate the frequency of samples correctly classified. Values in
brackets are the number of samples that were inadequate for
analysis.
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