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Abstract. Iterative polynomial fitting along image rows and
columns has recently been used to remove curvature bias in
multispectral image sets of the human forearm and phan-
toms. However, this method is only applicable if foreground
and background features satisfy strong separation condi-
tions. In this method, we verify that the iterative polynomial
approach converges toward bivariate polynomial fitting,
and, hence, the resulting fit corresponds to low-pass filtering
the image. In contrast to the iterative fitting, the bivariate
polynomial fit can be performed on images with missing
or excluded parts. Indeed, our observation enables us to
modify the scheme and significantly weaken the required
assumptions on foreground/background separation allowing
a wider range of application. © 2013 Society of Photo-Optical
Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.18.10.100503]
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Modern biomedical research relies on mathematical tools to
process and analyze the acquired data. Therefore, it is important
to fully understand the data analysis approaches and to provide
proper interpretation of each processing step. Here, we shall
analyze and improve a recently proposed analysis scheme.
Intensity measurements in noninvasive, noncontact imaging
can be curvature biased due to the object’s shape. Image correc-
tion is necessary to enable quantitative physiological measure-
ments and several attempts to assess shape and curvature have
been proposed.'>** Kainerstorfer et al. developed in Ref. 5, a
numerical scheme to remove curvature bias without measuring
the object’s shape directly. The approach is based on assump-
tions on the separation of the physiological signal and the back-
ground component. Data correction is proposed through
iterative averages of univariate polynomial fits of image rows
and columns. This computational scheme is also applied in
Refs. 6 and 7. Although polynomial fitting and averaging
may have some smoothening effects, the separate application
to rows and columns does not allow any direct interpretation
of the fitting by means of standard low- or high-pass filtering.
The aim of this method is to better understand the proposed
scheme in Ref. 5 from a signal and image processing point
of view and to perform some modifications that enable
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significantly wider applications. Indeed, we shall propose a
replacement with a simpler, faster, and more intuitive scheme
that allows for immediate interpretation of its effects on the
data. Our contribution enables modifications of the scheme that
allow to significantly weaken the required assumptions on the
separation of background and physiological signal.

More precisely, the approach proposed in Ref. 5 fits each
horizontal and vertical pixel line to one-dimensional (1-D) poly-
nomials. Outcomes are then averaged pixelwise and the fits are
repeated. Iterations are stopped after a fixed number of steps. In
this article, we mathematically verify that the scheme converges
toward a standard two-dimensional polynomial fit of the under-
lying image. Thus, we do not need any iterations and have
a proper interpretation of the fitted image as the bivariate poly-
nomial fit corresponds to a spatial low-pass filter. Moreover, using
irregular grids, we can now additionally perform the scheme
when parts of the image are missing or need to be excluded
from the analysis. For instance, if regions of interest can be spa-
tially separated from the background parts as in Ref. 8, then the
use of irregular grids can greatly reduce inaccuracies. Such mod-
ifications are not possible using the scheme in Ref. 5.

We shall introduce a few mathematical concepts helpful to
our further analysis. The fitting scheme in Ref. 5 is then formu-
lated using these concepts.

Letu = [u(x;),...,u(x,)]" € R" be adata vector at the loca-
tions (x j)?:l C R. Suppose that we want to fit u by a polynomial
of degree k. This can be formulated as the least-squares problem

min |lu — Xal?,
aeR/H»]

where a = (a;)i_, € R**! is the coefficients of a polynomial

p(x) = 5:0 a jxf and X denotes the Vandermonde matrix of

(xj);.’zl, so that

p(x1) Doxy e o
: =Xa, X=|1: Sl @M
p(xn) 1 Xn Xﬁ

We implicitly suppose that  is bigger than k and that (x j);l:l
is chosen in sufficient general position such that the columns of
X are linearly independent. The minimizer a satisfies the normal
equation X"Xa = X u and is given by & = X'u, where X' :=
(XTX)™'XT is the pseudoinverse of X. Thus, the term XX u =
Xa is the polynomial least-squares fit.

To discuss bivariate polynomial fitting, we need to introduce
the Kronecker product A®B of two matrices A € R%1*% and
Be R4 je. for A= ((x,-.j)’.j we define the block-matrix
AQGOB = (a,«,jB)i’j € R44xd:ds The relations

(AOB)" = ATOB', (AGB)(COD) = (AC)O(BD)  (2)

hold, where C and D are the matrices with compatible dimen-
sions, i.e., C € R%Xds gnd D € Ré+xds,

Next, we apply the Kronecker product to describe bivariate
polynomial fitting. An arbitrary bivariate polynomial p of total
degree (k, 1) in the unknowns x and y can be written as

k
pey) =Y aixyl,

I
i=0 j=0
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where a;; is the coefficients. Given a data matrix u(x;,y;)
on a grid (x;,y;) for i=1,...,n and j=1,...,m, the
associated bivariate Vandermonde matrix is Z = XQY,
where X and Y are the underlying univariate Vandermonde
matrices of size nx (k+ 1) and m X (I 4 1), respectively.
We flatten the data matrix u(x;,y;) into a vector u=
(4103 ) (X1 Y ) 163,31 45y )T ER. Fitting
a bivariate polynomial of degree (k,I) to the data matrix
u(x;,y;) can be expressed in terms of ZZ'u. If E,, denotes
the m-dimensional identity matrix, then using Eq. (2) yields

Z7Z u=(XX OE,)(E,OYY )u. 3)
By denoting u; = [u(x;,¥,),...,u(x;,y,)]", we obtain
YYTu,
(E,0YY u= , 4)
YY'u,

which means that we fit univariate polynomials of degree / to
each row of the data matrix [u(x;,y;)]; . The decomposition
of the bivariate polynomial fit in Eq. (3) allows us to take the
univariate fit of the rows in Eq. (4) as a new data matrix and
fit univariate polynomials of degree k to the columns. This yields
the bivariate polynomial fit ZZ"u of degree (k,[) in Eq. (3).

The iterative curve fitting scheme in Ref. 5 fits polynomials
of degree k to the columns of the original data matrix. It then fits
polynomials of degree [ to the rows of the original data matrix.
The column fit and row fit are averaged pixelwise resulting in a
new data matrix, in which the scheme is repeated. Few iterations
seem sufficient to derive visually acceptable results. To state the
iterative fitting scheme in mathematical terms, we shall use the
pseudoinverse and the Vandermonde matrices X € R"**+1) and
Y € R™(+1), Performing one iteration is represented by the
application of the matrix

1
L :E[(XXT(DEm) +(E,0YY")]. ®)
By using the relations XXTXX" = XX" and YY'YYT = YYT,

which can be deduced from the definition of the pseudoinverse,
we obtain for the second and third iterations

1 . .
L*u= 3 [(XXTOE,,)Lu+ (E,0YY")Lul
1 1
= ;[(XXTOE, Ju+ (E,0YY")u] + 5 (XX")O(YY")u,
1
Lu= 3 [(XXTOE,)u+ (E,0YY)u]

+ GJF%) (XXHO(YY)u.

After r iterations we end up with

1
L'u=; (XXTOE,)u+ (E,0YY)u]
r—1
‘ 1
+ (Z 2—1> (XXNO(YY")u=Zu+ = (Lu — Zu).
j=1

Hence, L" converges towards Z when the number of iterations r
tends to infinity. Since the deviation ||L" — Z|| = 5L [|L — Z||
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decreases exponentially in r for any matrix norm || - ||, the
term L"u rapidly approximates Zu. In other words, the iteration
proposed in Ref. 5 essentially leads to a bivariate polynomial fit
of the data matrix after few iterations already. Bivariate polyno-
mial fits are associated with the low-pass filtering of the image.

As we have understood that iterative polynomial fitting
essentially acts as a low-pass filter, we can now explicitly settle
the assumptions needed in Ref. 5 for an accurate image curva-
ture correction. The approach is based on the separation of the
physiological foreground signal and the background compo-
nent. It was mentioned in Ref. 5, that the background is sup-
posed to induce higher intensity values than the physiological
features in the foreground, so that the background dominates
the polynomial fitting. Moreover, the foreground must corre-
spond to higher frequency components in the image, so that
the low-pass filtering captures the background and avoids the
foreground. If one of the two assumptions is violated, then inac-
curacies can occur.

Often, physiological features may lead to intensity values
that are dominating the background, so that the assumptions
in Ref. 5 are violated. If features can be separated spatially
from the background and cover only a relatively small area
of the image, for instance, if features are in the image center
only, then our analysis in the previous section becomes useful
because it suggests some advantageous modifications. The iter-
ative fitting proposed in Ref. 5 requires a regular pixel grid.
In contrast to the iterative fitting, the bivariate polynomial
approach can also be performed on irregular grids, i.e., the
pixel grid of an image, in which we removed some pixel areas.
The use of irregular pixel grids is beneficial when the physio-
logical features are spatially well separated, so that they can be
excluded (masked) from the image. Foreground features can
have dominating intensity values, but the bivariate polynomial
is determined by the irregular grid that avoids those physiologi-
cal parts. The computed bivariate polynomial can be evaluated at
all pixels of the image, including the masked ones. If the back-
ground corresponds to low-frequency image components, then it
will also be well approximated by this bivariate polynomial at
the masked pixels. Therefore, the polynomial fitting on irregular
grids can increase accuracy, especially when measurements are
needed to provide quantitative physiological information.

Next, we illustrate our findings by providing some numerical
results that are, in fact, numerical examples of the theory out-
lined in the previous section. We shall verify the advantage of
our proposed fitting on irregular grids on some simulated inten-
sity measurements. In our example, both assumptions of the
iterative polynomial fitting are violated. The intensity values of
the foreground dominate the image and the spatial variation is
smaller than the background. As the foreground covers only a
relatively small part of the image in Fig. 1, our proposed method
for irregular grids can be used. We choose the polynomials
degree as 7. The mean intensity of the background is =6.9
and the signal has constant intensity ~14.6. The iterative fitting
necessarily applied to the entire image yields pixels with errors
up to ~6.1, which is a relative error wrt the maximal intensity
of ~41.5%. For the bivariate fit, we first mask the signal area,
hence compute a bivariate polynomial using only unmarked pix-
els, and then evaluate this polynomial at the entire pixel grid
including masked pixels. This approach yields pixel errors up
to ~0.9, which is a relative error wrt the maximal intensity
of <6.1%. Hence, as suggested by our theoretical results, if
certain signal-to-background separations are not satisfied, then
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Fig. 1 Background extraction in simulated intensity measurements. We simulate intensity measurements for a 100 x 100 pixel image, in which physio-
logical features violate the assumptions discussed. Foreground intensities are maximal within the image. “Physiological features” are spatially well
separated in the image center. The iterative polynomial fitting in Ref. 5 can only be applied to the entire image, so that the foreground cannot be
masked. Therefore, background extraction and hence curvature correction in the end suffer from distortions caused by the dominating physiological
features. When we mask the foreground, then we are left with an irregular pixel grid but can use our proposed bivariate polynomial fitting. We observe
that the use of irregular grids enables us to recover the background, visually indistinguishable from the original simulated background. In fact, pixelwise
inaccuracies are below a threshold of 0.3, where original intensities run between 0 and 15. (a) Background simulation of intensity measurements,
where physiological features appear as the dark red bar, having maximal intensity values. Axes labels correspond to pixel counts. (b) Iterative poly-
nomial fit as proposed in Ref. 5 acts on the entire image. Background extraction suffers from inaccuracies that would also lead to inaccurate curvature
correction. (c) When physiological features are masked, then the polynomial fit on the irregular grid yields almost perfect background recovery.

iterative fitting can cause inaccuracies that can be avoided by
using irregular grids.

Although several methods to assess the shape and curvature
of objects have been proposed in the biomedical field, the indi-
rect curvature correction based on a computational model and
the abandonment of additional measurements in Ref. 5 clearly
has some benefits.

We have verified that the iterative curve fitting used in Ref. 5
for curvature correction in multispectral image sets converges
toward standard bivariate polynomial fitting of the images.
Bivariate polynomial fits are associated with the low-pass filter-
ing, so that our analysis enabled a proper interpretation of this
scheme. Moreover, no iterations are needed, so that we were
able to simplify the computational approach. If iterations run
up to k, then our simplification is k times faster, but runtime is
not an issue in either case, because 1-D polynomial fits can be
computed quickly. The gain of our analysis is that it enabled us
to modify the scheme and weaken the required assumptions for
successful curvature correction. The authors in Ref. 5 needed
two assumptions on the separation between foreground and
background. It is assumed that background intensities dominate
intensities from physiological features, so that the iterative fit-
ting is driven by the background. Moreover, background needs
to correspond to the lower-frequency and foreground to the
higher-frequency components. Such assumptions may not
hold in many types of optical measurements. Often though,
the curvature correction based on the iterative fitting still yields
a decent qualitative outcome.>® If measurements are needed to
provide quantitative information and one of the assumptions is
violated, then the proposed iterative polynomial fitting in Ref. 5
causes inaccuracies and needs to be replaced with more
advanced and computationally more expensive tools.

By using our new derivations, we can weaken the required
assumptions for curvature correction, in particular, the signal-to-
background ratio is not required to be small as long as the signal
covers only a small spatial area. The iterative curve fitting in
Ref. 5 requires a full image, so that pixel locations form a regular
grid. The bivariate polynomial fit can be performed on any type
of irregular grid. For instance, the assessment of certain types of
skin cancer through multispectral imaging deals with the small
patches of target signals.® Cancer area may absorb strongly
in certain wavelengths matching the required signal-to-back-
ground ratio, but wavelengths with low absorbance of the target
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area and hence higher image intensities do not match the
requirements. Then, the cancer area can be excluded from the
fitting and the remaining shape can be fitted through the bivari-
ate polynomial approach. Thus, our modification increases the
applicability of the polynomial fitting approach.

We have illustrated the potential of bivariate polynomial fits
improving accuracy for simulated intensity measurements. We
must mention though that bivariate polynomial fitting on irregu-
lar grids is computationally more expensive and can even lead
to numerical instabilities with growing grid sizes. Nonetheless,
as image processing is usually performed off-line, the increase
in accuracy may outweigh the growing runtime. Taking care
of stability issues for the larger irregular grid sizes goes beyond
the scope of the present article, and so we refer to standard
textbooks in numerical analysis. Despite the increase in runtime,
our results enable a weakening of required assumptions for
the curvature correction that is useful for a larger field of
applications.
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