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Abstract. Label-free Raman microspectroscopy combined with a multivariate curve resolution (MCR) analysis can
be a powerful tool for studying a wide range of biomedical molecular systems. The MCR with the alternating least
squares (MCR-ALS) technique, which retrieves the pure component spectra from complicatedly overlapped spectra,
has been successfully applied to in vivo and molecular-level analysis of living cells. The principles of the MCR-ALS
analysis are reviewed with a model system of titanium oxide crystal polymorphs, followed by two examples of in
vivo Raman imaging studies of living yeast cells, fission yeast, and budding yeast. Due to the non-negative matrix
factorization algorithm used in the MCR-ALS analysis, the spectral information derived from this technique is just
ready for physical and/or chemical interpretations. The corresponding concentration profiles provide the molecular
component distribution images (MCDIs) that are vitally important for elucidating life at the molecular level, as stated
by Schroedinger in his famous book, “What is life?” Without any a priori knowledge about spectral profiles, time-
and space-resolved Raman measurements of a dividing fission yeast cell with the MCR-ALS elucidate the dynamic
changes of major cellular components (lipids, proteins, and polysaccharides) during the cell cycle. The MCR-ALS
technique also resolves broadly overlapped OH stretch Raman bands of water, clearly indicating the existence of
organelle-specific water structures in a living budding yeast cell. © The Authors. Published by SPIE under a Creative Commons
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1 Introduction
Raman microspectroscopy, Raman spectroscopy under a micro-
scope, is now widely used in molecular-level investigations in
various fields of bioscience and biotechnology.1–5 It is now well
established as a strategic analytical tool in these fields. From its
nature, Raman spectroscopy does not require any sample pre-
treatment such as dye labeling or genetic manipulation and is
low invasive. It is therefore highly suitable for in vivo analysis
of living cells. For example, it possesses a high potential in low-
invasive screening of living cells in regenerative medicine,
where the safety in the re-use of screened cells is the most cru-
cial issue. With sub-μm spatial resolution, Raman microspectro-
scopy provides space-resolved information on a molecular
structure and their distribution inside the cell. In the past two
decades, a number of publications have shown the successful
application of Raman microspectroscopy to label-free molecu-
lar-level analysis of living cells and to discrimination of cell
types.6–23

Although Raman spectra contain rich information on
molecular structure, detailed interpretation of measured spectra
is often difficult because of their complexity. Each Raman

spectrum obtained from space-resolved mapping measurements
is usually interpreted as a superposition of several spectral
components of biomolecules, as well as a background and
fluorescence. In order to decompose the complicated spectra
into tractable component spectra, a number of chemometric
methods have been developed and applied to the analysis of
Raman spectra and images. Cluster analysis (CA) is one of
the widely used decomposition methods.9,24–28 With the CA
method, by statistically analyzing the spectral variations, distinct
subsets of similar spectra are obtainable. It has been applied
to diagnostic tissue discrimination24 and subcellular structure
imaging.9 In the CA method, the number of clusters is impor-
tant.27,28 A small cluster number may result in false allocation of
some raw spectra. A large number of clusters are often needed
to achieve a relevant segmentation, which complicates the inter-
pretation. Principal component analysis (PCA) is also widely
used.25,27–31 This method gives an orthogonal set of dominant
spectral components, called principal components (PCs), as a
result of matrix factorization. Each spectrum of original data
can be expressed as a linear combination of PCs. PCA method
has also been proved useful for the construction of molecular
images from decomposed spectral component1,31,32 as well as
for the discrimination of tissue or cell types.2,13,33,34 However,
physical bases of this method are rather obscure; the PCs exhibit
positive and negative values, thus the physical meanings of
decomposed spectral components are not clear just as they are.
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Recently, the multivariate curve resolution-alternating least
squares (MCR-ALS) method, also known as self-modeling
curve resolution or non-negative matrix factorization,35 has
been developed and applied to the spectral decomposition of
Raman spectra.25,29,31,36–41 It has also been exploited in many
kinds of spectroscopy, high performance liquid chromatogra-
phy,42,43 gas chromatograph/mass spectrometry,44 UV-VIS,45

near-infrared,46,47 FT-IR,48,49 fluorescence imaging,50 etc. In
the MCR method, the experimental data is approximated by
a linear combination of several spectral components.51,52 The
decomposition of superposed spectral data sets is done with
ALS calculation, under appropriate model constraints, such
as non-negativity of spectral profiles and their concentrations.
Due to these constraints, this method easily provides physically
interpretable spectral components, without any a priori informa-
tion on chemical components in the sample specimen such as a
living cell. Using this advantage, we have successfully applied
the MCR-ALS method to the analysis of molecular component
distribution imaging (MCDI) in living cells, whose raw spectra
contain a number of unknown spectral components and are hard
to interpret without a priori information. We have developed an
in-house software for the MCR-ALS of numerous Raman spec-
tral data. In the following, we first show the capability of the
MCR-ALS method by using a model system consisting of
two different types of crystal polymorphs of titanium oxide
(TiO2), anatase and rutile. MCDI of TiO2 polymorphs is suc-
cessfully obtained. Then, we show the MCR-ALS analysis of
the time- and space-resolved Raman spectra of a dividing fission
yeast cell. Unexpected dynamic changes of major cellular
molecular components (lipids, proteins, and polysaccharides)
during the cell cycle have been elucidated. Finally, we show
the results of the study of intracellular water in a living budding
yeast cell. We have successfully resolved so far unknown
organelle-specific water structures by the MCR-ALS method.
Highly important and otherwise unobtainable MCDI informa-
tion has thus been obtained for the two living cell systems
in vivo.

2 Method
In the MCR, the experimental data is approximated by a linear
combination of several spectral components. In the matrix form,
this approximation can be written as

A ≈WH; (1)

where A is an experimental data matrix of spectra acquired at
different measuring points, written as

A ¼

0
BB@

a11 a12 : : : a1n
a21 a22 : : : a2n
..
. ..

. . .
. ..

.

am1 am1 : : : amn

1
CCA;

where m is the number of data points per spectrum along with
the wavenumber axis and n is the number of spectra in the whole
data set. A is decomposed to m × k matrix W, whose columns
represent pure component spectra, and k × n matrix H, whose
rows represent the intensity profiles of individual corresponding
spectral components. k is the number of underlying constituents,
which should be set a priori by the user or estimated by singular
value decomposition (SVD) or PCA. In an MCR analysis,
W and H are usually obtained by iterative refinement with

MCR-ALS so that the Frobenius norm jjA −WHjj2 is mini-
mized, under the non-negativity constraints W ≥ 0 and
H ≥ 0. These constraints come from the fact that, in physical
terms, Raman spectra and their concentration profiles must
be non-negative. Unlike other factorization methods such as
SVD and PCA, the MCR-ALS does not require the orthogon-
ality of each component but only requires their non-negativity.
This results in the advantage of MCR-ALS providing solutions
that are more straightforward to interpret.

In practice, the initialization method and the additional con-
straints should be determined in advance. Several initialization
methods are proposed.25,53–57 For example, the initial guess of
the matrix W or H can be determined by random non-negative
values, by an SVD-based manner, or SIMPLISMA. The number
of components, k value, is determined by a priori information of
the sample species or is estimated by the number of dominant
singular values from an SVD analysis. The initialization method
should be appropriately chosen by the variance of spectral data
set and/or signal-to-noise ratio. In order to attain sufficient
decomposition ability, in addition to non-negativity constraints,
further constraints for ALS optimization can be helpful.58,59

When ill-conditioned or singular W are given, where W con-
tains similar spectral components, then H can be easily affected
by the noise of raw data A, even though the optimization of
Eq. (1) is achieved. Additional constraint terms can be applied
to the ALS optimization; (jjA −WHjj2 þ jjΓHjj2) is minimized
instead of jjA −WHjj2. In practice, L2-norm (ridge regression)
and/or L1-norm (lasso regression) penalty term can be used
for this purpose. With L2-norm penalty term β, the following
equations are solved:

ðWTWþ β2IÞH ≈WTA; (2)

ðHHT þ β2IÞW ≈HA−1; (3)

where I is a k × k identity matrix. L1-norm penalty term α can
be applied as follows:

ðWTWþ α2EÞH ≈WTA; (4)

ðHHT þ α2EÞW ≈HAT; (5)

where E is a k × k matrix all of whose elements are unity. These
equations are iteratively solved to obtain the optimized matrices
H andW, respectively. The L2-norm regularization can provide
preferable solutions even though the WTW or HHT matrix
is singular, whereas the L1-norm regularization can provide
sparser solutions. These L2- and L1-norm regularizations are
efficacious in obtaining pure spectral decomposition and sparse
MCDI, especially from complex sample species and low signal-
to-noise ratio Raman spectral data sets.

2.1 Example of TiO2 Crystal Polymorphs
Discrimination

Here, as a model system, type discrimination of TiO2 crystal
polymorphs, anatase and rutile, is performed using the MCR-
ALS method. Anatase and rutile TiO2 powder were mixed
and placed on quartz cover slips. Space-resolved Raman spectra
were obtained by using a 785-nm excitation Raman microspec-
troscopic system. Raman spectra of the powder mixture were
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collected over a 20 × 20 μm region with a 0.25-μm scanning
interval, hence, 6400 spectra were obtained. Each Raman spec-
trum consisted of 1340 wavenumber points corresponding to the
1340 elements of a charge-coupled device detector. Figure 1
shows the representative Raman spectra. These spectra have
a number of overlapped Raman bands, interpreted as the super-
position of the two intrinsic Raman spectra of anatase and rutile
TiO2 shown in Fig. 2.

In the present MCR-ALS analysis, the Raman spectra sets
were combined to make a 1340 × 6400 matrix. The number of
pure spectral components was set to k ¼ 2, and the initial guess
of 1340 × 2 matrix W was set by random numbers. In the ALS
optimization, the constraints were set as follows: (1) W ≥ 0

and H ≥ 0, (2) L2-norm penalty term in Eq. (2) was set to
be β ¼ 0.002, (3) L1-norm penalty term in Eq. (6) was set
to be α ¼ 0.002. These equations were iteratively solved
with non-negative matrix factorization algorithm, and in
every iteration step, column vectors of the matrix W were
all normalized.60 After the 500 iteration cycle, ensuring that
jjA −WHjj2 converged to a sufficiently small value constant

value, the pure spectral components were obtained as shown
in Fig. 3.

The MCR-ALS based factorization successfully decomposes
the raw spectral data sets into two pure component spectra, i.e.,
the components 1 and 2 spectra are identical to the Raman spec-
tra of anatase and rutile, respectively [Figs. 2 and 3(a)]. Based on
this discrimination, each MCDI is constructed by rearranging
the row vectors of H. As shown in Fig. 3(c), a clear distribution
image has been obtained, providing the qualitative and quanti-
tative information about the TiO2 mixture sample. As shown
here, the MCR-ALS technique automatically resolves, without
a priori spectral information, the observed set of space-resolved
Raman spectra into physically interpretable spectra of the two
polymorphs.

2.2 Analysis of Living Cells

Taking advantage of the physically interpretable factorization,
the MCR-ALS technique can be effectively applied to molecu-
lar-level analysis of living cells. Living cells are highly compli-
cated molecular systems and contain a large number of spectral
components with no a priori information. This is particularly the
case with in vivo analysis. Furthermore, they contain many com-
pounds that have similar molecular structures. Consequently,
Raman spectra tend to show many overlapped bands. This sit-
uation makes it difficult to analyze living cell Raman spectra at
a detailed molecular level. The MCR-ALS analysis has great
advantages to overcome these difficulties: (1) It does not
need a priori information on the spectral and concentration pro-
files. (2) Decomposed spectra are ready for physical and/or
chemical interpretation. (3) Sparseness constraints can be effec-
tively used to achieve high contrast MCDI.

The MCR-ALS analysis is capable of extracting dynamic
information from living cells. Figure 4 shows the time-lapse
MCDI of a single dividing Schizosaccharomyces pombe, fission
yeast cell.61 Raman mapping measurements were performed at
600 to 800 points (depending on the image size) at an interval of
0.5 μm and at nine different times (1, 2, 4, 6, 6.5, 10, 14, 18, and
22 h after inoculation of yeast cells into medium) in the cell
cycle. The resultant 6885 Raman spectra were assembled to con-
struct one A matrix; two spatial and one temporal dimensions
were combined to a single dimension. The ALS optimization

Fig. 1 Space-resolved Raman spectra of TiO2 powder containing
anatase and rutile forms.

Fig. 2 Raman spectra of pure anatase (solid line) and rutile (dotted line)
TiO2.

Fig. 3 (a) Multivariate curve resolution-alternating least squares (MCR-
ALS) retrieved Raman spectra, (b) optical microscope image of TiO2

powder, and (c) pseudocolor distribution images of components 1
(red) and 2 (green).
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was conducted with an SVD-based initialization (six SVD spec-
tral components were used as the initial guess ofW matrix) and
L1-norm regularization, yielding sparse solutions. The resulting
six components are denoted 1 to 6 as given in Figs. 4(a) and
4(b). It should be noted that the MCR-ALS optimization started
with random initialization was in vain for decomposition in this
complicated cell system. In order to avoid falling into a false
local minimum rather than the global minimum, the initializa-
tion of W or H was a key step.

By the MCR-ALS method, the separation of background
signals is easily carried out; the component 1 is interpreted
as due to the background because it shows a featureless spectral
profile [Fig. 4(a) 1] and high intensity distribution patterns out-
side the cells [Fig. 4(b) 1]. The distributions of polysaccharides
are clearly observed from the component 2, whose spectrum
[Fig. 4(a) 2] very much resembles the spectra of glucan and
mannan.7 It localizes at the cell wall and septum at all measure-
ment times [Fig. 4(b) 2]. The component 3 [Fig. 4(a) 3] shows
typical lipid spectrum with unsaturated lipids7 and ergosterol.20

From the time dependent changes of the corresponding spatial
distribution [Fig. 4(a) 3], we know that the concentration of
lipids shows a drastic decrease just after the cell division and
gradually comes back as time goes on. The spectral components
4 and 5 [Fig. 4(a) 4 and 5] contain well-known protein bands.
The concentrations and distributions of proteins [Fig. 4(b) 4 and
5] show time dependence that is totally different from that of
lipids. The fact that we have two spectral components for pro-
teins means that we have two groups of protein molecules with
different structures (and hence different spectra) that show dis-
tinct time- and space-dependence during the cell cycle. We need
additional information on those protein groupings in order to
resolve this set of Raman spectra into more physically meaning-
ful protein spectra. The origin of the component 6 is still unclear,
although the MCR-ALS analysis ends up with much less clear
results without this component. In this way, the intrinsic spectra
and MCDI obtained from MCR-ALS has elucidated unknown
and unexpected molecular-level dynamics taking place during
the process of cell division.

Another study with the MCR-ALS shows the existence of
organelle-specific water structures in a living budding yeast
cell.62 Water molecules inside a cell are believed to play critical
roles in physiological processes, creating distinct structural and
chemical properties as compared to bulk water.63 A detailed
intracellular water structural information in living yeast cells
(diploid Saccharomyces cerevisiae) has been obtained using
Raman microspectroscopy, in which the OH stretch Raman
band of water is sensitive to the changes in the hydrogen-
bonding networks. In the following MCR-ALS analysis,
247 mapping measured Raman spectra ranging from 3100 to
3800 cm−1 (572 wavenumber points) were used as an input.
From an SVD analysis, the number of components was deter-
mined to be five. For the initial guess ofW, the bulk water spec-
trum was used as the only “fixed” component and the other
spectral profiles were randomly set. The ALS iteration was
performed with L2-norm regularization, which is known to be
effective for MCR-ALS analysis of data sets including like
component spectra.

The resultant five components are shown in Fig. 5. The five
pseudocolor MCDIs are almost mutually exclusive and the five
spectral components show varying relative intensities of the OH
stretch bands. The component 1 corresponds to bulk water
whose spectrum is fixed. Its spatial distribution shows high
value outside the cell. The component 5 has a significantly
lower intensity in the 3200 cm−1 OH stretch region as compared
to the intensity in the 3400 cm−1 region, indicating a lower pro-
portion of stable hydrogen-bonding network in component 5
than in bulk water. From the analysis of the average spectra
in the fingerprint region (data not shown here), the components
2 to 5 have been indicated to originate from the cell wall, cyto-
plasm, nuclear, and lipid bodies, respectively. Thus, organelle-
specific water structures in living yeast cells are successfully
retrieved and elucidated by using the MCR-ALS method.
It is well recognized that water is the most difficult molecule
to study in living cells. Only the combination of Raman micro-
spectroscopy and MCR-ALS can provide this unique informa-
tion of organelle-specific water structures in a cell in vivo.

Fig. 4 Time-lapse Raman imaging of single dividing fission yeast cell. (a) Six spectral components (1 to 6) derived from MCR-ALS and (b) distribution
images of components 1 to 6 together with the optical microscope images. Scale bar ¼ 2 μm.
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3 Conclusion
As Raman microspectroscopy has been exploited in biomedical
analysis, thorough interpretations of complicated spectra have
often been beset with difficulties. Even a single cell has com-
plicated subcellular structure containing a large number of com-
ponents. Various multivariate methods like CA and PCA have
thus been attempted to resolve the observed spectra into a pure
spectral component, but with only limited success. Due to
appropriate constraints, non-negativity and L1-norm regulariza-
tion for fission yeast and non-negativity and L2-norm regulari-
zation for water, the MCR-ALS method can provide physically
sound spectra and high-contrast MCDI of living cells as has
been shown by the two examples described here.
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