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Abstract. Sparse regularization methods have been widely used in fluorescence molecular tomography (FMT)
for stable three-dimensional reconstruction. Generally, l1-regularization-based methods allow for utilizing the
sparsity nature of the target distribution. However, in addition to sparsity, the spatial structure information should
be exploited as well. A joint l1 and Laplacian manifold regularization model is proposed to improve the
reconstruction performance, and two algorithms (with and without Barzilai–Borwein strategy) are presented
to solve the regularization model. Numerical studies and in vivo experiment demonstrate that the proposed
Gradient projection-resolved Laplacian manifold regularization method for the joint model performed better
than the comparative algorithm for l1 minimization method in both spatial aggregation and location accuracy.
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1 Introduction
Fluorescence molecular tomography (FMT)1,2 is a noninvasive
molecular imaging technique. In cooperation with appropriate
fluorescent probes, FMTallows for three-dimensional (3-D) im-
aging of molecular functions and the visualization of biological
and physiological processes, which make it powerful in clinical
and preclinical research, e.g., cancer and drug development.3,4

To locate and quantify fluorescence probes from the measured
light intensities on the surface of biological tissues, both accu-
rate transportation model and sophisticated inverse algorithm
are indispensable. However, the inherently ill-posed nature of
the inverse problem along with complex scattering and absorb-
ing in the process of near-infrared photons propagation in bio-
logical tissues makes FMT challenging.5,6

To generate a meaningful and stable solution, many regulari-
zation methods have been introduced to solve the inverse
problem. In the early stage of FMT development, l2-norm regu-
larization method, such as Tikhonov regularization,7,8 was
widely used to deal with the ill-posedness of FMT. However,
l2-norm penalty often leads to blurred reconstructed images
due to its over-smoothness. To improve the imaging quality
of FMT, various kinds of sparse regularization methods with
sparsity-inducing norms have been applied. Theoretically,
l0-norm model is expected to produce the sparsest solution,
but it is computationally infeasible for practical application.
Although greedy algorithms can approximately solve l0-norm
model, they are easily trapped into local optimal solution.9,10 As
an alternative solution, l1-norm regularization is the most popu-
lar due to the existence of plenty of efficient algorithms to solve
it.11–14 Recently, nonconvex lp-norm regularization methods
have been investigated in the field of FMT. Compared with

l1-norm methods, nonconvex lp-norm methods can provide
more accurate location and sparser solution.15–18

Generally, regularization items are introduced into inverse
problem for special goals. For example, considering that the
spatial distribution of biological activity studied by FMT
tends to occur in localized regions, sparsity-inducing lp-norm
(p ∈ ½0;1�) regularizers are utilized to deal with the ill-posedness
of inverse problem. Similarly, total variation (TV) penalty is
used to promote smoothness of solution while preserving
edges of targets.19–22 Although TV regularization has been suc-
cessfully used in image processing, there are some obstacles in
applying TV-norm to FMT. As the finite element mesh used for
tomography is not as regular as image pixels, it brings heavy
computation and great memory cost to optimize the correspond-
ing TV models.20 Except for TV regularization, Laplacian regu-
larization has been used to incorporate structural information of
x-ray computed tomography\magnetic resonance to the inverse
problem in FMT modalities.23–25

Based on the assumption that observed biological mecha-
nisms or activities in FMT are confined to small regions,
l1-norm regularization-based methods are widely used in
FMT reconstruction. Nevertheless, the 3-D spatial distribution
of the fluorescence sources also relies on the tracers or fluores-
cence probes used in FMT. The source distributions are
expected to be localized for highly specific tracers, whereas
the spatial structure of nonspecific tracers such as indocyanine
green may be more globally distributed.26 For such cases, a pen-
alty term taking spatial structure information into account can be
expected to outperform l1-type penalties. Consequently, an
inverse model combining both sparsity and spatial structure
information is potentially beneficial for recovery of fluorescent
targets with comprehensive consideration of the changing situa-
tions in FMT applications.
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To utilize the spatial structure information, manifold-based
learning method is needed. Since Isomap27 and locally linear
embedding28 were proposed, manifold learning has become
one of the hottest research fields in machine learning. It has
been widely applied in semisupervised classification,29 cluster-
ing,30 dimensionality reduction,31,32 and so on. Inspired by
manifold learning, we introduce Laplacian manifold regulariza-
tion to obtain spatial aggregation and combine it with sparse
regularization to improve FMT reconstruction. Moreover, to
solve the sparse reconstruction model with Laplacian manifold
regularization, we present two gradient projection algorithms
(with and without Barzilai–Borwein strategy), gradient projec-
tion-resolved Laplacian manifold (GPRLM)-basic and
GPRLM-BB, which can be regarded as the extension of gradient
projection for sparse reconstruction (GPSR)33 method for
l1-norm regularization model.

The originality of this work lies in the application of
Laplacian manifold regularization to FMTand the efficient algo-
rithms to deal with the joint l1-norm and Laplacian manifold
regularization model. To assess the performance of the proposed
inverse model and reconstruction algorithms, we conducted
numerical simulations and in vivo experiment to compare the
proposed algorithms with the corresponding version of GPSR.

Rest of this paper is arranged as follows: in Sec. 2, we briefly
review the photon propagation model, explain the joint l1-norm
and Laplacian manifold regularization model in detail, and
present the two algorithms. In Sec. 3, we assess the proposed
model and algorithms with simulations and experiments. In
Sec. 4, we conclude the paper with a discussion of the results.

2 Methods

2.1 Photon Propagation Model

In this paper, we use diffusion equation (DE) for modeling
photon propagation in excitation and emission process.34,35

The coupled DEs are given as

EQ-TARGET;temp:intralink-;e001;63;353

�
∇ · ðDx∇ΦxÞ − μaxΦx ¼ −Θsδðr − rslÞ;
∇ · ðDm∇ΦmÞ − μamΦm ¼ −Φxημaf;

(1)

where r is the position vector; D;Φ; μ, and η are the
function of r. ΦxðrÞ and ΦmðrÞ denote photon intensity
(photons∕cm2 s) at position r, respectively, in which the sub-
scripts x and m represent the excitation and emission processes.
Dx;m is the optical diffusion coefficient, which equals to
1∕3ðμax;m þ ð1 − gÞμsx;mÞ, in which g represents the anisotropy
parameter, μax;m is the absorption coefficient, and μsx;m is the
scattering coefficient. ηðrÞ denotes the fluorescent yield effi-
ciency and μaf is the absorption coefficient of fluorophores.
rsl is the position of different excitation sources with the ampli-
tude Θs. The boundary conditions accompanying Eq. (1) are
modified Robin-type boundary conditions expressed as

EQ-TARGET;temp:intralink-;e002;63;173

�
n · ðDx∇ΦxÞ þ αxΦx ¼ 0;
n · ðDm∇ΦmÞ þ αmΦm ¼ 0;

(2)

where n is the normal vector of the boundary. αx and αm are the
Robin boundary coefficients.

Using the finite element method (FEM),36,37 two matrix
equations are yielded as

EQ-TARGET;temp:intralink-;e003;326;752

�
KxΦx ¼ Lx;
KmΦm ¼ FX;

(3)

where Eq. (3) corresponds to Eq. (1), respectively. For a single
excitation source with the position rsl and the amplitude Θs, we
can calculate the Φx;sl with Eq. (3) and then Φm;sl with Eq. (3),
namely

EQ-TARGET;temp:intralink-;e004;326;673

�
Φx;sl ¼ K−1

x;slLx

Φm;sl ¼ K−1
m;slFX ¼ AslX;

(4)

where Asl ¼ K−1
m;slF.

After removing the measurements that cannot be observed,
we composite all systems of linear equations in Eq. (4). The final
matrix equation is formed as

EQ-TARGET;temp:intralink-;e005;326;584AX ¼ Φ; (5)

where X, an N × 1 vector, represents distribution of the
unknown fluorescent source; Φ, an M × 1 vector, is the boun-
dary observation, and A denotes an M × N weight matrix
depending on the geometry and optical parameters.

2.2 Joint l1 and Laplacian Manifold Regularization
Model

The aim of FMT can be boiled down to finding the distribution
of the unknown fluorescent target X by solving Eq. (5).
However, it is inaccurate to solve the equation directly due to
the high ill-posed nature and the existence of noise. To obtain
stable and accurate solution of Eq. (5), some form of regulari-
zation method is indispensable in the inversion. The widely used
l1-norm regularization is to formulate the inverse problem into
the following optimization with l1-norm penalty:

EQ-TARGET;temp:intralink-;e006;326;380 arg min
X

1

2
kΦ − AXk22 þ τkXk1: (6)

Unlike the previous reconstruction method for FMT, we
introduce manifold regularization into the inversion process
to further improve the quality of reconstruction. Specifically,
we convert Eq. (5) into an optimization problem with joint
l1 and Laplacian manifold terms

EQ-TARGET;temp:intralink-;e007;326;283 arg min
X

1

2
kΦ − AXk22 þ τkXk1 þ

λ

2
XTLX; (7)

where XTLX is the Laplacian manifold regularization term and
L is the graph Laplacian matrix, which will be discussed in
detail below. Equation (7) is constructed based on a graph
model, which is derived by the finite element mesh used for
reconstruction. Figure 1 shows the relationship between mesh
and graph model, where a 2-D finite element mesh is used
for illustrative purposes only. The definition of the graph model
is as follows.

The nodes and edges of FEM mesh serve as the vertexes
and edges of the graph model, respectively. Let X ¼
ðx1; x2; : : : ; xNÞT be the distribution of fluorescent intensity
and piði ¼ 1;2; : : : ; NÞ be the space coordinate vector of the
i’th node corresponding to xi. Then, eij ¼ 1 (i; j ¼ 1;2; : : : ; N)
represents that there is an edge between pi and pj (see the red
line segment and the red nodes in Fig. 1). Otherwise, if there is
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no edge between pk and pl (see the blue nodes in Fig. 1),
ekl ¼ 0 (k; l ¼ 1;2; : : : ; N).

The Laplacian manifold regularizer is defined as

EQ-TARGET;temp:intralink-;e008;63;442

XN
i¼1

XN
j¼1

wijðxi − xjÞ2; (8)

where wij is the affine weight of the edge between node pi and
node pj. To measure the connection of different points, the
weight wij is defined as

EQ-TARGET;temp:intralink-;e009;63;358wij ¼
8<
:

exp

�
− kpi−pjk22

σ2

�
if eij ¼ 1;

0 if i ¼ j or eij ¼ 0:
; (9)

where σ > 0 is the parameter to adjust the weight matrix. It is
apparent that wij ∈ ½0;1�, and the closer pi from pj, the closer
wij to 1. By simple mathematical derivation,32 we can obtain a
plain form of Eq. (7)

EQ-TARGET;temp:intralink-;e010;63;257

XN
i¼1

XN
j¼1

wijðxi − xjÞ2 ¼ 2XTðD −WÞX; (10)

where W is a symmetrical weight matrix, which equivalents
to ðwijÞN×N . D is a diagonal matrix, which equals to
diagðd1; d2; : : : ; dNÞ, where di ¼

P
N
j¼1 wij ¼

P
N
k¼1 wki. Let

L ¼ D −W, then we obtain the Laplacian manifold regulariza-
tion item of Eq. (7).

From the definition of Laplacian manifold regularization
item of Eq. (7), it is easy to find that ðxi − xjÞ2 will contribute
much to the objective function Eq. (7) if there is a relatively
large difference between xi and xj. Therefore, the Laplacian
manifold regularizer encourages the adjacent nodes (eij ¼ 1)
to have similar intensity value and hence it induces the solution
to present spatial aggregation. To solve Eq. (7), we extended the
GPSR33 method to fit the new joint regularization model.

2.3 Gradient Projection Method for Joint
Regularization

In a similar way as what was done by Figueiredo et al.,33 the
variable X in Eq. (7) can be split into its positive and negative
parts Zf ¼ ðxiÞþ and Zl ¼ ð−xiÞþ for all i ¼ 1;2; : : : ; N, where
ð·Þþ denotes the “positive-part operator.” Then, the Eq. (7) can
be reformulated as following bound-constrained quadratic
program:

EQ-TARGET;temp:intralink-;e011;326;657

arg min
Zf;Zl

1
2
kΦ − AðZf − ZlÞk22 þ τ1TNZf þ τ1TNZl

þ λ
2
ðZf − ZlÞTLðZf − ZlÞ; s:t: Zf ≥ 0; Zl ≥ 0;

(11)

where 1N is length-N vector with 1 as its elements. By substi-
tution, an equivalent quadratic program with non-negative con-
straints can be obtained

EQ-TARGET;temp:intralink-;e012;326;568 arg min
Z

1

2
ZTBZ þ CTZ; s:t: Z ≥ 0; (12)

where

EQ-TARGET;temp:intralink-;sec2.3;326;515Z ¼
�
Zf

Zl

�
; C ¼

�
τ1N − ATΦ
τ1N þ ATΦ

�

and

EQ-TARGET;temp:intralink-;e013;326;464B ¼
�

ATAþ λL −ðATAþ λLÞ
−ðATAþ λLÞ ATAþ λL

�
: (13)

Following the studies, we present two algorithms to solve the
quadratic problem in Eq. (12) based on basic gradient projection
method and the Barzilai–Borwein gradient projection method.
The two algorithms are denoted as GPRLM-basic and
GPRLM-BB, respectively.

For simplicity, let FðZÞ ¼ 1
2
ZTBZ þ CTZ. With gradient

projection technique, the solution of Eq. (12) evolves from
ZðkÞ to Zðkþ1Þ in the following way:

EQ-TARGET;temp:intralink-;e014;326;334Zkþ1 ¼ ZðkÞ þ ξk½WðkÞ − ZðkÞ�; (14)

where WðkÞ ¼ ½ZðkÞ − αðkÞ∇FðZðkÞÞ�þ.
The difference between GPRLM-basic and GPRLM-BB lies

in their searching direction and searching step size. More spe-
cifically, their choices of the parameters αðkÞ and ξðkÞ. In the
basic approach GPRLM-basic, the searching is along the neg-
ative gradient −∇FðZðkÞÞ and confined in the non-negative
orthant. Backtracking line search is performed to ensure
FðZÞ decreases at every iteration. The searching direction for
GPRLM-BB algorithm is based on Newton method with
approximate Hessian matrixes. It is different from the basic
algorithm, which is defined by steepest descent strategy.
GPRLM-basic algorithm uses inexact line searching to find
the searching step size αðkÞ and GPRLM-BB algorithm calcu-

lates the step size by ξðkÞ ¼ midð0; ðδðkÞÞT∇FðZðkÞÞ
γðkÞ ; 1Þ, which can

ensure the convergence of GPRLM-BB algorithm.
We define the vector gðkÞ as

EQ-TARGET;temp:intralink-;e015;326;114gðkÞi ¼
�
½∇FðZðkÞÞ�i; if zðkÞi > 0 or ½∇FðZðkÞÞ�i < 0;
0; otherwise;

(15)

Fig. 1 Illustration of graph model based on 2-D finite element mesh,
where the nodes and edges of the mesh serve as the nodes and
edges of the graph model, respectively.
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where ZðkÞ is the k’th iteration point obtained by GPRLM-basic,
and ½∇FðZðkÞÞ�i is the i’th element of ∇FðZðkÞÞ. Then,
∇FðZÞ ¼ BZ þ C. The scalar parameter, α, used to yield the
step along the gradient descent direction. The initial value of
αðkÞ is chose to be α0 ¼ arg minαFðZðkÞ − αgðkÞÞ, which can
be computed as

EQ-TARGET;temp:intralink-;e016;63;683α0 ¼
ðgðkÞÞTgðkÞ
ðgðkÞÞTBgðkÞ : (16)

In addition, the operator midða; b; cÞ is defined to return the
middle value of {a,b,c}, which is used to confine parameter αðkÞ

and ξðkÞ to a given interval.
The detailed flow of algorithms is presented in Fig. 2.

3 Experiments
To assess the joint regularization model and the proposed algo-
rithms, we conducted simulations on a 3-D digital mouse model
and in vivo mouse experiment. Since the focus of this section is
to validate the effectiveness of Laplacian regularization, the
original algorithms GPSR-basic and GPSR-BB proposed by
Figueiredo et al.33 instead of more sophisticated algorithms
are chosen as competitive algorithms. Consequently, there are
four algorithms are investigated in the following simulations
and experiments.

For the following simulations and experiments, we used the
measurements on all of the boundary mesh nodes for
reconstruction. For a fair comparison, we used the same regu-
larization parameter τ for l1-norm penalty term used in both
standalone l1 regularization model and the joint regularization
model. In addition, the regularization parameter τ was

Fig. 2 Flow diagram of GPRLMs. (a) GPRLM-basic and (b) GPRLM-BB.
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automatically selected by L-curve38 and the parameter λ was
selected manually. Specifically, parameter τ ranged from
1e − 07 to 1e − 10 and parameter λ for Laplacian regularization
term ranged from 1e − 01 to 1e − 03. The iteration numbers for
all of the testing algorithms were set to 500. We set the 5% of
maximum observed fluorescent intensity as the noise standard
deviation in simulation.

3.1 Evaluation Criterion

To quantitatively assess reconstruction, four metrics are used to
compare the results, including location error (LE), contrast-to-
noise ratio (CNR), and reconstructed time (time). LE is the
Euclidean distance between the centers of the reconstructed tar-
get and the actual target, which is a measure of location accu-
racy. CNR39 is defined as the difference between the averaged
optical coefficient within the region of interest and the difference
within the background region, divided by averaged optical coef-
ficient variation in the background. It is formulated as

EQ-TARGET;temp:intralink-;e017;63;546CNR ¼ μnoi − μnob
ðwnoiσ

2
noi þ wnobσ

2
nobÞ1∕2

; (17)

where μnoi is the mean value of the fluorescent yield of the inter-
est nodes and μnob is the mean value of the fluorescent yield of
the background nodes. wnoi and wnob are the percentages of the
interest nodes and the background nodes in the whole area,
respectively. σ2noi and σ2nob are the standard variance of the inter-
est nodes and the background nodes, respectively.

3.2 Numerical Simulation on a Three-Dimensional
Digital Mouse Model

We conducted several groups of numerical simulations on a 3-D
digital mouse model to test the proposed algorithms in terms of
the above metrics. The 3-D digital mouse atlas40 is used to offer
the structural information and only 340 slices of the mouse atlas
are chosen to be investigated, which is composed by six organs
including muscle, heart, liver, stomach, kidneys, and lungs. The
optical parameters of organs are shown in Table 1.41

3.2.1 Reconstruction of single target

The first group of simulation is to reconstruct a single cylindrical
target with 2-mm diameter and 2-mm height located in the liver
of the mouse model, with the center at (12,11.5,16) mm.
Figure 3(a) shows the mouse model and the target setting.
Figure 3(b) shows the distribution of 18 excitation sources
located in the plane of Z ¼ 16 mm, where the dots denote posi-
tions of the excitation sources. The measurement acquisition
was performed at a field of view (FOV) of 120 deg opposite
the excitation source.

To obtain simulated measurement, forward calculation was
carried out on a forward mesh with 31,648 nodes and
177,425 tetrahedrons. Using FEM solving the forward model
with known optical absorption and scattering parameters, we
can obtain the simulated boundary measurement, as shown in
Fig. 3(c). 3-D reconstructions were performed on a tetrahedral
mesh discretizing the mouse model with 3020 nodes and 14,903
tetrahedrons.

Figure 4 shows the cross-sectional views of the
reconstruction results at Z ¼ 16 mm by GPSRs and GPRLMs.
Table 2 lists the detailed single-target results by the four com-
parative algorithms. The reconstruction quality by GPRLMs is
better than GPSRs in intensity by visual inspection. The pro-
posed GPRLMs performed slightly better in terms of LE and
CNR, as shown in Fig. 4 and Table 2.

3.2.2 Assessment of algorithm stability

Stability analysis was also performed to test the influence of
several factors on the proposed reconstruction algorithms
with single-target simulation. We considered the position of
excitation sources plane, the number of excitation sources,
and different levels of noise, respectively. The mouse model
and simulation settings were the same as in Sec. 3.2.1. To
test the influence of position of excitation sources plane, we
moved excitation plane along the Z-axis from the plane Z0 to
Z2 (see Fig. 5). In addition, we kept the excitation plane
fixed at Z ¼ 16 mm and gradually reduced the number of exci-
tation sources or added different levels of noise to observe the
change of reconstruction quality.

Figure 6 shows the quantitative results by the comparative
algorithms in terms of CNR, LE, and time under different exci-
tation planes. GPRLMs performed better than GPSRs in spatial
aggregation in all three test cases from Fig. 6(a). It can be
observed that GPRLMs possessed the best location accuracy
for all of the tested excitation positions in Fig. 6(b). In Fig. 6(c),
it is obvious that BB algorithms (GPSR-BB and GPRLM-BB)
run faster than basic algorithms (GPSR-basic and GPRLM-
basic).

Figure 7 shows the comparison results with a different num-
ber of excitation sources by different reconstruction algorithms.
As expected, the location accuracy of the reconstructions and
the reconstruction time did witness significant deterioration
with the decrease of excitation nodes from Fig. 7(b). Generally
speaking, GPSRs are less susceptible to the amount of excitation
sources, but the proposed GPRLMs algorithms yielded better
solutions than GPSRs in terms of spatial distribution under
different excitation conditions, as shown in Fig. 7(a). From
Fig. 7(c), the time cost raises with the increase of excitation
sources, as the increase of measurement lead to the raised com-
putational expense.

Table 1 Optical parameters of the mouse organs.

Organ

650 nm 670 nm

gμax ðmm−1Þ μ 0
sx ðmm−1Þ μamðmm−1Þ μ 0

smðmm−1Þ
Muscle 0.0052 1.08 0.0068 1.03 0.9

Heart 0.0083 1.01 0.0104 0.99 0.85

Liver 0.0329 0.70 0.0176 0.65 0.9

Stomach 0.0114 1.74 0.0070 1.36 0.92

Kidneys 0.0066 2.25 0.0380 2.20 0.86

Lungs 0.0133 1.97 0.0203 1.95 0.9

Fluorophore 0.329 21.0 0.038 14.74 0.9
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To test the stability of the algorithm against noise, we added
random Gaussian noise to the simulated data to mimic the
noise caused by measurement error, registration error, and
autofluorescence. For each simulation experiment, 10 indepen-
dent runs were performed, because the amplitude of the simu-
lated noise was randomly determined. Figure 8 shows the
variation of LE and CNR (mean with standard deviation)
with noise ranging from 5% to 25%. The simulation results
indicate that the location accuracy of the target center provided
by all the tested algorithms has no significant fluctuation
(<0.03 mm) under different noise. The fluctuation range of
CNR caused by noise is within 1 when the noise level ranges

Fig. 4 Reconstruction results of single-target experiments. (a), (b), (c), and (d) are reconstructed targets
in slice Z ¼ 16 mm obtained by GPSR-basic, GPRLM-basic, GPSR-BB, and GPRLM-BB, respectively,
(e)–(h) are reconstructed targets in 3-D views corresponding to (a)–(d), respectively.

Fig. 3 (a) The mouse model with a cylinder fluorescent target in liver, (b) the positions of 18 excitation
sources in the slice of Z ¼ 16 mmand the illustrations of a measurable 120 deg FOV on surface opposite
excitation sources, and (c) the forward mesh and the simulated distribution of photons density on surface.

Table 2 Comparison results in single-target simulations.

Method
Reconstruction
center (mm) CNR LE (mm) Time (s)

GPSR-basic (12.25, 11.61, 16.43) 17.08 0.51 76.35

GPRLM-basic (12.22, 11.59, 16.44) 17.55 0.50 77.02

GPSR-BB (12.14, 11.48, 16.47) 16.40 0.51 39.79

GPRLM-BB (12.16, 11.50, 16.47) 16.70 0.50 44.13

Note: The best results are in bold.
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Fig. 5 Simulation settings: (a) and (b) are XZ and YZ views of different excitation planes, where
Z 0 ¼ 16 mm, Z 1 ¼ 12 mm, and Z 2 ¼ 20 mm.

Fig. 6 Comparison results of different excitation node positions: (a) CNR, (b) LE, and (c) time.

Fig. 7 Comparison results with different number of excitation nodes: (a) CNR, (b) LE, and (c) time.
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from 5% to 25%. In general, the tested algorithms perform
quite stably in terms of LE and CNR when noise level is
under 25%.

Overall, the proposed GPRLM algorithms for joint l1

and Laplacian manifold regularization model performed quite
stable under different excitation conditions and different
noise levels.

3.3 Reconstruction of Big Target

To test the big target reconstructed ability of the proposed algo-
rithms, we conducted a simulation to reconstruct a big cylindri-
cal target located at (12.8,11.5,16) mm, with a diameter of 4 mm
and a height of 2 mm. The mouse model was identical to the
setting in Sec. 3.2. As shown in Fig. 9, the results by
GPRLMs have better consistency with the real target and are

Fig. 8 (a) Variation of CNR (mean with standard deviation) with noise. (b) Variation of LE (mean with
standard deviation) with noise.

Fig. 9 Reconstruction results of big target. (a), (b), (c), and (d) are cross-section views of the results
obtained by GPSR-basic, GPRLM-basic, GPSR-BB, and GPRLM-BB, respectively. (e)–(h) are the 3-
D views of the reconstructed target corresponding to (a)–(d).
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better localized around the corresponding target area while the
reconstructions by GPSRs cannot fill the target region. The
quantitative results listed in Table 3 also indicate the localization
capability of GPRLMs is better than GPSRs.

3.4 Reconstruction of Multiple-Target with Different
Sizes

Multiple-target resolving ability is equally important to
reconstruction algorithms. Hence, another group of simulations
was conducted to reconstruct two targets with different sizes and
1 mm separation. The small target is 2 mm in diameter and 2 mm
in height. The big target is 4 mm in diameter and 2 mm in height.
The double target is located in the liver with the centers at
(14,11,16) mm and (14,7,16) mm, respectively. Obviously,
the double-target setting is more difficult than the single-target

case. The cross-section views of the results at the plane of
Z ¼ 16 mm, and the 3-D views of the reconstructed target
are shown in Fig. 10. It can be observed that the results by
GPRLMs have less spreading and are better localized around
the corresponding true center, while the reconstructions by
GPSRs cannot distinguish the two targets. To further compare
the spatial distribution of the solutions, Fig. 11 shows the pro-
files of the normalized fluorescent yield on XY plane at
Z ¼ 16 mm along the line of X ¼ 14 mm. Two peaks can be
easily recognized in the results of GPRLMs, whereas only one
peak exists in the results of GPSRs. Based on Fig. 11, we com-
puted the full width of half maximum (FWHM) values to assess
the spatial aggregation of the solutions, which are listed in
Table 4. More quantitative information of double-target results
are presented in Table 5. The reconstruction results shown in this
section demonstrate that the proposed GPRLMs for joint regu-
larization model have stronger resolving capability and better
location accuracy compared with GPSRs for l1-norm regulari-
zation model.

3.5 Validation with In Vivo Experimental Data

In this section, we further validate the proposed reconstruction
method with in vivo experimental data. We used an integrated
FMT/micro-CT dual-modality imaging system12 to acquire data.
This system provides a stabilized compact red laser with wave-
length at 670 mm and allows light transmission at the emission
wavelength of 710 mm. Detailed configuration information of
the imaging system can refer to Yi’s12 work. The animal studies

Fig. 10 Reconstruction results of double target with 1-mm boundary distance. (a), (b), (c), and (d) are
cross-section views of the results obtained by GPSR-basic, GPRLM-basic, GPSR-BB, and GPRLM-BB,
respectively. (e)–(h) are the 3-D views of the reconstructed target corresponding to (a)–(d).

Table 3 Comparison results in double-target simulations.

Method
Reconstruction
center (mm) CNR LE (mm) Time (s)

GPSR-basic (12.53, 10.94, 16.87) 8.76 0.92 55.21

GPRLM-basic (13.02, 11.13, 16.10) 12.14 0.40 89.61

GPSR-BB (12.53, 10.91, 16.87) 8.77 0.92 39.67

GPRLM-BB (12.76, 11.50, 16.42) 14.87 0.82 39.54

Note: The best results are in bold.
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were performed in accordance with the Fourth Military Medical
University Guide for the Care and Use of Laboratory Animals
formulated by the National Society for Medical Research.

In this experiment, a glass tube with 1.2-mm inner radius
and 7.5-mm height was implanted into abdomen of an anes-
thetized mouse. The tube was injected with Cy5.5 solution
(with the extinction coefficient of about 0.019 mm−1 μM−1

and quantum efficiency of 0.23 at the peak excitation wave-
length of 671 nm) to serve as the fluorescent target.
According to the published paper,42 the fluorescent yield of
Cy5.5 is 0.0402 mm−1. From the structural data scanned by
micro-CT, the actual center of the target was determined at
(20.2,28.5,8.8) mm. Four excitation sources, we used are
located at (20.16,32.32,10.88) mm, (20.16,11.04,10.88) mm,
(26.88,21.76,10.88) mm, and (10.24,21.76,10.88) mm, respec-
tively. For subsequent reconstruction, the CT data were discre-
tized and segmented into five components, including heart,
lungs, liver, kidneys, and muscle. Table 612,15,43 shows the
main optical parameters about the excitation and emission proc-
esses used in reconstruction.

Figure 12 shows the reconstruction results of the experimen-
tal data. The detailed evaluation results are listed in Table 7.
Similar to the numerical studies presented in Sec. 3.2, GPRLMs
performed better than GPSRs in terms of location accuracy and

Table 4 Comparison results of FWHM in double-target simulations
with different size.

Method

Real center
(y -coordinate/

mm)

Reconstruction
center

(y -coordinate/
mm)

Real
FWHM
(mm)

Reconstruction
FWHM
(mm)

GPSR-basic 7 N/A 2 N/A

11 11.00 4 4.03

GPRLM-
basic

7 6.32 2 1.90

11 11.20 4 4.08

GPSR-BB 7 N/A 2 N/A

11 10.95 4 4.05

GPRLM-BB 7 6.32 2 1.86

11 11.22 4 4.06

Table 6 Optical parameters of mouse organs at wavelength of 670
and 710 nm.

Organ

670 nm 710 nm

gμax ðmm−1Þ μ 0
sx ðmm−1Þ μamðmm−1Þ μ 0

smðmm−1Þ
Muscle 0.075 0.412 0.043 0.350 0.9

Heart 0.051 0.944 0.030 0.870 0.85

Lungs 0.170 2.157 0.097 2.093 0.94

Livers 0.304 0.668 0.176 0.629 0.9

Kidneys 0.058 2.204 0.034 2.021 0.86

Stomach 0.010 1.417 0.007 1.340 0.92

Fig. 11 Profiles of normalized fluorescent yield on XY plane Z ¼ 16 mm along the line of X ¼ 14 mm,
which corresponds to the black dashed lines in Figs. 10(a)–10(d). (a) Comparison between GPSR-basic
and GPRLM-basic. (b) Comparison between GPSR-BB and GPRLM-BB.

Table 5 Comparison results in double-target simulations with differ-
ent size.

Method
Reconstruction
center (mm) CNR LE (mm) Time (s)

GPSR-basic (15.04, 8.32, 15.22) 6.32 1.85 153.93

(13.31, 11.19, 16.58) 0.92

GPRLM-basic (12.98, 7.46, 15.16) 9.92 1.40 172.77

(13.13, 11.42, 16.38) 1.04

GPSR-BB (15.06, 8.33, 15.28) 5.63 1.85 137.25

(13.30, 11.15, 16.59) 0.93

GPRLM-BB (13.01, 7.36, 15.10) 8.65 1.39 137.44

(13.30, 11.02, 16.62) 0.94

Note: The best results are in bold.
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spatial aggregation. The LE by GPRLMs was around 0.8 mm,
which was much smaller than that of GPSRs. As observed from
Fig. 12, the results by our proposed GPRLMs for joint regulari-
zation model have fewer artifacts and are better localized around
the glass tube.

4 Discussion and Conclusion
In this paper, we present an inverse model with joint l1 and
Laplacian manifold regularization for FMT reconstruction. By
incorporating prior information of spatial aggregation and
sparsity of the fluorescent target observed in many FMT

scenarios, the new joint model is expected to further improve
the reconstruction quality. Compared with l1-norm regulariza-
tion model, the proposed joint model has advantages in recon-
struction of big size target or resolving multiple targets.
Compared with TV penalty, the joint model is more geared to
the features of distribution of tumor tissue and is easier to be
applied in FMT modalities. Moreover, we also present two
algorithms to solve the new inverse model based on gradient
projection techniques. The effectiveness of the proposed recon-
struction model and algorithms are validated with numerical
studies and in vivo experimental data.

Simulation and experimental results demonstrate that better
solution (fewer artifacts and smaller LE) is obtained by GPRLM
due to the fine properties of manifold regularization. Numerical
studies also indicate that the proposed reconstruction algorithms
(GPRLM-basic and GPRLM-BB) performed quite stable with
respect to measurement noise and change of excitation condi-
tions. Compared with the widely used l1 regularization model,
the proposed reconstruction method possesses a stronger ability
of aggregation, which is well demonstrated.

The proposed joint model has several advantages over stand-
alone TV or l1-norm regularization model. First of all, the
complexity of Laplacian regularization is less than TV-norm.
Second, Laplacian regularizer is easy to implement on FEM
mesh. And last, the joint model gives consideration to both

Fig. 12 Reconstruction results of in vivo experiments. (a), (b), (c), and (d) are the fluorescent yield of
reconstructed target at slice Z ¼ 8.4 mm with CT image, obtained by GPSR-basic, GPRLM-basic,
GPSR-BB, and GPRLM-BB, respectively. The green circles in Figs. 9(a)–9(d) indicate the location of
real target. (e)–(h) are the fluorescent yield distribution of reconstructed target in 3-D views with CT
image, obtained by GPSRs and GPRLMs, respectively.

Table 7 Evaluation results in in vivo experiments.

Method
Reconstruction
center (mm) CNR LE (mm) Time (s)

GPSR-basic (20.50, 29.79, 9.04) 4.85 1.35 177.61

GPRLM-basic (20.26, 29.29, 8.64) 5.44 0.81 149.11

GPSR-BB (20.60, 29.61, 8.94) 7.28 1.17 33.32

GPRLM-BB (20.48, 29.26, 8.67) 8.23 0.81 31.90

Note: The best results are in bold.
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sparsity and spatial aggregation, which make it promising to apt
to changing source distributions in different FMT applications.

The LE metric used in this paper is to assess the location
accuracy of the center of mass, which cannot adequately reflect
the reconstructed shapes. We recognize that target shapes are
equally important as center localization. Although the joint
model incorporating prior information of spatial aggregation
and sparsity, the performance of the proposed algorithms
(GPRLMs) was less than satisfactory in shape reconstruction.
However, it should be pointed out that the proposed GPRLMs
are preliminary methods for solving the joint l1 and Laplacian
manifold regularization model. With a few modifications, many
other sophisticated sparse recovery algorithms proposed in the
field of compressed sensing can be used to solve the joint model
and improve the reconstruction. Moreover, a more accurate light
transport model such as the SP3 approximation may provide
better performance in shape fitting. A future extension of this
research can be the development of new efficient algorithms
for solving this joint model and the corresponding performance
assessment under different types of source distributions.
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