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Abstract. The challenge of learning-based superresolution (SR) is to predict the relationships between low-res-
olution (LR) patches and their corresponding high-resolution (HR) patches. By learning such relationships from
external training images, the existing learning-based SR approaches are often affected by the relevance
between the training data and the LR input image. Therefore, we propose a single-image SR method that learns
the LR-HR relations from the given LR image itself instead of any external images. Both the local regression
model and nonlocal patch redundancy are exploited in the proposed method. The local regression model is
employed to derive the mapping functions between self-LR-HR example patches, and the nonlocal self-similarity
gives rise to a high-order derivative estimation of the derived mapping function. Moreover, to fully exploit the
multiscale similarities inside the LR input image, we accumulate the previous reconstruction results and their
corresponding LR versions as additional example patches for the subsequent estimation process, and adopt
a gradual magnification scheme to achieve the desired zooming size step by step. Extensive experiments on
benchmark images have validated the effectiveness of the proposed method. Compared to other state-of-the-art
SR approaches, the proposed method provides photorealistic HR images with sharp edges. © The Authors.
Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in
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1 Introduction
Image superresolution (SR) aims to generate a high-
resolution (HR) image from a single image or a set of low-
resolution (LR) images. With the fast emergence of
high-definition displays at consumer electronics market,
such as Nexus 7 (1920 × 1200) and iPad3 (2048 × 1536),
there is a great demand to super-resolve existing LR images,
so that they can be enjoyably viewed on such readily avail-
able HR devices without any visual artifacts. Therefore, the
SR problem has gained popularity in image processing com-
munity in recent years. Ever since the pioneer work proposed
by Huang and Tsai in 1984,1 many improvements have been
made in this particular research field. Generally, SR methods
that are implemented in spatial domain can be roughly
categorized into three classes: the interpolation-based meth-
ods,2–8 the reconstruction-based methods,9–11 and the learn-
ing-based methods,12–27,28,29,30 each of which has its own
distinctive advantages, prior assumptions, and requirements
for additional information. For a comprehensive literature sur-
vey, the interested reader is referred to Refs. 31 and 32.

The simplest interpolation-based SR methods, such as
bicubic and Lanczos, use linear interpolation kernels to predict
unknown pixels in a higher grid. Because these linear kernels
are usually derived under the assumption that natural images
are either spatially smooth or band-limited, the interpolation-
based SR methods tend to produce smooth HR images with
several visual artifacts, such as ringing, aliasing, blocking, and
blurry.2,4 In recent years, some sophisticated methods,2–8 in
which the kernel coefficients are locally adaptive, have been

proposed to reduce these unwanted artifacts. For instance, the
regression model used in Refs. 5–7 and the adaptive normal-
ized convolution technique used in Ref. 8 are very helpful to
approximate local structures and obtain somewhat sharp edges.

The reconstruction-based SR methods regard the SR prob-
lem as an inverse imaging procedure. Moreover, considering
that far more pixels than the number given need to be deter-
mined, this inverse problem is intrinsically ill-posed. To cope
with this, certain priors are incorporated. For example, the
gradient profile prior10 and the soft edge smooth prior11 are
commonly used for yielding sharp edges. Besides the prior
knowledge, the embedded back-projection policy guarantees
the consistency between the resultant HR and the LR input
images. In general, methods in this category perform better
than the interpolation-based methods, but it is still difficult
to recover high-frequency (HF) details. Besides, Lin and
Shum33 have validated that only under a 2× magnification,
can such reconstruction-based methods effectively generate
fine details, which, of course, greatly limits their applications.

To exceed the limits of the reconstruction-based SR
approaches, the learning-based SR methods aim at estimat-
ing the HF details that are not explicitly found in the LR
input images. In the pioneer work proposed by Freeman
et al.,13 these lost HF details are learned from a set of uni-
versal LR-HR patch pairs. Several extensions14–21 have been
proposed thus far to better predict the correspondences
between LR-HR patches from varieties of training images.
Although their successful SR capabilities have been substan-
tiated by extensive experimental results, several research-
ers10,22–24 have pointed out that false HF details are very
likely to be introduced if the LR input image is incompatible
with the training images. Therefore, many self-learning*Address all correspondence to: Jing Hu, E-mail: j-hu09@mails.tsinghua.edu.cn
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algorithms22–27,29 have been proposed recently to use the LR
input image itself as the only source of LR-HR example
patches. Such approaches are all based on the observation
that the small patches tend to redundantly repeat themselves
many times within the original image scale34 as well as
across different image scales.22–24,27,35 Compared to SR
approaches using an external database, these self-learning
approaches are able to exploit more relevant examples.22,24

In this paper, we propose a self-learning SR method by
taking advantage of local structural information and nonlocal
patch redundancy (self-similarity) property22–24,27,35 in natural
images. First, a set of self LR-HR patch pairs is formed
by splitting the LR input image and its smoothened version
into overlapped patches. Based on these example patch pairs,
a regression model is established to derive the mapping func-
tions that characterize relationships between the LR-HR
patches. By exploiting the multiscale patch redundancy in
LR image, we successfully obtain the high-order derivation
estimation as well as the approximation error of each LR-
HR mapping function. Moreover, since cross-scale self-
similarity holds better for small scaling factors,23 we adopt
a gradual up-sampling scheme, and accumulate the previous
reconstructed HR images and their corresponding LR versions
for succeeding estimation.

Contributions of this paper are twofold:

1. Reliable SR reconstruction. In our scheme, both local
structural information and nonlocal self-similarity are
intimately related in a unified framework. With the aid
of the patch redundancy from multiple image scales,
we give a closed-form solution to a high-order deriva-
tive estimation of the LR-HR mapping function.

2. Adaptive structure preservation. Since the mapping
function, from low to high resolution grid, is particu-
larly specified for each patch in the initial LR image,
the local structure is therefore implicitly preserved.
Besides, the high-order derivative estimation also
leads to the preservation of complex structures, such
as edge orientations (first-order derivatives) and curva-
tures (second-order derivatives).

The remainder of this paper is organized as follows. The
next section gives a brief overview of related work on local
regression model and nonlocal similarity in self-learning
SR approaches, respectively. Section 3 details the proposed
algorithm. Experimental results and comparisons are demon-
strated in Sec. 4. Finally, Sec. 5 concludes this paper.

2 Related Work

2.1 Local Regression Model
The local regression model relates two dependent measure-
ments, yi and xi, via an unspecified regression function fð·Þ
yi ¼ fðxiÞ þ εi; (1)

in which εi is the estimation error and ideally εi → 0 under
the smoothness assumption. One typical application for this
model is to predict the function value fðxÞ at any point x
from the sample pairs ðxi; yiÞ i ¼ 1; · · · ; J. Without any spe-
cific assumptions on the samples or regularization terms, this
prediction model is usually solved by an N-term Taylor
series, which approximates the observation yi as follows:

yi ¼ fðxi þ x − xÞ þ εi

¼ fðxÞ þ f 0ðxÞðxi − xÞ þ 1

2
f 0 0ðxÞðxi − xÞ2þ · · ·

þ 1

N!
fðNÞðxÞðxi − xÞN þ εi; (2)

where f 0ð·Þ and fðNÞð·Þ denote the first andNth derivatives of
the regression function. Because Eq. (2) is derived from a
local signal representation of the regression model, it is rea-
sonable to estimate the unknown coefficients ffðnÞðxÞgNn¼0

by using the samples in the vicinity. With respect to this
notion, Eq. (2) is reformulated as a weighted least-squares
optimization problem

min
ffðnÞðxÞgNn¼0

XJ
i¼1

�
yi − fðxÞ − f 0ðxÞðxi − xÞ− · · ·

−
1

N!
fðNÞðxÞðxi − xÞN

�
2

whðxi − xÞ; (3)

where J is the number of samples that are near x, and
whðxi − xÞ ¼ exp½−ðxi − xÞ2∕2h2� represents the similarity
between xi and x. If we denote y ¼ ½y1; y2 · · · ; yJ�T ,
b ¼ ½fðxÞ; f 0ðxÞ; · · · ; fðNÞðxÞ�T , W ¼ diagf½whðx1 − xÞ;
whðx2 − xÞ; · · · ; whðxJ − xÞ�Tg, and

X ¼

2
6664
1 x1 − x · · · 1

N!
ðx1 − xÞN

..

. ..
. . .

. ..
.

1 xJ − x · · · 1
N!
ðxJ − xÞN

3
7775.

Eq. (3) is then expressed in the following matrix form:

min
b
ky − Xbk2w: (4)

The function diagð·Þ defines a diagonal operator that

diagðAÞ ¼

2
6664
a1

a2
. .
.

aJ

3
7775

for a vector A ¼ ½a1; a2; · · · ; aJ�T. The solution of Eq. (4) is
easily given by the weighted least-squares estimation

b̂ ¼ ðXTWXÞ−1XTWy: (5)

The approaches in Refs. 5–7 and 28 have validated the
effectiveness of the local regression model for recovering
complex structures in the SR problem by achieving higher-
order derivative approximations (N ≥ 1),5 i.e., the first-order
derivatives correspond to edge orientations and the second-
order derivatives are related to curvatures.

2.2 Nonlocal Similarity in Self-Learning
Superresolution Approaches

As illustrated before, the self-learning SR approaches have
been developed to circumvent the false HF details from
irrelevant training image by exploiting the multiscale
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self-similarities in natural images.22–24,27,35 In particular,
Glasner et al.22 have unified the reconstruction-based SR
and the self-learning SR in the same framework, where
the same-scale patch recurrence forms the constraints
used in reconstruction-based SR and the across-scale
patch recurrence generates exemplar LR-HR patch pairs
used in the learning-based SR. By confirming that the
local self-similarity assumption holds better for small
zooming factors, Freedman and Fattal23 have performed
multiple magnification steps of small zooming factors to
achieve the desired magnification size, wherein the exam-
ple patch pairs were extracted from the LR input image and
its smoothed version.

Both Glasner’s and Freedman’s works have confirmed
the effectiveness of the internal patch recurrence in self-
learning SR approaches. Further, Zontak and Irani24 have
shown that the image statistic that is derived from the internal
patch recurrence is more predictive and powerful than the
statistic derived from the external images. Accordingly,
this powerful internal statistic is adopted by several self-
learning SR approaches25–27 as an effective regularization
term. For example, by introducing the nonlocal similarity
constraint, the nonlocal autoregression model (NARM)25

has ensured the incoherence and sparsity of representation
dictionary and consequently made the sparse representation
model more suitable for the SR problem. Moreover, under
the maximum a posteriori probability framework, Zhang
et al.26 have successfully assembled both the nonlocal
prior that is obtained from the self-similarity in the same
scale and the local prior that is derived from a specific regres-
sion model6 to regularize the ill-posed SR problem. Later on,
they have extended to multiscale self-similarity for a better
image detail synthesis.27

3 Proposed Approach
The proposed approach is based on a local regression model
and the multiscale nonlocal self-similarity, which will be
described respectively in Secs. 3.1 and 3.2. Further, an adap-
tive patch processing strategy is provided in Sec. 3.3 to
reduce the time consumption.

In the following, we use matrices I and H to represent
the LR input and the HR output images; Ln is the smoothed
version of I, and Lnþ1 is an enlarged version of I. The bolded
lowercase p and q represent the column vectors of two s × s
image patches that are extracted from I and H, respectively;
m and n denote the column vectors of two s × s image patches
that are extracted from Ln and Lnþ1, respectively. Without
specific notification, we assume that p, q,m, and n are related.
That is, m is the most similar patch to n among all other
patches in image Ln; patches mðnÞ and pðqÞ have the same
coordinate for the center pixel, as presented by the dashed
lines in Fig. 1. Given that image I has more HF details
than Ln, fm; pg constitutes the self-exemplar LR-HR patch
pairs in the proposed method. In addition, because Lnþ1

lacks the HF details in H, fn; qg is another group of LR-
HR patch pairs.

3.1 Local Patch Representation Based on
a Local Regression Model

As mentioned above, the task of learning-based SR
approaches is to find the relations between LR-HR patches.
In the proposed method, this relation is interpreted as an

unspecified mapping function that associates each LR-HR
patch pair fn; qg in the following way q ¼ fðnÞ. The
assumption that m and n are similar patches can also be
interpreted as thatm is “near” n in terms of geometric layout.
Therefore, as in Sec. 2.1, this mapping function f can also be
estimated via Taylor series

q ¼ fðnÞ ¼ fðmþ n −mÞ
¼ fðmÞ þ f 0ðmÞ⊙ðn −mÞ

þ 1

2
f 0 0ðmÞ⊙ðn −mÞ⊙ðn −mÞþ · · · ; (6)

where ⊙ denotes the Hadamard product (also known as
element-wise product). By neglecting noise and blurry in
LR image, we come to p ¼ fðmÞ (which is a very basic
assumption in several self-learning based SR approaches,
such as Refs. 23 and 28), Eq. (6) is therefore reformulated
as

q¼pþf 0ðmÞ⊙ðn−mÞþ1

2
f 0 0ðmÞ⊙ðn−mÞ⊙ðn−mÞþrm;

(7)

where rm represents the residual error. Althoughm and n are
both taken from smooth images, it is agreed that n compa-
rably contains more HF details than m does,23 and therefore
n −m leaves only the HF information.13,23,28 In view of this,
Eq. (7), in fact, generates HR patches by imposing HF details
to the related LR patches, which is actually the basic scheme
of learning-based SR approaches.

From Eq. (7), we have to infer f 0ðmÞ and f 0 0ðmÞ first so as
to obtain each HR patch q. It is worth noting that for many
existing SR approaches, only the first-order derivative is
inferred. For example, in Refs. 13 and 23, the first-order
derivative is assumed to be a constant, whereas in Ref. 28,
this first-order derivative is estimated from an external data-
base. However, it is generally agreed that only using the first-
order derivative is insufficient to recover complex structures,
such as curvatures; moreover, using external images is highly
probable to introduce unfaithful image details. In the next sub-
section, we will present how to extend the first-order deriva-
tive estimation to the second order by exploiting the multiscale
self-similarity property in a given LR image, and also provide
a closed-form solution to this second-order estimation.

Fig. 1 Patch relations in the proposed method.
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3.2 Derivative Estimation Based on Multiscale Local
Self-Similarity

According to nonlocal patch redundancy, each patch is very
likely to have many “neighbors,” which are geometrically
similar to it but are spatially far from it. Supposemi is a sim-
ilar patch to m in image Ln, as in Eq. (6), fðmiÞ can be
approximated as follows:

pi ¼ fðmiÞ ¼ fðmþmi −mÞ
¼ fðmÞ þ f 0ðmÞ⊙ðmi −mÞ

þ 1

2
f 0 0ðmÞ⊙ðmi −mÞ⊙ðmi −mÞþ · · ·

¼ pþ f 0ðmÞ⊙ðmi −mÞ

þ 1

2
f 0 0ðmÞ⊙ðmi −mÞ⊙ðmi −mÞ þ ξi: (8)

The column vector pi ismi’s paired HR patch in image I, and
the column vector ξi also refers to the approximation error as
rm does in Eq. (7). As in Sec. 2.1, by incorporating the J-
most similar patches fmigJi¼1 and their paired HR patches
fpigJi¼1, Eq. (8) can be transformed into the following opti-
mization problem:

min
f 0ðmÞ;f 0 0ðmÞ

XJ
i¼1

����pi − p − f 0ðmÞ⊙ðmi −mÞ

−
1

2
f 0 0ðmÞ⊙ðmi −mÞ⊙ðmi −mÞ

����
2

2

whðmi −mÞ;
(9)

where whðmi −mÞ ¼ expð−kmi −mk22∕2h2Þ measures
the similarity between patches m and mi. Similar to
Eq. (3), the above optimization problem could be easily
solved by the weighted least-squares estimation that b̂ ¼
½f 0ðmÞ; f 0 0ðmÞ�T ¼ ðXTWXÞ−1XTWy as shown in Eq. (5).
We should remind the reader that unlike Eq. (3), in which all
the variables are scalars, the variables inside k · k22 in Eq. (9)
are all in the column vector forms. Thus, we should redefine
the specific formation of X, W, and y by taking account of
the vector forms and the Hadamard product in Eq. (9).
In the proposed method, these three variables are devised
as follows:

X ¼

8>>>>><
>>>>>:

diagðm1 −mÞ diag½ðm1 −mÞ⊙ðm1 −mÞ�
diagðm2 −mÞ diag½ðm2 −mÞ⊙ðm2 −mÞ�

..

. ..
.

diagðmJ −mÞ diag½ðmJ −mÞ⊙ðmJ −mÞ�

9>>>>>=
>>>>>;
;

W ¼

8>>>>><
>>>>>:

diag½whðm1 −mÞ × 1�
diag½whðm2 −mÞ × 1�

..

.

diag½whðmJ −mÞ × 1�

9>>>>>=
>>>>>;
; and

y ¼

2
666664

p1 − p

p2 − p

..

.

pJ − p

3
777775
; (10)

where 1 is an s2 × 1 column vector with all elements equal to
one, and y is of size Js2 × 1 that cascades each column vector
pi − p i ¼ 1; · · · J.

After plugging the least-squares solution of Eq. (9) back
into Eq. (8), the residual error ξi is easily obtained. Further,
by simply averaging all the ξi i ¼ 1; · · · J can the approxi-
mation error rm in Eq. (7) be also obtained. In summary,
we not only provide a closed-form solution of the derivative
estimation, but also approximate the residual error that is
caused by omitting higher-order derivative terms.

Intuitively, for the derivative estimation to be reliable, the
number of independent equations in Eq. (9) must exceed
the number of unknown derivative coefficients. With the
assumption that f 0ðmÞ and f 0 0ðmÞ are not constant within
the patch m (it is a reasonable assumption, for example,
in an edge patch, the pixels across this edge are very likely
to have larger first-order derivative than pixels along it), the
number of unknown derivative coefficients is then related to
the patch size and the derivative order. For instance, if a patch
contains s × s pixels and a second-order derivative estima-
tion is required, then the derivative coefficients are up to
2s2, implying that the demanded number of equations or
the number of similar patches mi should be above 2s2.
Naturally, one question arises: are we able to find such
enough similar patches in a single image? A statistical
analysis made in Ref. 22 shows that the smooth patches
recur much more frequently than the detailed patches do.
However, in our case, we have to find the same patch num-
bers to ensure a reliable second-order derivative estimation,
no matter whether these patches are highly detailed or not.
Recently, Zontak and Irani24 have shown that the patches
with different gradient magnitudes need to search at different
distance to ensure the same number of similar patches, and
have also provided an empirical function. According to this
function, we surprisingly find that the search region should
be even beyond the image size for some highly textured
patches so as to get a reliable second-order derivative esti-
mation. This reveals that for highly textured patches, search
for their similar patches in the same image scale is very
insufficient.

To overcome this insufficient patch problem, we extend
the same-scale local search to multiple scales. More specifi-
cally, based on the gradual magnification scheme, not only
the down-scaled images of the current image resolution, but
also all the images from the previous estimates, including the
initial input image, are employed to find the similar patches.
Take a two-iteration estimate for example. In the first itera-
tion, we respectively search the d2ðs2 þ 1Þ∕3e similar
patches in L0

n and its two down-scaled images to estimate
f 0ðmÞ and f 0 0ðmÞ (these two down-scaled images of L0

n
are obtained by down sampling with the bicubic interpola-
tion under scale 0.9sd, sd ¼ 1, 2). After that, the intermediate
HR image L1 is generated by merging all the reconstructed
HR patches according to Eq. (7), with a fusion of the over-
lapping regions between the adjacent patches. In the second
iteration, we search the dðs2 þ 1Þ∕2e similar patches, respec-
tively, in L0

n, L1
n and the two down-scaled versions of L1

n to
estimate the second derivatives. Subsequently, we obtain the
second intermediate HR image L2, and generate the HR out-
put image by resizing L2 to the desired size using the bicubic
interpolation. We can see that for the derivative estimation in
higher resolution levels, the required number of similar
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patches with respect to each image in the training set is
reduced because more images in lower resolutions can be
utilized.

Although incorporating multiscale images guarantees a
reliable derivative estimation, the additional exhaustive
search for similar patches in other images would inevitably
increase time complexity. Therefore, similar patches in
coarser scales and lower resolutions are selected at the
“relative” coordinates. For instance, in the second iteration
process of the previous example, if the similar patch mi
found in L1

n is centered at ðj; kÞ, then the additional similar
patch mds

i in the down-scaled image of L1
n is centered at

(bj × 0.9sdcbk × 0.9sdc), where sd ¼ 1; 2 denotes the down-
scale level, and the similar patch mls

i in the lower-resolution
image L0

n is centered at (bj∕tcbk∕tc), where t > 1 denotes
the gradual up-scaling factor.

3.3 Computational Speed-Ups
In Sec. 3.1, we translate the estimation of the relations
between LR-HR patches to the estimation of the regression
function derivatives by leveraging a local regression model.
In Sec. 3.2, we further adopt the nonlocal similarity across
multiple image scales to provide a closed-form solution.

In this subsection, an adaptive patch processing strategy is
introduced to reduce the time consumption.

Intuitively, there is no need to estimate the high-order
derivatives for smooth regions since their intensity values
are nearly constant. Moreover, since natural images gener-
ally contain much more smooth regions than the detailed
ones,22,28,36 it is efficient to process different patch types
(smoothed or detailed) in different ways. To discriminate
the textured areas from the flat areas, an effective pixel
classification criterion37 TM is adopted, which provides
a quantitative assessment of image geometric structures
using the structure tensor and the intensity standard deviation
of each patch. More specifically, TM ¼ ½ðs̃2i;1 − s̃2i;2Þ∕ðs̃2i;1 þ s̃2i;2Þ� × f1 − ½1∕ð1þ ζi∕2552Þ�g, in which s̃i;1 and
s̃i;2 are the eigen values of the structure tensor computed
from each image patch, and ζi is the second moment of a
gray-level cumulative histogram of that patch. By analyzing
the cumulative TM histogram, three regions with different
texture magnitudes are obtained:

ði; jÞ ∈
8<
:

c1 TM ði; jÞ > T1

c2 T2 < TM ði; jÞ ≤ T1

c3 TM ði; jÞ ≤ T2

; (11)

Algorithm 1 The proposed method.

Input: LR image I, patch size s × s, overlapping step o, search region size K × K , gradual up-scaling factor t , and desired up-scaling factor r .

Output: HR image H.

(1) Initialization:

(a) Set T ¼ dlogðr Þ∕ logðtÞe and L0 ¼ I.

(2) Iteration:

For iter ¼ 0 to T − 1 do

(a) Calculate Liter
n by convolving Liter with a Gaussian filter.

(b) Calculate TM for Liter
n , and obtain thresholds T 1 and T 2 from the cumulative TM histogram.

(c) Calculate Liter
nþ1 by upscaling Liter with the bicubic interpolation under the t× magnification factor.

(d) Partition Liter and Liter
n into s × s image patches in raster-scan order to construct the HR and LR training set P iter ¼ fpg andQ iter ¼ fmg,

respectively; partition Liter
nþ1 into s × s image patches with o pixels overlapped in raster-scan order to construct the LR test patch set

R iter ¼ fng.

(e) For each patch m in Q iter: if its center pixel’s TM is lower than T 2, assign f 0ðmÞ ¼ 0, f 0 0ðmÞ ¼ 0, and rm ¼ 0; if its center pixel’s TM is
larger than T 1, search a total number of dð2s2 þ 2Þ∕ðiterþ 3Þe × ðiterþ 3Þ K-NN neighbors in Liter

n , the two down-scaled versions of Liter
n ,

and the lower-resolution images fLi
ngiter−1i¼0 , after that, these similar patches and their paired HR patches are used to compute f 0ðmÞ,

f 0 0ðmÞ, and ξi according to Eqs. (10), (5), and (8), and rm is obtained by averaging all ξi s; if its center pixel’s TM is in between, only
f 0ðmÞ and ξi are estimated with a total number of dðs2 þ 1Þ∕ðiterþ 2Þe × ðiterþ 2Þ similar patches in Liter

n , its one down-scaled image,
and the lower-resolution images fLi

ngiter−1i¼0 , assign f 0 0ðmÞ ¼ 0, and rm is obtained by averaging all ξi s.

(f) For each patch n in R iter, search its nearest neighborm in Q iter, generate HR patch q using Eq. (7). Current HR image Htemp is obtained
by merging all q s.

(g) Image estimate update: Literþ1 ¼ Htemp.

End for

(3) Interpolation: Use bicubic interpolation to resize image LT to the desired size for the final HR image H.
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where TM ði; jÞ is the TM value of the pixel at location ði; jÞ;
T1 and T2 are the bin values that correspond, respectively, to
70% and 30% in the cumulative TM histogram; c1, c2, and c3
respectively represent the hard-detailed, medium-detailed,
and smooth regions.

After the classification, an adaptive derivative order estima-
tion scheme is implemented: for hard-detailed regions, we
estimate their second-order derivatives to recover complex
structures; for medium-detailed regions, a first-order deriva-
tive estimation is sufficient; for smooth regions, we simply
paste the results from the previous HR estimation.
Experiments show that such an adaptive patch processing
strategy greatly reduces the time consumption of second-
order scheme, which estimates the second-order derivative
for both hard- and medium-textured regions, to 0.625 times
without any obvious visual quality compromise. Algorithm 1
describes the entire SR process of the proposed method.

4 Experimental Results and Analysis
To evaluate the effectiveness of the proposed method, experi-
ments on 14 standard images (shown in Fig. 2) are conducted.
Several state-of-the-art SR approaches, including Glasner’s
method,22 Fattal’s method,10 Freedman’s method,23 the GPR
method,29 the SC-based method,19 Shan’s method,9 Kim’s
method,21 the ANR method,30 and the NARM method,25 are
selected as comparison baselines. The results of the first three
approaches are straightly downloaded from http://www.cs.huji
.ac.il/~raananf/projects/lss_upscale/sup_images/index.html
and for the rest six approaches we run the source codes that
are available at their authors’ homepage.

Two quantitative measures, peak signal-to-noise ratio
(PSNR) and structural similarity (SSIM) index,38 are adopted
to evaluate the objective performance. A high PSNR score
indicates that the reconstructed HR image contains little dis-
tortion, and a SSIM value near 1 implies that the resultant
HR image has a very similar structure to the ground truth.
It is worth noting that due to the gradual magnification
scheme, any minor structure distortions and estimation errors
may propagate and accumulate over several iterations.28

Thus, the HR image obtained by the proposed method is
inconsistent with the initial LR image. To alleviate inconsis-
tency, a simple back-projection policy19 is adopted to post-
process the reconstructed HR image. Unless otherwise
specified, the presented SR results are postprocessed by
the back-projection.

4.1 Experimental Configuration
In the following experiments, we straightly use the images
shown in Fig. 2(b) as the LR input images, while the other
LR input images are generated by down sampling (using
the bicubic interpolator) the images shown in Fig. 2(a).
In the proposed method, the patch size is 5 × 5 and four pix-
els are overlapped between the adjacent patches. To reduce
the computational complexity, similar patches are found
within the 13 × 13 searching region. The parameter h in
Eq. (9), which is used to compute the similarity, is fixed
to 10.14. The gradual upscaling factor is set to 1.5. The
smooth image Liter

n is generated by convolving with
a Gaussian filter with a standard deviation of 0.65. The
upscaled image Liter

nþ1 is obtained by bicubic interpolation.

Fig. 2 Test images used in our experiments. (a) Original HR images used in 2× and 3× magnification
case. (b) LR images used in 4× magnification case.
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4.2 Experimental Results
For color images, we only super resolve their luminance
channel since human eyes are more sensitive to illuminant
changes. Accordingly, we compare the quantitative differ-
ence only on the luminance channel between the ground
truth and the HR output image.

Table 1 summarizes the quantitative comparisons on
images shown in Fig. 2(a). Among those listed approaches,
ANR,30 Kim’s method,21 and SC-based19 are all training-
based SR approaches, whereas GPR,29 Shan’s method,9

NRAM,25 and the proposed approach are training-free. It
is worth noting that Kim’s method not only uses external
dataset as ANR30 and SC-based19 do, but also postprocesses
the resultant image by imposing an image edge prior. As in
Table 1, Kim’s method on average gives the best PSNR and
SSIM scores. However, even for the image Butterfly, where
Kim’s method presents nearly the highest gain in both PSNR
and SSIM over the proposed method, we observe no appar-
ent visual difference between these two methods (see Fig. 3
for details), despite that there are some jaggies in our
method. Nevertheless, such jaggy effects are in fact intro-
duced by the back-projection process, as illustrated in
Figs. 3(b) and 3(c). Since jaggies are highly probable to
cause the degradation of the objective performance of the
proposed method, we believe that using certain de-jagged
techniques could further improve our method, a most recent
one of which can be found in Ref. 39.

In general, among all the training-free SR approaches, our
method gives the best performance in terms of PSNR and
SSIM. As for the other training-based SR approaches, we
have to point out that they use thousands of training images
to assure that enough relevant information can be utilized in
the SR reconstruction. However, by using a single image

only, the proposed method is able to reach a comparable
objective performance, which validates that the relevant
example LR-HR patch pairs can be found by fully exploiting
the multiscale patch similarity.

For visual comparison, we carry out 3× magnification on
LR images obtained from Fig. 2(a) and 4× magnification on
images in Fig. 2(b). Since the pretrained dictionaries in the
SC-based19 approach are only for a zoom factor of 2, this
approach is excluded in the following visual comparisons.
In the first 3× magnification case, the proposed method is
compared with the GPR method,29 Shan’s method,9 Kim’s
method,21 the ANR method,30 and the NARM method.25

Figure 4 shows the experimental results on images Barbara,
Girl, Fence, and Hat, in which the local regions of interest
(ROIs) in blue boxes are presented at the lower corner for
providing a better comparison. Based on a universal diction-
ary, which is pretrained from thousands of images, the
ANR method30 appears to generate natural-looking results.
Nevertheless, it is clumsy in preserving sharp edges, e.g.,
the blurry eyelashes in image Girl, due to the fact that a uni-
versal dictionary fails to accurately represent the complex
details. Leveraged with a generic image prior model, Kim’s
method can effectively preserve some tiny details (see the
ROI in image Girl), but it is prone to create ringing artifacts
along some complicated edges, e.g., the characters in the
image Hat. As for the NARM25 and Shan’s methods,9 they
are both somewhat prone to smooth HF details. The GPR
method29 seems to have difficulty in synthesizing faithful
details, i.e., the characters in image Hat are badly recovered.
By contrast, the proposed algorithm is able to provide
sharper edges and more photorealistic details than other
methods. For example, in images Barbara and Fence, the
details shown in our ROIs are more distinctive in comparison
with other methods; in images Girl and Hat, very fine details,

Table 1 Comparisons on peak signal-to-noise ratio (PSNR) values (dB) and structural similarity (SSIM) values (PSNR/SSIM) for 2×magnification.

ANR30 GPR29 Kim21 The proposed SC-based19 NARM25 Shan9

Starfish 30.958/0.933 25.842/0.857 31.638/0.941 32.053/0.944 31.527/0.939 26.358/0.855 25.568/0.843

Butterfly 29.176/0.946 23.047/0.880 30.448/0.959 29.943/0.956 29.926/0.955 24.055/0.889 23.2920.877

Fence 24.990/0.805 21.223/0.683 24.897/0.809 25.146/0.814 24.940/0.810 22.483/0.708 21.280/0.698

Foreman 37.806/0.962 32.918/0.929 38.469/0.962 38.133/0.963 38.535/0.965 33.113/0.926 32.460/0.921

House 34.390/0.911 28.907/0.857 35.050/0.914 34.445/0.912 34.790/0.914 30.129/0.863 29.271/0.852.

Girl 32.353/0.843 31.739/0.810 32.328/0.845 32.201/0.843 32.305/0.844 29.537/0.753 29.073/0.753

Barbara 27.213/0.865 23.863/0.769 27.173/0.868 27.237/0.868 27.342/0.867 25.219/0.792 24.590/0.766

Flower 31.238/0.925 26.160/0.830 31.819/0.934 31.625/0.932 31.521/0.929 27.010/0.840 26.250/0.831

Pepper 32.703/0.902 29.218/0.865 33.662/0.904 33.904/0.906 32.875/0.903 29.969/0.860 29.128/0.852

Hat 32.348/0.917 28.805/0.866 33.061/0.927 32.630/0.922 32.715/0.922 29.152/0.863 28.617/0.849

Plants 35.563/0.959 29.796/0.894 36.657/0.963 36.161/0.961 36.092/0.959 30.280/0.890 29.670/0.883

Average 31.704/0.906 27.410/0.840 32.291/0.911 32.134/0.911 32.048/0.909 27.937/0.840 27.200/0.829
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such as eyelashes and the contour of characters, are well
preserved.

In addition, the objective comparisons of the HR results
under 3×magnification are listed in Table 2, where our result
appears not as superior as in the case of 2× magnification.
However, we also find that our method, in fact, provides the
best appealing visual details, i.e., the ROIs in Fig. 4(d) are
consistently more vivid than those in Fig. 4(b), although
the latter gives the almost highest PSNR and SSIM values;
Hat image is poorly reconstructed by GPR but it has higher
PSNR value than ours. This paradox suggests that the objec-
tive quality degradation of our method can be only attributed
to the inconsistency caused by the gradual magnification
scheme. Although this inconsistence can be alleviated by
the back-projection policy, Freedman and Fattal23 have fur-
ther claimed that such inconsistency should be alleviated at
an early stage. Their claim also explains why our method
gives superior quantitative performance in 2× magnification
case but fails to do so in 3× magnification case, since in 2×
magnification, only two iterations are required in the pro-
posed method.

To further inspect the effectiveness of our method, we
continue to compare with more algorithms in Figs. 5–7
under a 4× magnification. Since the code of the NARM25

method is only devised for zoom factors of 2 and 3, we
also exclude this method in the subsequent visual compar-
isons. Among all the reconstructed HR images shown in
Figs. 5–7, Freedman’s method23 tends to blur HF details
since it simply assumes that the first-order derivative of
the mapping function is a constant value. Although Fattal’s
method10 applies imposed edge statistics to generate sharp
edges, it produces staircase artifacts along edges as shown
in Fig. 6(g). Glasner’s method22 avoids these unwanted
staircase artifacts and provides somewhat pleasant results.
Nevertheless, this particular method fails to reproduce plau-
sible details, such as the character “9” in Fig. 7(f). On the
contrary, as reflected in all the ROIs, the proposed method
outperforms the others by providing more reasonable details.
Although there are some jaggies in our results, such as
Fig. 7(e), we should point out that they are mainly introduced
by the simple back-projection process. As reflected in
Fig. 8(b), prior to the back-projection, our result presents
more distinguishable details. Although Fig. 8(b) presents
a kind of overestimation, we in fact cause this artifact on
purpose since the subsequent back-projection step weakens

the details. Moreover, quantitative comparisons are also
made. Since no ground truth is available in 4×magnification,
we adopt a no-reference image assessment natural image
quality evaluator (NIQE)40 to indicate the quality of recon-
structed HR image. NIQE reflects how the perceived image
deviates from the statistical regularities calculated from natu-
ral images, a small value of which suggests a better image
quality. From all the results in Figs. 5–7, we see that our
method provides the lowest NIQE values.

To sum up, the advantages of the proposed method are
attributed to the combination of the local regression
model and the multiscale patch redundancy property: (1) we
estimate the higher-order derivative of the mapping function,
so that complex details such as curvature can be well pre-
served and enhanced; (2) exploiting the self multiscale
redundancy helps to find more related patches than using
an external database, without introducing false details.

4.3 Discussion on Down-Sampling Method
As illustrated in Ref. 7, the down-sampling method also
affects the SR algorithms, because in the synthesis experi-
ments, the LR input images are usually obtained by down
sampling the original image. Therefore, if a proper down-
sampling method is applied, the LR image will have
fewer artifacts, which lead to a better reconstructed HR
image. In Table 3, the influences of four down-sampling
methods on the proposed method, namely, “Nearest,”
“Bilinear,” “Bicubic,” and “Lanczos,” are quantified in
terms of PSNR and SSIM, using the test images in
Fig. 2(a) under a 3×magnification. Note that we do not post-
process the SR results (back-projection) in this case, since we
want to examine how the down-sampling method influences
our algorithm. Surprisingly, the listed numerical results seem
to be a violation of the claim in Ref. 7, since the simple bilin-
ear method outperforms others. However, we notice that the
SR results on images down sampled by bicubic are always
sharper than the results by bilinear method, which, we
believe, causes the degradation of objective performance
of the bicubic method since overestimation may occur in
some highly textured regions. However, we also found in
our experiments that after the back-projection, the average
PSNR gain obtained by bicubic over bilinear is higher
than 4 dB. Therefore, in all of our experiments, the bicubic
interpolation is used as the down-sampling method.

Fig. 3 Quantitative and qualitative SR comparisons (2×) on image Butterfly. (a) LR image. (b) Our result
before back-projection (PSNR: 25.902 dB, SSIM: 0.926). (c) Our result after back-projection. (PSNR:
29.943 dB, SSIM: 0.956). (d) Kim’s method21 (PSNR: 30.448 dB, SSIM: 0.959). Note that the artifacts
in (c) are, in fact, introduced by back-projection.

Journal of Electronic Imaging 033014-8 May∕Jun 2014 • Vol. 23(3)

Hu and Luo: Single-image superresolution based on local regression and nonlocal self-similarity



Fig. 4 Superresolution (3×) comparison on four images: Barbara, Girl, Fence, and Hat. (a) The ground
truth; (b)–(g) the reconstructed HR results by ANR,30 Kim’s method,21 the proposed approach, NARM,25

GPR,29 and Shan’s method,9 respectively.

Journal of Electronic Imaging 033014-9 May∕Jun 2014 • Vol. 23(3)

Hu and Luo: Single-image superresolution based on local regression and nonlocal self-similarity



4.4 Discussion on the Derivative Order
Here, we conduct an empirical study on the effect of deriva-
tive orders on the recovery of complex details. Four different
derivative order settings in the nonsmooth patches are
adopted for comparison, such as the zero-order estimation,
the first-order estimation, the second-order estimation, and

the adaptive order estimation used in the proposed method.
The zero-order derivative estimation refers to assigning
f 0ð·Þ ¼ 0, f 0 0ð·Þ ¼ 0, and rm ¼ 0 in Eq. (7), and a similar
notion goes for the first-order derivative estimation by
assigning f 0 0ð·Þ ¼ 0. As indicated in Fig. 9, higher-order
derivative estimation helps to produce fine textural details.

Table 2 Comparisons on peak signal-to-noise ratio (PSNR) values (dB) and structural similarity (SSIM) values (PSNR/SSIM) for 3×magnification.

ANR30 GPR29 Kim21 The proposed NARM25 Shan9

Starfish 22.626/0.711 22.137/0.685 22.581/0.713 21.709/0.676 22.336/0.703 19.239/0.522

Butterfly 19.413/0.763 19.055/0.751 19.441/0.784 19.069/0.761 19.894/0.761 16.248/0.631

Fence 19.785/0.537 19.574/0.511 19.870/0.547 19.077/0.502 19.497/0.500 17.318/0.380

Foreman 29.471/0.869 29.217/0.865 29.313/0.869 28.573/0.854 27.641/0.859 26.098/0.797

House 25.287/0.779 25.311/0.775 25.023/0.777 24.451/0.757 25.352/0.774 21.780/0.674.

Girl 32.181/0.800 31.503/0.775 32.240/0.802 31.382/0.794 28.918/0.677 28.879/0.652

Barbara 25.310/0.768 24.662/0.735 25.127/0.767 25.455/0.774 24.106/0.710 22.658/0.653

Flower 23.436/0.694 23.462/0.673 23.266/0.693 22.625/0.657 23.321/0.687 20.460/0.517

Pepper 28.452/0.841 28.090/0.834 28.486/0.842 27.518/0.816 26.928/0.820 26.614/0.805

Hat 26.545/0.786 26.179/0.778 26.510/0.792 25.953/0.778 25.315/0.769 23.886/0.707

Plants 25.307/0.765 25.379/0.762 25.122/0.764 24.629/0.740 26.287/0.774 22.346/0.635

Average 25.258/0.756 24.961/0.740 25.180/0.759 24.586/0.737 24.509/0.730 22.320/0.634

Fig. 5 Superresolution (4×) comparison on image Sculpture. (a)–(h) are the reconstructed HR results by
ANR,30 GPR,29 Kim’s method,21 Shan’s method,9 the proposed approach, Glasner’s method,22 Fattal’s
method,10 and Freedman’s method,23 respectively. The numbers in bracket denote NIQE40 values.
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For example, the zero-order estimation causes very severe
block effects. On the other hand, the other three derivative
estimation types successfully restore the complex details.
Moreover, achieving second-order derivative estimation
even preserves the subtle structure changes in kid’s eye-
lashes, as shown in Figs. 9(c) and 9(d). Although there
are no apparent visual differences between Figs. 9(c) and
9(d), the adaptive estimation strategy runs 1.6× faster than
estimating second-order derivative on all detailed patches.

To sum up, the adaptive order strategy not only synthesizes
complex details, but is also time efficient.

4.5 Discussion on Parameters
For the proposed method, it is important to choose proper
parameters so as to obtain good SR performance. In general,
there are six parameters to be determined: the patch size, the
overlapping step, the deviation of Gaussian filter, the gradual

Fig. 6 Superresolution (4×) comparison on image Kid. (a)–(h) are the reconstructed HR results by
ANR,30 GPR,29 Kim’s method,21 Shan’s method,9 the proposed approach, Glasner’s method,22 Fattal’s
method,10 and Freedman’s method,23 respectively. The numbers in brackets denote NIQE40 values.

Fig. 7 Superresolution (4×) comparison on image Chip. (a)–(h) are the reconstructed HR results by
ANR,30 GPR,29 Kim’s method,21 Shan’s method,9 the proposed approach, Glasner’s method,22 Fattal’s
method,10 and Freedman’s method,23 respectively. The numbers in brackets denote NIQE40 values.
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scaling factor, the size of search region, and the smoothing
parameter h in Eq. (9) to compute similarity. We found that
our algorithm is insensitive to the last three parameters in
a reasonable range. In the following, we will elaborate the
influences of the first three parameters, respectively.

4.5.1 Influence of patch size and overlapping step

Intuitively, using a large patch size tends to produce a smooth
result and using a small patch size may introduce unwanted
artifacts in flat areas. In the proposed method, the patch size
also determines the number of derivative coefficients that

need to be estimated. For example, if the patch size is a little
large, say 9 × 9, for a second-order derivative estimation, we
have to find at least 162 similar patches in multiscale ver-
sions of the input image. Finding such a large number of
patches with high similarity is unrealistic. In addition, the
ones that are not the first few nearest patches are very likely
to be quite different from the target patch. In light of this,
patch size cannot be very large in the proposed method.
Therefore, we only discuss the effects caused by different
patch sizes of 3 × 3, 5 × 5, and 7 × 7, and show their recon-
structed results on image Girl and Hat under a 2× magnifi-
cation in Fig. 10.

As shown in Fig. 10, the freckles in image Girl are well
preserved by using patch size 3 × 3, whereas the other
two patch size settings are prone to blurring such details.
Nevertheless, some unwanted artifacts are introduced in
image Hat by using patch size 3 × 3, such as the black
dots along the hat edge, while the results obtained by
other patch sizes are more pleasant. Besides, we have
found that applying the patch size of 7 × 7 in our approach
greatly increases the running time, which takes 10 times
more than what is taken by running with 3 × 3 patches.
Therefore, to balance the reconstruction quality and the
time efficiency, we suggest using the patch size of 5 × 5
in the proposed method.

Fig. 8 Comparison of images. (a) after back-projection and (b) before back-projection.

Table 3 Comparisons of different down-sampling methods in terms
of peak signal-to-noise ratio (PSNR) and structural similarity (SSIM).

Down-sampling methods

Nearest Bilinear Bicubic Lanczos

SSIM 0.630 0.703 0.680 0.695

PSNR (dB) 19.958 22.870 21.058 22.214

Fig. 9 The SR results (before back-projection) obtained by different derivative orders. (a) Zero order.
(b) First order. (c) Adaptive order. (d) Second order. Note that we make the overestimate in
(b)–(d) on purpose since the subsequent back-projection step weakens the details.
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In addition, when patch size is fixed, a larger overlapping
step leads to a better SR result. To this end, we use an over-
lapping step of four in the proposed method, as suggested in
the SC-based SR19 method.

4.5.2 Influence of deviation of Gaussian filter

In the proposed method, the Gaussian filter is used to gen-
erate the blurred image Ln. A large deviation of the Gaussian
filter leads to a blurrier Ln, and consequently presents a more
obvious HF enhancement according to Eq. (7). A supported
example is shown in Fig. 11, in which a higher Gaussian
derivation is prone to overestimation. However, considering
that the subsequent back-projection will weaken the image
details, we recommend a large Gaussian derivation in the
first SR process.

5 Conclusion
In this paper, we present a new learning-based SR method
for single image. Without any external training database,
the proposed method establishes the relations between self
LR-HR patches by leveraging the local regression model and
the multiscale nonlocal patch redundancy. To better guaran-
tee the cross-scale similarity, a gradual up-scaling scheme is

also adopted, and previous estimates are accumulated for
the next derivative estimation. In addition, an adaptive
patch-based processing strategy is employed to reduce time
consumption. Extensive experimental results, further, show
how this proposed method improves over many existing
learning-based SR approaches. In general, benefiting from
a closed-form solution to high-order derivative estimation,
the proposed method yields more photorealistic HR images
with sharp details.

In the future, we plan to extend the proposed method in
the following ways. (1) Adaptive patch size. As illustrated in
Sec. 4.5.1, a large patch size is appropriate in smooth regions
and a small patch size helps to recover subtle image details.
Therefore, applying these two complementary properties in a
combined adaptive patch size policy will further improve the
proposed method. (2) Suitable patch features. Several works
have pointed out that the way to represent the image patches
also affects SR algorithms. In the proposed method, the patch
itself is directly used as a basic feature. Other feature descrip-
tors can also be employed, such as contrast-normalized
patch and the patch derivative. (3) Contaminated image.
Currently, the proposed method could only deal with clean
images, and directly applying it to contaminated images

Fig. 10 The SR results (before back-projection) obtained by different patch sizes. (a) The ground truth.
(b) Patch size is 3 × 3. (c) Patch size is 5 × 5. (d) Patch size is 7 × 7.

Fig. 11 The SR results (before back-projection) obtained by different Gaussian deviations: (a) 0.45,
(b) 0.5, (c) 0.55, (d) 0.6, and (e) 0.65.
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would either introduce unwanted artifacts, e.g., the noise
amplification effect in noisy images, or no significant
improvement in blurry images. For noisy images, the
assumption in Eq. (6) that p ¼ fðmÞ is no longer valid;
for blurry images, the blur kernel used in generating Ln
should be refined.41 One possible alternative is to extend
the nonlocal patch redundancy to image denoising and
image deblurring, which has been very effective in many
image processing works.34,41–43
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