Journal of

Medical Imaging

Medicallmaging.SPIEDigitalLibrary.org

PSNet: prostate segmentation on MRI
based on a convolutional neural
network

Zhigiang Tian
Lizhi Liu
Zhenfeng Zhang
Baowei Fei

spl E Zhiqgiang Tian, Lizhi Liu, Zhenfeng Zhang, Baowei Fei, “PSNet: prostate segmentation on MRI based on a
° convolutional neural network,” J. Med. Imag. 5(2), 021208 (2018), doi: 10.1117/1.JMI1.5.2.021208.



Journal of Medical Imaging 5(2), 021208 (Apr-Jun 2018)

PSNet: prostate segmentation on MRI based on
a convolutional neural network

Zhiqiang Tian,?® Lizhi Liu,” Zhenfeng Zhang,® and Baowei Fei®®®"*

&Xi'an Jiaotong University, School of Software Engineering, Xi'an, China

®Emory University School of Medicine, Department of Radiology and Imaging Sciences, Atlanta, Georgia, United States
°The Second Hospital of Guangzhou Medical University, Department of Radiology, Guangzhou, China

dGeorgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States

*Winship Cancer Institute of Emory University, Atlanta, Georgia, United States
‘Emory University, Department of Mathematics and Computer Science, Atlanta, Georgia, United States

Abstract. Automatic segmentation of the prostate on magnetic resonance images (MRI) has many applications
in prostate cancer diagnosis and therapy. We proposed a deep fully convolutional neural network (CNN) to
segment the prostate automatically. Our deep CNN model is trained end-to-end in a single learning stage,
which uses prostate MRI and the corresponding ground truths as inputs. The learned CNN model can be used
to make an inference for pixel-wise segmentation. Experiments were performed on three data sets, which con-
tain prostate MRI of 140 patients. The proposed CNN model of prostate segmentation (PSNet) obtained a mean
Dice similarity coefficient of 85.0 4 3.8% as compared to the manually labeled ground truth. Experimental results
show that the proposed model could yield satisfactory segmentation of the prostate on MRI. @ 2018 Society of Photo-

Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JM1.5.2.021208]
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1 Introduction

It is estimated that there are 161,360 new cases of prostate
cancer and 26,730 deaths from prostate cancer in the USA in
2017.! Magnetic resonance image (MRI) becomes a routine
modality for prostate examination.””> Accurate segmentation of
the prostate and lesions from MRI has many applications in
prostate cancer diagnosis and treatment. However, manual
segmentation can be time consuming and subject to inter- and
intrareader variations. In this study, a deep learning method is
proposed to automatically segment the prostate on T2-weighted
(T2W) MRI.

Recently, deep learning has dramatically changed the land-
scape of computer vision. The initial work was proposed for
image classification® using a big data set of natural images called
ImageNet.” Currently, most deep learning models are for image-
level classification.®® To obtain a pixel-wise segmentation, some
researchers”™> proposed a patch-wise segmentation method,
which extracts small patches (e.g., 32 X 32) from images and
then trains a patch-wise convolutional neural network (CNN)
model. In the training stage, each patch extracted from training
image is assigned a label, which can be directly fed into the
image-level classification framework to learn a CNN model. If
the center pixel of the patch belongs to the foreground, the label
of this patch is 1. In the testing stage, the patches are extracted
from the testing image first. The learned CNN model can be
used to infer the label of testing patches. The label is assigned
to the center pixel of the testing patches. Tajbakhsh et al.’
proposed a deep learning method for intima-media boundary
segmentation from ultrasound image. They formulated the boun-
dary segmentation task as a pixel-level classification problem.
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To train the CNNs, 200,000 training small patches were
extracted from the images and AlexNet was used in their study.
Zhang et al.'® proposed to use deep CNNs for segmenting iso-
intense stage brain tissues using multimodality MRI. For each
subject, they generated >10,000 patches centered at each pixel
from T1, T2, and fractional anisotropy images. The patches
were considered as training and testing samples in their study.
Ciresan et al.'? presented a deep neural network method to seg-
ment neuronal membranes in electron microscopy images. They
used a special type of deep artificial neural network as a pixel
classifier. The label of each pixel was predicted from raw pixel
values in a square patch centered on it. Pereira et al.'* proposed
a CNN-based method for segmentation of brain tumors in MRI.
To train the CNN for low grade gliomas (LGG) and high grade
gliomas (HGG), they extracted around 450,000 and 335,000
small patches, respectively. Kooi et al.'* proposed a CNN
method for breast lesion detection in mammography. 39,872
patches were extracted for training the CNNs, which the size
of patch is 250 x 250. Milletari et al.'” proposed a patch-wise
deep learning method for segmentation of deep brain regions
in MRI and ultrasound. They collected patches from both fore-
ground and background and train a CNN.

The performance of patch-wise CNN models can be affected
by the patch size. A large patch size reduces the localization
accuracy and a small patch size only can see a small context.
In addition, when the number of patches is large (each pixel/
voxel assigned a patch), there is a high redundant computation
that needs to be performed for neighboring patches. To solve
these problems, Long et al.'® proposed an end-to-end pixel-wise,
natural image segmentation method based on Caffe,'” a deep
learning software. They modified an existing classification
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CNN to a fully convolutional network (FCN) for object segmen-
tation. A coarse label map can be obtained from the network
by classifying every local region, and then performing a simple
deconvolution based on bilinear interpolation for pixel-wise
segmentation. This method does not make use of postprocessing
or posthoc refinement by random fields.'!

Because the FCN algorithm achieves a good performance,
researchers proposed various FCN-based methods for medical
image segmentation.””>* Ronneberger et al.”’ took the idea
of the FCN one step further and presented an framework called
U-Net, which is a regular CNN followed by an up-sampling
operation, where up-convolutions are used to increase the size
of feature maps. Cicek et al.>* extended the U-Net to obtain
three-dimensional (3-D) segmentation. Yu et al.? proposed
a volumetric ConvNet to segment prostate from MRI. They
extended a two-dimensional (2-D) FCN into a volumetric fully
ConvNet (3D-FCN) to enable volume-to-volume segmentation
prediction. Milletari et al.* proposed a 3-D variant of U-Net
architecture called V-Net for prostate segmentation. In the deep
neural networks with several convolutional layers, it is impor-
tant to provide a good initialization, which can improve segmen-
tation performance. In addition, the efficiency of the deep
learning architecture is nontrivial. To solve these problems, a
pretrained model trained on a large number of natural images is
used to initialize the parameters of the proposed network, which
can also accelerate the model converges to minimum.

In this paper, we propose the use of FCN for the segmenta-
tion of the prostate on MRI. The contribution includes the modi-
fication of the FCN and its validation on prostate MRI. The
preliminary study of the work was presented at the 2017 SPIE
Medical Imaging Conference® and the authors were requested
to submit a full article to the Journal of Medical Imaging (JMI).
As compared to the SPIE conference paper, this JMI article
made major improvements: (1) we extended the method from
20 patients to 140 patients, (2) we added more literature review
in Sec. 1, (3) we performed more segmentation experiments
with three databases, and (4) we added significantly more results
in this article. The rest of this paper is organized as follows: in
Sec. 2, we present the details of the proposed algorithm.
Section 3 evaluates the performance of the proposed algorithm
and discusses the results of our experiments. We conclude the
paper in Sec. 4.

2 Method

2.1 Convolutional Neural Network

In practice, few people train an entire CNN from scratch, since it
is difficult to collect a dataset of sufficient size, especially for
medical images. In contrast, to learn from scratch, it is common
to use a pretrained CNN on a large data set as an initialization
and then retrain an own classifier on top of the CNN for the data
set in hand, named as fine-tuning. Tajbakhsh et al.? showed that
knowledge transfer from natural images to medical image is
possible based on CNN. Therefore, we fine-tune Long’s FCN
model'® trained on PASCAL VOC data set*® and retrain it based
on our medical image for the prostate segmentation, named as
PSNet. Figure 1 shows the proposed deep learning method.

The early layers of PSNet learn low-level generic features
that are applicable to most tasks. The late layers learn high-
level specific features that are applicable to the application at
hand.?”?® Therefore, we only fine-tune the last three layers of
the FCN in this work. Figure 2 shows the filters and the outputs
of the first hidden layer. The first layer learns simple features,
such as edge, junction, and corner. Figure 3 shows the outputs of
late hidden layers. The figure shows that the late layers learn
high-level features, which yield highly abstracted output images.

The proposed PSNet predicts the probability of each voxel
belonging to the prostate or background. For each prostate MRI,
the prostate only has a small region compared with the back-
ground, which means that the number of the foreground voxels
is less than that of the background voxels. This unbalance
between the prostate and background regions will cause the
learning algorithm to get trapped in local minima with the use
of the softmax loss function in Caffe.!” Therefore, the prostate is
often missed and the prediction tends to classify prostate voxels
as the background. In this work, we use a weighted cross entropy
loss function.?” The loss function is formulated as follows:

1 X . .
L=— WEIP,; log P; + (1 — P;)log(1 — P})],
n I:ZI l[ 1 Og l+( l) Og( I)]

where P; represents the ground truth or golden standard, Isi
denotes the probability of the voxel i belonging to the prostate,
and W¢ is the weight, which is set as 1/|pixels of class x; = C|.

Forward/inference

Backward/learning

384 256

4096 4096 2

Fig. 1 The framework of the proposed deep CNN. There are seven hidden layers in the CNN. The num-
ber shows the feature or channel dimension of each hidden layer.
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Fig. 2 Filters and outputs of the first hidden layer of the PSNet. (a) Filters of the first hidden layer (3 x 3
filters) and (b) outputs of the first hidden layer (first 36 only).
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Fig. 3 Output of (a) the fourth layer and (b) the fifth layer of the PSNet.

Based on the weighted cross entropy loss function, the class
unbalancing problem can be alleviated.

Data augmentation has been proven to improve the perfor-
mance of deep learning.®?*° To obtain robustness and increased
precision on the test data set, we augment the original training
data set using image translations and horizontal reflections.

2.2 Evaluation Metrics

The proposed method was evaluated based on the manually
labeled ground truth. Four quantitative metrics are used for
segmentation evaluation, which are Dice similarity coefficient
(DSC), relative volume difference (RVD), Hausdorff distance
(HD), and average surface distance (ASD).*'"*% The DSC is
calculated as follows:

_ 2|Sa N Sb‘

DSC = ——F—,
|S¢l| + |Sb|

where |S,| is the number of pixels of the prostate from the man-
ually segmented ground truth, and |S},| is the number of pixels of
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the prostate from the proposed method. The RVD is computed
as follows:

RVD = 100 x ('S“| - 1).
S|

To compute the HD and ASD, a distance from a pixel x to a
surface Y is defined first as d(x, Y) = min,ey||x — y||. The HD
between two surfaces X and Y is calculated as

HD(X, Y) = max[max d(x, Y), max d(y, X)].
ye

xeX
The ASD is defined as

ASD(X.¥) = — | {Zd(x,YHZd(y,X)],

B |X| + |Y‘ xeX yeY

where |X| and |Y| represent the number of pixels in the surface X
and Y, respectively.
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3 Experimental Results

3.1 Data Set

The proposed method was evaluated on three data sets of pros-
tate MRI, which has 140 T2W MRI volumes in total. For the
first data set, 41 in-house T2W prostate volumes were used for
our experiments. All subjects were scanned at 1.5 and 3.0 T in
Emory Hospital without endorectal coil. The voxel size varies
from 0.625 to 1 mm. The size of the axial images is from
320 x 320 to 256 x 256.

We also validated our method on two other publicly available
data sets called ISBI2013*° and PROMISE12,** which contains
60 and 50 prostate T2 MRI, respectively. These two data sets
have 11 overlapped subjects, which were removed in our experi-
ments. Therefore, 99 T2W MR volumes were collected from
these two data sets. The subjects were scanned at 1.5 and 3 T,
in which part of subjects were scanned with endorectal coil. The
voxel size varies from 0.4 to 0.625 mm, whereas the image
size varies from 320 X 320 to 512 X 512. To better analyze the
prostate MRI data, an isotropic volume is obtained for each
case using windowed sinc interpolation in our experiments.

We used fivefold cross-validation procedure to evaluate the
segmentation performance. Specifically, we used 112 out of
the 140 subjects to train the network and used the remaining
subjects to evaluate the performance. The average performance
across folds was reported.

3.2 Implementation Details

In our experiments, training and inference were implemented in
Python language. All the experiments ran on an Ubuntu work-
station equipped with 32 GB memory, an Intel i7 6700 CPU,
and an Nvidia GTX 1070 graph card with 8 GB video memory.

The training time of the CNN model is 20 h with CuDNN accel-
eration. Learning rate was set as 1 x 10~°, while the iteration
was 80,000. The weights in the networks were initialized
randomly with the pretrained model from natural images.
During training, the weights were updated by stochastic gradient
descent algorithm with a momentum of 0.99 and a weight decay
of 0.0005. One advantage of using FCN for image segmentation
is that the entire image can be directly used as an input to the
network for both training and testing phases. It leads to an effi-
cient segmentation. Each prostate MRI was segmented in about
4 s. Caffe'” is used for implementation of the proposed method.

3.3 Qualitative Evaluation Results

The performance of the proposed deep learning method was
evaluated qualitatively by visual comparison with the manually
segmented contours. Figure 4 shows the qualitative results.

3.4 Quantitative Comparison

Three prostate segmentation methods were chosen to evaluate
our approach, which are the FCN model trained from scratch,
U-Net, and V-Net model. The implementation of U-Net is
obtained from the webpage of the authors available in a
Github repository: https://github.com/faustomilletari/VNet. We
used the original implementation written by the authors of
V-Net. To better fit the original implementations of FCN, U-Net,
and V-Net, we use different image sizes for different architec-
tures. Due to the memory constraint, V-Net adopts a smaller
image size mentioned in the paper. The comparison results of
these three methods with our method are provided in Table 1.

The average RVD of our method is 4.1%, which shows that
the segmentation result obtained by the proposed method has a
good balance between over-segmentation and under-segmentation.

Fig. 4 The qualitative results of the proposed method. The red curves represent the prostate contours
obtained by the proposed method, while the blue curves represent the contours obtained from manual
segmentation by an experienced radiologist.
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Table 1 Quantitative comparison of the proposed method with three
state-of-the-art methods.

DSC (%) RVD (%) HD (mm) ASD (mm)
FCN Avg. 78.9 5.9 11.9 4.8
Std. 6.2 10.9 4.8 1.1
V-Net Avg. 83.2 5.2 9.5 3.4
Std. 4.9 7.6 3.9 1.2
U-Net  Avg. 83.6 4.4 10.1 3.3
Std. 45 8.0 3.2 1.0
PSNet  Avg. 85.0 41 9.3 3.0
Std. 3.8 9.6 35 0.9

Our method achieved the highest DSC with the lowest standard
deviation and the lowest HD with the lowest standard deviation.
In addition, we also found that the results based on weighted
cross entropy are better than that of using the Dice loss function.
The proposed method yielded a DSC of 85.0%, whereas the
Dice loss version obtained a DSC of 82.3%.

4 Conclusions

We proposed an automatic deep learning method to segment the
prostate on MRI. An end-to-end deep CNN model was trained
on three prostate MR data sets and achieved good performance
for prostate MRI segmentation. To the best of our knowledge,
this is the first study to fine-tune an FCN that has been pre-
trained using a large set of labeled natural images for segment-
ing the prostate on MRIL

Based on the experimental results, we found that the use of
pretrained FCN with fine-tuning could yield satisfactory seg-
mentation results. The performances are expected to be further
improved by adding more training data sets. The proposed algo-
rithm is efficient and does not require any handcrafted features.
Currently, the deep learning algorithm learns the features auto-
matically. Fortunately, other works®’ = have developed new
CNN models for segmentation, which can be used to improve
our segmentation algorithm in the future work. Deep learning-
based segmentation methods rely not only on the selection of
neural network architecture but also on the selection of loss
function. In future, we will investigate the behavior of custom
loss functions and their performances for segmentation task. The
deep learning method can be generalized to various organs and
lesions segmentation problems beyond prostate segmentation.
It can be applied not only to MRI but also other imaging
modalities such as CT and ultrasound images.
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