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Abstract. In hyperspectral remote sensing imagery, the sensor, atmosphere, topography, and
other factors often bring about some degradations, such as noise, haze, clouding, and shadowing.
Due to inevitable tradeoff between spatial resolution and spectral resolution, low spatial details
of hyperspectral images (HSIs) also limit the range of potential applications. Compensating for
these degradations through quality improvement is a key preprocessing step in the exploitation of
HSIs. A comprehensive analysis of the quality improvement techniques for HSIs is presented.
The closely connected techniques, such as denoising, destriping, dehazing, cloud removal, and
super-resolution, are linked as a whole by a general reconstruction model in a variational frame-
work. Furthermore, we classify the methods into four categories according to their processing
strategies for HSIs, including single-channel prior-based model, cross-channel prior-based
model, tensor-based model, and data-driven prior-based model. Then, for several specific tasks,
we briefly introduce their architectures of quality improvement, which combine different models
and available complementary information from other spectral bands and/or temporal/sensor
images. Some experimental results in different tasks are presented to show the effect of varia-
tional framework and draw some meaningful conclusions. Finally, some advantages on varia-
tional framework are discussed, and several promising directions are provided to serve as
guidelines for future work. © 2021 Society of Photo-Optical Instrumentation Engineers (SPIE)
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1 Introduction

In the field of airborne and satellite remote sensing, hyperspectral imaging (HSI) has matured
into one of the most powerful and promising technologies. The continuous spectral bands enable
HSI to discriminate different materials on the ground more possibly. The research on HSI
processing has been active in the past decades. HSIs have also been more widely used to monitor
the earth surface for civilian and military purposes.

However, to obtain a high spectral resolution, the sensors should narrow the bandwidth, as
shown in Fig. 1. This approach inevitably reduces the signal-to-noise ratio because less energy
can be captured by the sensor. Therefore, in Figs. 2(a)-2(c), degradations, such as random noise,
striping, and dead pixels, arise more frequently in HSIs than multispectral (MS) and panchro-
matic (PAN) images. These noises are produced by atmospheric effects and instrumental failure
corruption in the spectral bands with varying degrees. For HSIs, denoising is an essential esti-
mation task of radiometric quality improvement related to the observed image that is degraded by
noise sources.
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Fig. 1 Difference between HSI and MS image.

Moreover, the atmosphere, topography, and other factors often cause additional degradations,
such as haze, shadow, and cloud coverage. In Fig. 2(d), haze and thin cloud mainly caused
the local unevenness, which shows the increasing intensity due to the complicated atmospheric
scattering. Furthermore, in Fig. 2(e), frequent thick clouds and shadow cover the real surface
inevitably and causes bad influence on the visual appearance.

From a perspective of satellite remote sensing system limitation, a trade-off remains between
the spectral and spatial resolutions, leading to the fact that the HSIs are often not as clear as
desired, as shown in Fig. 2(f). The fusion of the complementary information among the multi-
source remote sensing observations is a good way to improve the potential applications of remote
sensing data.

All these common degradations in HSIs limit the precision of the subsequent processing,
such as classification,'? unmixing,** subpixel mapping,>~’ and target detection.®* Compensating
these degradations through quality improvement is therefore a key preprocessing step in the
exploitation of HSIs.!® With different degradation problems, radiometric quality improvement
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Fig. 2 Different degradation problems.
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methods for HSIs have been widely researched. These methods can be divided into two classes.
The first class is based on physical models, such as the atmosphere correction and reflectance
inversion using a radiation transfer equation. The second class is based on statistical image
processing techniques, such as denoising, deblurring, destriping, inpainting, haze or cloud
removal, super-resolution, and image fusion. To maintain the focus of the paper, we elaborate
on the second class. Although different techniques are proposed for a particular degradation in
HSIs, the processing techniques for different degradations are in fact closely linked, due to the
similar degradation processing and utilization of the HS characteristics (e.g., spatial similarity
and the spectral relevance). Thus, the technology barrier among different degradations must re-
ally be broken down, and the related techniques should be systematically summarized to benefit
the quality improvement of HSIs and to inspire the development of new methods.

In this paper, a comprehensive analysis of the techniques used for the different degradations
is presented. We link the closely connected techniques as a whole by providing a general recon-
struction model in a variational framework. Most techniques that are based on a Bayesian frame-
work and/or regularization method can be regarded as specific cases within this universal model.
Two derived models are given to describe the methods based on spectral transform models,
respective for one degraded HS input and multiple inputs with auxiliary complementary data.
To embody the differences with the methods used for processing other types of images, the
methods are classified according to their special processing strategies for HSIs. According
to the access and utilization of prior information, the methods can be divided into single-channel
prior-based model, cross-channel-prior based model, tensor-based model, and data-driven prior-
based model. Through the application of these different models, researchers can eliminate the
influence of denoising, dead pixels, haze, and thin cloud using only useful information from
other spectral bands. However, more complementary must be extracted from other temporal/sen-
sor images to solve large missing area and spatial detail loss better.

The remainder of this paper is organized as follows. Section 2 describes the general model
for the quality improvement of HSIs in detail. Section 3 gives an introduction to about four
categories based on the difference of prior model. Section 4 elaborates the specific applications
in the field of HSI quality improvement based on available complementary information. At last,
Sec. 5 expounds advantages of variational framework and future development. At last, some
concluding remarks are presented in Sec. 6.

2 General Model for HSI

2.1 Notation and Preliminaries

Throughout the paper, we denote scalars, vectors, matrices, and tensors by nonbold letters, bold
lowercase letters, bold uppercase letters, and calligraphic uppercase letters, respectively.
Tensors'” are multidimensional arrays of numbers that transform linearly under coordinate trans-
formations, which can be represented as X € R/"*2****Iv with multilinear algebra'' defined on
them. Here, N is the order of the tensor, which is also known as way or mode, and the d’th order
of the tensor is of size I;. An arbitrary element of X is a scalar denoted by X ;, ... ; , where
indices typically range from 1 to the size of their mode, e.g., 1 <i; <I; and 1 <d < N.
The mode-d vectors of X are defined as the d-dimensional vectors obtained by varying the
index i; while keeping all the other indices fixed. The mode-d matricization, also known as
unfolding or flattening, is defined as the reordering of the elements of tensor X into a matrix
X () € Rl xluxlax---XIx) by arranging the mode-d vectors to be the columns of X ).
The mode-d product of tensor X by a matrix U € R/#«, denoted by X X, U, is a tensor with
entries (X X, U)il7i2~"'»id—]7jd’id+la“‘aiN =i Xiiro iy - Uj,i,- Some more detailed notations

and multilinear rules can be referenced in the literature.''~'#

2.2 General Model Description

The degradations of HSI mainly include noise, strips, dead pixels, clouds, and so on. Many
methods can be used for each degradation case. Interestingly, for most techniques, the variational
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models (VMs) are mainstream, popular, and promising. Therefore, we concentrate on the varia-
tional methods for the quality improvement of HSIs.
In general, the degradation of the HSI can be written as

Y = AXB + N, ey

where Y € R is the observed HSI, and X € R"*5 is the target image. It is noted that Y and X
are often as matrixes consisting of vectors of all bands, for example, X = [x;, X, -- Xz| with B
being the number of bands, while they also can be denoted in the form of tensors.'> The matrices
A and B denote the degradation operator in the spatial and spectral dimensions, respectively, and
N € R™8 is the additive noise. Our goal for the degradation problems is to recover the unknown
image X based on the observed image Y. The solution of this inverse problem can be summa-
rized and described in the variational framework.

The VMs can be described from the statistical or the algebraic perspective. The standard
regularized solution of the inverse problem of quality improvement is the minimum of the
function:

X = arg min [[Y — AX|[; + A[T(X)|[§ = arg min||Y — AX][;; + 2p(X), @)

where the first term is the data fidelity term that provides a measure of the conformance of the
present image X to the observed image Y. The second term is the regularization term that
imposes some prior constraint on the solution, where ||I'(X)||Z or p(X) is the constraint function.
The parameters p and g are the norm values for the fidelity and regularization term, respectively,
and they are often selected as 1, 2, or a decimal value in the interval of 1 and 2. 1 is the regu-
larization parameter balancing these two terms. For data fidelity, the /, norm (p = 2) is widely
used in different algorithms because of the simplicity of solution, especially for the noise of
Gaussian type.'®'® For impulse noise and outliers on the images, it has been proven that /,
fidelity is more effective than /, fidelity.'*?° Compared with I, norm, however, the convergence
rate of the [; norm is often much slower. Some efficient approximation methods'*~! have been
developed for the /; optimization. For the consideration of complicated types of noise and model
error, an [,-, hybrid model is also proposed for the fidelity term.?*>*

To reduce the computational load and avoid the spectral artifacts, HSIs are often processed in
a spectral transformation space. Suppose T is a spectral transformation function, the transformed
version of the input HSI is obtained by Y, = TY. In the transform field, the image X, is then
solved as

X, = arg min|[Y, - AX, [} + 2p(X,). 3)

Finally, the desired image can be solved by an inverse transform X = T‘I)A(t.

Except for reducing the dimension of HSI in spectral space, high-dimensional subspace
transformation is able to represent and discriminate the characteristics of spatial and/or spectral
information. Many types of images captured by different sensors can be sparsely represented
using a dictionary of atoms. Hence, sparse representation is devoted to excavating the basic
structural unit of an image.”> Any signals in HSI can be represented as a sparse linear combi-
nation with respect to a dictionary, which consists of atoms that represent the structure of the
image. Suppose D is the dictionary, X can be expressed as X = Do, where o is the basis coef-
ficient. The optimization problem can be solved by & = min ||e||, with some constraint con-
dition, e.g., Y = ADa. The [, minimization is an NP-hard combinatorial search problem
that is always difficult to solve. Therefore, it is often translated into a convex optimization under
the condition of restricted isometry property.”® Then, a general regularized solution based on
sparse optimization can be obtained:

@ = arg min|[Y — ADal[} + A[|L(Da)|[§ + yp (). )
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Then, the desired image can be obtained with an inverse transform X = Dé&. The subspace
transformation matrix D can be obtained via different approaches, such as PCA, vertex
component analysis, or dictionary learning.?’

Consider improving the image quality with auxiliary data from observation time or sensors,
the energy functional model can be given as the following two optimization problems:

X = arg min||Y — AX||5 + 2, f(X. Z) + L p(X), (5)
X
& = arg min||Y — A(Dat)" ||} + 4, f(et. Z) + Arp(et). (6)
o

Here, the second term describes the relationship between a desired image and other com-
plementary observation Z in Eq. (5), while it denotes the relationship between a coefficient a of
images X in the transform domain and Z. The third term is a regularization term related with X
and a. For spatiospectral fusion with two observation images, which is one of the most classic
applications, Z represents the auxiliary high-resolution (HR) image (the corresponding PAN or
MS image), and X is the target high spatial resolution HSL. Then, the second is ||Z — XS||%, and
|| Z — DaS||5, which represents data fidelity and has a spectral operator S. 4, and 4, are constant
parameters. In addition, when S is unknown, Eq. (5) can be replaced by jointly Gaussian.?*?

3 Model with Different Priors

HSI is a third-order tensor that incorporates two spatial modes and one spectral mode.
Depending on different modes, the previous works on HSIs can be mainly divided into four
categories: (A) single-channel prior model to only make use of spatial information on each band,
(B) cross-channel prior model to blend spatial and spectral intrinsic structure, (C) tensor-based
model to treat HSI or the three-dimensional (3D) patch as a third-order tensor for reserving the
original structure, and (D) data-driven prior-based model to reveal the complex nonlinear relation
between degraded-clean image. In the A and B categories, the priors/regularization terms act on
the HS matrix and are designed the basis of the intrinsic structure of image edges and textures.
However, priors in the C and D categories treat an HSI as a 3D array. Especially, the last model is
obtained by pretraining on a large number of high-low quality data pairs. This section provides
overviews of these technologies, including recent advances.

3.1 Single-Channel Prior-Based Method

As an ill-posed inverse problem, HSI quality improvement method usually employed regulari-
zation techniques to solve this problem by adding constraints to the objective function. The main
objective of regularization is to incorporate more information about the desired solution to sta-
bilize the problem and find a useful and stable solution. For HSIs, the regularization is usually
applied band-by-band to obtain the desired results. For a single-channel image, various popular
algorithms®-%>* have been developed to solve such problem. In the spatial domain, Tikhonov
regularization® is first proposed as a basic regularization to enforce a smooth constraint to elimi-
nate noise signals but causes the edges to be blurred. Considering the edge preservation, total
variation (TV) regularization®' allows occasional larger jumps leading to piecewise smoothness
instead of overall smoothness and produces powerful results. On the basis of TV, bilateral TV>?
builds different weighting coefficients according to the distance from neighborhood pixels to
control the strength of regularization. However, when the noise level is high, these methods,
which only utilizing the local correlations, cannot perform very well. Thus, nonlocal TV
(NLTV)* is designed to make use of the self-similarity of natural images in a nonlocal manner
and can better recover the repetitive texture information in particular. As a patch-based approach,
since the BM3D?® framework has a better performance on denoising, Danielyan et al.*® adapted
the BM3D for the inverse problem of image deblurring.

Except to construct a prior directly in the space domain, the regularization can be introduced
into the transform domain as described in Eq. (4), typically the sparsity penalty term in sparse
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representation. As an early machine learning technique, sparse representations have become a
trend and are used for restoration problems.”>*’*® The general idea of the methods is that each
patch in the estimated image can be expressed as a linear combination of only few patches from
a redundant dictionary, learned using a large group of patches from an image dataset. The
representative dictionary learning-based methods include K-clustering with singular value
decomposition (K-SVD),’ learned simultaneous sparse coding,*® and clustering-based sparse
representation.’* However, the sparse model is still computationally expensive but can only
describe the linear relationship between image pairs.

Similar to sparse representation, low-rank-based methods can also describe the redundancy
of the signal well and have attracted increasing attention. Typical one is the low-rank matrix
factorization with the nuclear norm minimization (NNM).*’ To further improve the flexibility
of NNM, Gu et al.*! proposed a weighted nuclear norm minimization (WNNM) model.
Considering the heavy-tailed distributions of both sparse noise/outliers and singular values
of matrices, bilinear factor matrix norm minimization model*’ is proposed for corrupted data.
Naturally, low-rank constraint can also be integrated with other priors, such as TV prior*® and
nonlocal self-similarity prior.**

In fact, due to the extraction of deep structure and the presence of nonlinearities achieved by
deep networks, recent progress has been made in incorporating deep priors into general model-
based inverse methods, which are detailed in Sec. 3.4.

3.2 Cross-Channel Prior-Based Method

In parallel with these advanced single-channel prior, a number of cross-channel prior approaches
have been pioneered for a wide array of HSI problems from image denoising and reconstruction
to fusion. The cross-channel prior is usually designed to extract the useful spatial or spectral
information from other bands according to the similarity or difference among channels. Due
to the importance of preserving spectral information, these cross-channel priors put specific
attention on the highly correlated spectral bands to utilize abundant spatial and spectral infor-
mation in HSI. With the complementary information from other temporal/sensor images, the
cross-channel prior can obtain sufficient complementary texture and structure information from
these similar bands in other temporal/sensor images to reconstruct the spatial information.

The objective function can be given by integrating the correlation and complementation from
other bands:

B
{1, = arg fglf}l Z laix; = yill3 + Ap(xi. X, 7
=1

where the first item ensures the proximity between the observed image band y; and the expected
high quality image band x;, and the vector a; represents the degradation process between the
degraded-clean band pair; and the second item regularizes the function by imposing constraint
from the correlated and complementary spectral bands Xx.....

From the well-known TV regularizer®' to low-rank regularizer,* these two-dimensional (2D)
priors on a single band can be simply extended into 3D mathematical formulation by excavating
the trend of variability along the spectral direction.

3.2.1 Multichannel TV regularizer

Different from the single-channel TV model, the multichannel regularizers in HSIs can account
for the spatial and/or spectral variations. Thus, an extended version called spatiospectral TV
(SSTV)*®6 is also widely used. Its anisotropic version is defined as follows:

Xty = ZWI Xijk = Xijaot |+ walXiju = Xijoial +wslXiju — Xzl ®)
ijk

where x; ;; is the (i, j, k) th entry of X, and w,,(n = 1,2, 3) is the weight along the j’th mode of x
that controls its strength of regularization. It is worth noting that the above norm defined as
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SSTV can fully capture the spatial and spectral differential information of HSI. By characterizing
the piecewise smooth structure in both spatial and spectral domains, the Gaussian noise in the
spatial and spectral dimensions can be removed.

The authors*” also proposed an adaptive version for HSI and developed a spectral-spatial
adaptive hyperspectral TV (SSAHTYV), which have the following formation:

HTV(x) = % W,

i=1

&)

where V,; is the linear operator that corresponds to the first-order differences at the i’th pixel in
the j’th band. W; is a weighted parameter to control the regularization strength in the different
pixels (see Ref. 47 for more detail about the selection of W;). In this model, large regularization
strength is automatically enforced in the bands with high intensity noise and flat area.
Conversely, weak regularization strength is used in low noise intensity bands and edge regions.

3.2.2 Multichannel nonlocal TV regularizer

Inspired by the NLTV,* two multichannel NLTV models,**>° which introduce the nonlocal
gradient on spatiospectral dimension to the inverse problems, have been proposed to suppress
the staircase effect from TV, and preserve the fine structures, details, and textures better.
One* is given as an adaptive hyperspectral NLTV, which has the following formula:

B

RX)= > 1> > (x(0) = x4 (1)>w (i, ) - (10)

iEMXN \ b=1 jEMXN

Let w,(i, j) be a weight function between two patches centered at locations i and j in
b’th band.
The other one’® is represented as

B MXN B MxN
RX) =)D IVux,(ib) =D > [ (xp()) = x¢(j)?w(i. bij k). (11)
b=1 i=1 b=1 i=1 keNSjele

Compared with Eq. (10), model Eq. (11) integrates the similarity of the spectral band into the
NLTV model. It computes the nonlocal gradients for a pixel centered at i in spatial and spectral
dimensions with these patches from the current band and the structurally similar band, respec-
tively. NS, denotes the set of all the selected bands for the current b’th band. The set contains the
current b’th band and these similar bands. The regularization Eq. (11) can improve the current
bands by exploiting the redundant information from the neighboring bands with higher quality,
such as lower noise-intensity or less information missing.

3.2.3 Spatiospectral distributed sparse representation

Applying the sparsity of the image induced by the redundancy of spatial information, this
approach has performed well in 2D image denoising.***! With more redundancy in HSIs because
of the high spectral correlation caused by the narrow spectral channels, the SSDSR>? can be
designed as

T T
{&c’ &b} = arg gnlz? Z H(Db.cac + Db.bab) - ub”% +/’£ (Z HaCHO + ||ab||0> . (12)
< b=1 b=1

To distinguish and utilize the interband correlation and the intraband structure well,
the SSDSR decomposes the sparse coefficients into interband vectors o, and intraband
vector a;. In Eq. (12), D. and D, are used to learn the common and specific structures for
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different bands, as a consequence of improving the results compared with band-by-band sparse
representation.

3.2.4 HSI low-rank regularizer

The redundancy in the spatial and spectral information reveals the low-rank property of HSL
From a perspective of spectral dimension, HS pixels are composed of a few pure endmembers,
and the number of pure endmembers is much smaller than the HSI dimension. More specifically,
supposing the upper bound of the number of pure spectral endmembers for the HSI patch is r,
then the rank of X; j is bounded,> that is, rank(Xi’ j) < r. In terms of spatial dimension, the
nonlocal similarity of patches implicitly shows the low-rank property of spatial domain in
HSIs.?* Based on low-rank property, the optimization problem of this model can be repre-
sented based on patches from HSI and can restore each patch sequentially:

arg rg(nSnHXl +AlIS; st Y =X =Sl <6, (13)

Jlls Al
where X; ; is the low-rank HS matrix and S, ; is the sparse error matrix, describing the mixture of
sparse noise, such as dead lines and stripes. The constraint ||Y; ; = X;; =S, ;|| < 6 is used to
measure the relation Y;; = X;; +8;; + N; ;, where 6 is a constant related to the standard
deviation of random noise or model error N, ;. To obtain a tractable optimization problem, the
l;-norm and the nuclear norm are used to relax the sparsity and rank, respectively. By estimating
low-rank matrix and sparse matrix simultaneously, low-rank regularizer can help to restore an
HSI corrupted by striping noise and signal-independent noise in many applications.

Naturally, another direction of the cross-channel prior is to consider the spatial and spectral
characteristics simultaneously. Spatial and spectral constraints in a 2D or 3D way can also be
jointed to utilize the correlation and difference between bands better. For an HSI, a better and
robust regularization model is that it cannot only consider the cross-channel correlation among
different bands (spectral adaptive) but can also adjust the regularization strength of different
pixels in the same band automatically (spatial adaptive).

3.3 Tensor-Based Model

The aforementioned technologies can obtain the promising results and achieve the tremendous
progress in various applications. However, several dark clouds exist over the HSI quality
improvement, which are urgently needed to be considered. Due to the inherent 3D characteristics
of the HSIs, the previous vector-/matrix-based methods have limitations in fully exploiting the
spectral-spatial structural correlation in comparison with directly working on a three-order
tensor format image.'*'? The recent works consistently indicate that the tensor-based methods
substantially preserve the intrinsic structure correlation with better restoration results. To better
utilize low-rankness to one mode of the tensor, some theoretical tensor frameworks have been
established to exploit low-dimensional structure in high-dimensional data. For example, the
CANDECOMP/PARAFAC (CP) rank™ is defined as the smallest number of rank one tensor
decomposition but is generally an NP-hard problem to compute. Tucker rank>® obtained by
tucker decomposition can represent the low-rank property of each mode-i matricization of
tensor.

By applying Tucker decomposition, a desired HRHS image can be represented as a core
tensor multiplied by the dictionaries of the width mode W, height mode H, and spectral mode
S, specifically X = C x; W X, H X5 S. A low-rank tensor approximation’’ method employs the
Tucker factorization method to obtain denoising results well. For a spatially or spectrally down-
sampled low-resolution (LR) HSI YV of &, it can be assumed that the point spread function of the
HS sensor and the downsampling matrices of the width mode and height modes are separable.’®
The spatial degradation matrices work along the width and height modes, and the spectral down-
sampling matrix imposes on the spectral mode. Then, the acquired image can be written as

y = X X] P] X2 P2 X3 P3 = CXI (P1W) X2 (PzH) X3 (P3S), (14)

Journal of Applied Remote Sensing 031502-8 Jul-Sep 2021 « Vol. 15(3)



Li et al.: Radiometric quality improvement of hyperspectral remote sensing images: a technical tutorial. . .

where P;, P,, and P; denote the possible degradation matrices along the width, height, and
spectral modes, respectively, which describe the spatial and spectral responses of the imaging
sensors. The tensor C holds the coefficient of X" over the three dictionaries. The relationship in
Eq. (14) can be extended into the data fidelity in the variational framework instead of its
matrix form.

As for the regularization term, motivated by the fact that the nuclear norm is the convex
envelope of the matrix rank within the unit ball of the spectral norm, the sum of nuclear norms
(SNN)* on each mode is used as a convex surrogate of the tensor rank. Recently, tensor train
(TT) rank® and tensor ring (TR) rank®' have drawn considerable attention because of their com-
putational efficiency and high compression properties. Compared with the Tucker rank, TT rank
constitutes the ranks of matrices formed using a well-balanced matricization scheme and has the
capacity to capture the global correlation of the tensor entries.®” TR decomposition model, which
represents tensor more flexibly, is regarded as the linear combinations of a group of TT
representations.®> TR representation model can also effectively reveal the characteristics of
time-series RS images and different scales in the spatiospectral mode.** By constraining the
subcomponent from tensor decomposition, we can take the correlation between HSIs over differ-
ent bands into consideration and attempt to eliminate the information loss generated by tensor
flattening.

3.4 Data-Driven Prior-Based Model

The above methods mainly regard the relationship between the observed images and target
images as linear simulation. However, the linear model would restrict the recovery quality when
observed images are confronted with complex mixed noise, nonuniform blur, uneven haze, or
nonoverlap spectral rang among different sensors. Recently, deep network theory can provide a
prominent performance to describe the complex nonlinear relationship because of its feature
extraction and mapping learning capabilities.®> While most existing DNN-based methods solve
the quality improvement problems by directly mapping low-quality images to desirable high-
quality images, the observation models characterizing the image degradation processes have
been largely ignored. As a consequence, different from model-based optimization methods that
can flexibly handle different image restoration (IR) tasks by exploiting state-of-the-art image
prior, these deep network-based methods are usually restricted by specialized tasks. As the data
likelihood term has not been explicitly exploited, deep network-based methods®*®” need to train
a different model for various IR tasks separately. Hence, the question is how we should combine
DLVM in result to flexibly and effectively solve IR tasks for HSI. To address this issue, a VM
combining data-driven prior in the field of remote sensing can be divided into two forms.

The former, which can be called as plug-and-play (PNP) framework, uses a convolutional
neural network (CNN) to mine the deep prior of the image and forms an off-the-shelf deep
denoiser and then generally plugs the off-the-shelf denoiser to solve subproblem associated the
energy function. For example, Zhang et al.?® trained a set of CNN denoisers and integrated them
into model-based IR framework for different IR tasks. Zeng et al.®” embedded the tensor Tucker
decomposition method and a CNN denoiser into the PNP. The tensor Tucker decomposition
method can remove sparse noise well and part Gaussian noise by exploring the global spatio-
spectral correlations. Meanwhile, the CNN denoiser, as a as a physical prior, was used to remove
the residual noise.

The optimization function can be expressed in general terms as

X = arg min f(X) + Ag(X. ©). (15)

X

In these methods, a deep regularization prior g(X, ®) about X can be obtained by a pretrained
network with the observed degraded image as an input to reveal a prior relationship ® between
degraded—clean image pairs. Mathematically, the solution of deep regularization prior can be
served as a preprocessing.®’ It can also be integrated into the subproblem of the optimization
algorithm to update image features, such as half-quadratic splitting algorithm and alternating
direction method of multipliers (ADMM) algorithm.®%"°
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To reveal the complex nonlinear relationship among different sensors, deep learning regu-
larizers-based method can be generally given as

X = arg min||Y — AX||Z + 10 (X, 0) + u¥(X.Z. ©), (16)

where ®(X, 0) is the nonlinear function to learn the prior parameters set . If given an auxiliary
and available data Z, then ¥(X, Z, ®) is the nonlinear function that learns the relations between
X and Z and has a corresponding parameter set ©. The priors @ (X, #) and ¥(X, Z, ©®) can be
plugged in an iterative scheme by decoupling the fidelity term and regularization term.”® With the
predefined nonlinear function learned by deep learning, the model-based optimization methods
will be less time-consuming in comparison with sophisticated priors while still retaining flex-
ibility for different tasks.

The latter uses network’' to connect the model iterative optimization process and the HSI
spatiospectral prior. It directly assigns all parameters that would have to be solved in the model
into deep learning. In other words, network learning is used to represent and train an unfolding
iterative optimization for Eqs. (2)—(4). For example, Yang et al.”> unfolded the ADMM algorithm
to a deep network for fast compressive sensing. Wang et al.” also embedded the structure insight
of the conjugate gradient algorithm for HSI denoising, which guaranteed the relationship
between the desired HSI and the original HSI into a network and formed the data-driven prior,
which was also called an optimization-inspired network.

4 Quality Improvement by Available Information

In HSI quality improvement, additional information from other spectral bands/temporal images/
sensor images can provide more available spatial and spectral features for solving degradation
problems. The complementary information from different sources can be transformed into cross-
channel priors, tensor representation, and deep priors to better achieve high quality HSIs.
To embody their effectiveness, examples of typical applications are used to show in this section.

4.1 HSI Restoration with Hybrid Noises

4.1.1 Extract complementary information from other spectral bands

For an HSI, the degradation, such as noise, can not only be considered in the spatial dimension
but also in the spectral dimension, as shown in Fig. 3. The regularization item plays a vital role in
the variational framework. It gives a prior distribution of the nondegradation image and controls
the perturbation of the solution, thereby guaranteeing a stable estimation. Although some
methods’™ can solve the degradation problem on spectral dimension to some extent, it still
neglects the strong correlation and similarity across different bands. The information from other

@ )

Fig. 3 Image degradation in spatial and spectral dimension. (a) Noise degradation in spatial
dimension and (b) noise degradation in spectral dimension.
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bands can usually constrain and improve the recovery of the present band. Therefore, when no
other data with complementary information are available, these mentioned methods in Secs. 3.2—
3.4 are potential ways of improving the robustness and precision for various applications.

Moreover, the combination of different regularization terms is an effective and promising
way to simultaneously describe the characteristics of different kinds of noises. By applying the
sparsity prior to HSI data, Zhao et al.” investigated sparse coding to describe the global and local
redundancy and correlation (RAC) in the spectral domain and then employed a low-rank con-
straint to capture the global RAC in the spectral domain. Xie et al.”® proposed a nonconvex
regularized low-rank and sparse matrix decomposition method to simultaneously remove the
Gaussian noise, impulse noise, dead lines, and stripes. With regard to the more complicated
single super-resolution problem, Guo et al.”” used the unmixing information and TV minimi-
zation to produce a higher resolution HSI. By modeling the sparse prior underlying HSIs,
a sparse HSI super-resolution model”® was proposed. Zhang et al.”’ proposed a maximum
a posteriori-based HSI super-resolution reconstruction algorithm, in which PCA was employed
to reduce computational load while removing noise. Huang et al.*” presented a super-resolution
approach of HSIs by joint low-rank and group-sparse modeling. Their approach can also
deal with the situation wherein the system blurring was unknown. Li et al.}' explored sparse
properties in the spectral and spatial domains for HSI super-resolution. An HSI spatial super-
resolution®” was proposed to exploit the nonlocal similar characteristics hidden in several four-
dimensional tensors and the local smoothness in the spatial and spectral modes. In general, due to
the high spectral-spatial redundancy property for the 3D tensor HSIs, the sparsity or low-rank-
based HSI methods®** are the mainstream of artificially designed priors and have achieved
state-of-the-art performances.

Given the good nonlinear representation ability of deep learning, a pretrained deep prior
embedded in the variational framework is recently a popular trend. However, it is still seldom
used for HSI restoration tasks. Nowadays, the main strategy is PNP framework.®** Motivated
by Ref. 70 to further reduce their computational complexities, Wang et al.”* also unfolded the
iterative optimization process into a feedforward neural network, whose layers mimic the process
flow of the proposed denoising-based IR algorithm. Then, the pretrained deep priors can be
jointly optimized with other algorithm parameters.

4.1.2 Considering separately spatial and spectral degradations using priors

In addition to directly impose spatiospectral constraints on the original image, the optimization
problem can be viewed from two perspectives of the spatial and spectral views by defining the
degradation functions and noise according to a specific task, respectively,

Y = AXP 4 NP2, (17)

Yo — HXOPC 4 NoPe, (18)

Equations (17) provides the spatial degradation model whereas Eq. (18) describes the con-
taminated spectral information suffering blur and noise. X*P* and Y*P?* are assumed to be HSIs
with high- and low-spatial resolutions, respectively, in the spatial views. XP° and Y*P® are HSIs
with high- and low-spectral resolutions, respectively, in the spectral views. A and H are the
spatial degradation matrix and spectral dimension blurring operator, respectively. N*?* and
NP are the zero-mean Gaussian distribution noise in spatial and spectral dimensions, respec-
tively. For HSI denoising, Eq. (18) can be simplified as Y*P¢ = X®P¢ 4 NP,

The simple strategy for regularization is to use single-band prior models on each band sep-
arately but ignores the preservation of spectral characteristics. In denoising, the wavelet-based
method’* has been successfully applied in spatial and spectral dimensions. For variational frame-
work, Fig. 4 shows a basic strategy by merging the results from the spatial and spectral domains.
Considering the spatial and spectral degradations jointly, the objective function will be first con-
structed using Egs. (17) and (18), and then the optimal solution on two different dimensions can
be obtained using appropriate optimization algorithms. Then, the weighted correlation is used to
combine the spatial and spectral results to achieve a final result.
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Fig. 4 Processing framework considering degradations in both the spatial and spectral
dimensions.

Notably, spatiospectral regularizations in Secs. 3.2-3.4 can also be used in different views
and have a potential for better results. An HSI denoising method® as a typical example with
spatial and spectral view fusion strategy is introduced. The HSI is denoised with SSAHTV
model shown in Eq. (9), both from spatial and spectral views. Then, the results for two views
are fused band by band in a weighted way x,, = (Q}F'x;™ + Q)P°x)7°) /(x;** + x;*°). The weights
of the different views are adaptively defined using metric Q.% Here, x,, x;**, x,*° are b’th bands
of fused HSI, denoised result in the spatial views, and denoised result in the spectral views,

respectively. Q)" and Q' are the weights of each band computed by metric Q.

4.1.3 Experimental evaluation

Comparison between different spatiospectral regularizations. To show the
effectiveness of the different regularization models, two cases have been given on the denoising
experiments. The adopted data are the Washington DC Mall dataset collected by the
Hyperspectral Digital Imagery Collection Experiment (HYDICE) with the cropped size of
200 x 200 x 191. In Fig. 5, the same noise intensity with o, =5 is added to each band. In
Fig. 6, zero-mean Gaussian noise and stripes are simultaneously added to all the bands of
HSI. The Gaussian noise standard deviation of each band randomly varies from O to 40 dB,
while the stripe with one-pixel width covers 30% on each band. The mean peak-signal-to-noise
ratio (PSNR), the mean structural similarity (SSIM) index, and the mean spectral angle (MSA)
mapper served as evaluation indices for the simulated experiments.

The traditional single-channel methods (TV,*! NLTV,* KSVD,”” and WNNM*") and the
cross-channel methods in Sec. 3.2 are conducted on the experiments. The cross-channel methods
in Sec. 3.2 can be regarded as variants of single-channel methods. Parameters of all the compared
methods are adjusted to the optimal according to their references. The quantitative assessment of
the four group results also indicates that the cross-channel regularization models are generally
suitable for the recovery of HSIs. The noise is not only well suppressed but also the detail and
edge information are also preserved excellently. Although the spurious artifacts almost disappear
in cross-channel variation-based methods, the problem of detailed loss still exists in TV-based
model. By employing the nonlocal similarity, results are more visually plausible in detail.
However, the sparse representation and low-rank decomposition methods can preserve more
detailed information for small objects. Especially, HSI low-rank model has an obvious superi-
ority on the reduction of hybrid noise in Fig. 6. By contrast, the sparse representation-based
cross-channel regularization exhibited poor performance in removing stripe noise independently
because of the limitation of synchronously learned stripe structure in the dictionaries. The
comprehensive consideration of the different kinds of noise can help remove the hybrid noises
better.
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(9) SSDSR 2 (h) WNNM #! (i) HSI-LRMR 3
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Fig.5 The visual comparison and quantitative evaluation with PSNR (dB), SSIM, and MSA values
of the denoising results in the hyperspectral simulated experiment. (a) Noisy band (57, 27, 17),
(b) TV, (c) SSAHTV, (d) NLTV, (e) MNLTV, (f) KSVD, (g) SSDSR, (h) WNNM, and (i) HSI-LRMR.

Effectiveness of fusion strategy. Simulated and real data from the HYDICE are adopted
to test the effectiveness of fusion strategy, with the size of 200 x 200 x 205. Washington DC
Mall dataset was used in the simulated experiment and Urban dataset was used in the real experi-
ment. The gray values of the HSI were normalized to between O and 1. In the simulated experi-
ment, the distribution of zero-mean Gaussian noise was added to each band with a variance of
0.05. In real experiment, Urban dataset was degraded by stripe and Gaussian mixed noise. The
SSAHTYV was used to remove noise from the spatial view and spectral view. From Eq. (9), it is
shown that the optimization of algorithm® is only related with regularization parameter A. In this
experiment, A is selected as the one with the highest Q value.®> Because the spatial and spectral
denoising results can complement each other, the fused denoising result is better than both the
sole dimension denoising results. As is shown in Fig. 7(b), although the spatial information is
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Fig. 6 The comparison of the hybrid noise and stripes reduction results in the simulated experi-
ment. (a) SSDSR®? result of the stripe band (PSNR = 26.79, SSIM = 0.836, MSA = 7.584), and
(b) HSI-LRMR®® result of the stripe band (PSNR = 33.40, SSIM = 0.957, MSA = 3.858).

preserved well, the noise in the spectral dimension is not completely suppressed, and some noise
still remains in the spectral curve. For the spectral view denoising result in Fig. 7(c), the noise in
the spectral dimension is suppressed well, the edges are blurred, and the spatial information is
not well preserved. For the spatial-spectral view fusion method, not only the spatial information
is well preserved but also the noise in the spectral dimension is suppressed better. The result is
better than both the individual spatial view and spectral view denoising results.

4.2 Dehazing for Visible Channels

4.2.1 Extract complementary information from other spectral bands

The atmospheric factors not only introduce different types of noises but also produce the haze
and thin cloud on the HSIs. Atmospheric attenuation caused by haze and cloud greatly degrades
the quality of optical remote sensing images. Fortunately, HS data supply abundant spectral
information that covers a region from the visible to infrared spectrum with high spectral reso-
lution. Haze and thin clouds show marked difference in spectrums with large wavelength differ-
ence. This characteristic indicates that both adjacent and distant spectra supply complementary
information to the concerned spectrum as shown in Fig. 8.

The replacement approaches®**® are usually used to remove the haze and thin clouds. They
are, however, heavily affected by the correlation of the available fog/cloud-free information. Due
to the limitation of majority of MS sensors consisting only of multiple visible bands and one
near-infrared (NIR) band, the reflectance of the fog/cloud-free pixel inside an image can only be
used to replace and restore the reflectance of another pixel underneath fog/cloud, such as the dark
channel prior,* and affects the result accuracy. For HSI, since the atmospheric effect is highly
wavelength dependent, contamination caused by the atmosphere in the scenes varies in different
channels. On the hazy or cloudy days, the observed visible images are vague and lowly con-
trasted because the visible channels are sensitive to atmospheric conditions. In contrast, the infra-
red channels with long wavelengths are insensitive to the semitransparent atmosphere. Thus, the
scenes in the infrared bands are usually clear and free of haze and cloud. The high correlation in
HSI indicates that the infrared channels with cleaner pixels can provide effective prior in varia-
tional method to restore the visible images with fog/cloud.

To our knowledge, few variational dehazing algorithms based on complementary spectral
information have been developed. However, these methods are oriented for MS image and
do not involve HSI. Among them, a cross-channel prior-based method is the mainstream of
solving this problem. Its core from a variational gradient-based fusion proposed by Li
et al.” is to integrate gradient information from referenced clear channels into its highly corre-
lated hazy/cloudy channels to enhance the contrast and remove haze/thin cloud. It has been
demonstrated that the short-wave infrared (SWIR) channels at 2.2 ym have a linear correlation
with visible channels. Meanwhile, in practice, it is observed that the SWIR channels at 2.2 ym
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Fig. 7 The denoising results in different views. The first and second rows are the results of Urban
dataset, and the third and fifth rows are the results of Washington DC Mall dataset. The fifth row
shows the spectral curves. (a) Original noisy image, (b) denoising result in spatial dimension,*’
(c) denoising result in spectral dimension,*” and (d) denoising results with spatial and spectral view
fusion strategy.?

exhibit clear land surfaces without contaminations even on hazy days. Thus, the fusion of SWIR
and visible band data is explored to remove haze/thin-cloud in visible bands, in which the SWIR
channel at 2.2 ym is taken as the referenced channel xcc to enhance the spatial details in the
haze/thin cloud regions. To maintain the spectra invariance after fusion, the constraint of the
relationship between the haze/cloud effect and the wavelength, named mean haze projection
(MHP),”! is included in the variational dehazing method. Consequently, by applying Eq. (7),
the dehazing model for HS data can be expressed as
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Fig. 8 The complementary information from other spectral bands.

B B
X = arg l’lell’l/q.Z ”Xb - YbH% + Z ||be - VXCCH2 with the MHP: Xchange - XAchangea
b=1 b=1

(19)

where X hange Tepresents the iteration increment based on the steepest descent numeric solution
by Eq. (19), and X change represents the adjusted Xcpange by the MHP. Thus, the iteration equation
is expressed as

m+l __ om
X, =X, = XAchamge’ (20)

where m is the iteration number. More details of this method can be found in Ref. 90.

4.2.2 Experimental evaluation

In this section, variational gradient-based fusion method” was extended to deal with HSI. The
Hyperion data with 242 bands, covering 400 to 2500 nm spectrum, were used to testify the
method. Excluding the infrared and null information bands, the images in the visible spectrum
from 467 to 701 nm, covering 24 bands, were taken as the observed contaminated data as shown
in Fig. 9(a). The 2193-nm image with clear and sharp gradients was taken as the referenced data
Xcc to remove the haze. The parameter 4 was set to 0.01 by considering the visual quality. The
result suggests that features of land surfaces, including textures and edges, are enhanced and
salient in the fused image as shown in Fig. 9(b). Meanwhile, the spectra of the land surfaces,
such as water, building, and vegetation, are reserved in a large degree. The reason is that the
radiation increment caused by the thin clouds/haze is directly related to the wavelength, and
MHP successfully integrated the relationship between the scattering energy and the wavelength
into the variational dehazing algorithm, in which the optimal solution was obtained by simulta-
neously solving multiple bands. However, the original weak contrast of the homogeneous region
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Fig. 9 Experiments on Hyperion data: (a) original hazy visible image. (b) Fused result of the visible
and SWIR images.

is also enhanced, while the MHP constraint strengthens the edge and texture features. As shown
in Fig. 9, the heterogeneity of the water is also highlighted, resulting in some visual noise.

4.3 Missing Information Reconstruction

Poor weather conditions and/or sensor failure always lead to inevitable information loss for
HSIs. Considering the difference in area of missing information, this section illustrates some
specific methods to reconstruct the missing information using complementary information and
the corresponding VMs. As shown in Fig. 10, taking images from different spectra or periods,
it can be easily seen that missing pixels can be surrounded by pixels with complete information
after image permutation. Then, missing pixels can be interpolated by employing three different
VMs. Currently, existing methods are mostly cross-channel prior-based model, but other models
will gradually obtain more attention in the future.

4.3.1 Extract complementary information from other spectral bands for
dead-pixel inpainting

Due to long exposure to the harsh environment with intense radiations and space dust collisions,
the space-borne sensors are usually subject to partial failures, which results in dead or noisy
pixels in the observed imagery. For HSI sensor, the locations of dead or noisy pixels in one
CCD are independent of those in the other CCDs. Hence, many redundant spectral information
from other bands can be used to reconstruct the missing data in a specific band in Figs. 8 and 10.
On the one hand, incomplete (missing information) band can search useful information from
spectral bands that are complete or have a different missing location. On the other hand, some
remaining information remains in the corrupted band. The basic idea of this class of methods®>*
is to make use of the other complete spectral bands (one or more) to reconstruct the incomplete
band by modeling the relationship between the incomplete and complete bands.

Currently, a few methods”™’ have been proposed to introduce complementary spectral
information into the variational framework. Here, we employ two representative cross-channel
regularizers to achieve the HS dead-pixel inpainting. For the dead-pixel inpainting of HSIs,
we yield two expressions using Eq. (7).

First, selecting the low-rank regularizer, the optimization model”® is expressed as

3
X P 1 —_— 2 . .
X = arg minl[MX = VI3 -+ 3w X

21

)
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Fig. 10 Missing information reconstruction using other spectral bands or other temporal/sensor
images.

where the mask M comprises 0 and 1, with O representing the missing pixels in each band. In
Eq. (21), the second term stands for the rank of an HSI X, in which the unfoldings X with respect
to the different dimensions are X(), X(2), and X(3). w; is the weight corresponding to the i’th
dimension unfolding. Notably, the common way is the equal weights (i.e., 1/3), before the adap-
tive weighted tensor is derived from the distribution of the singular values of the unfolding
matrixes.”®

Second, considering sparse representation reconstruction, the optimization model®® is

{an}ier X} = arg min|MX = V|3 + 23 _|IDay = PX[3 + Y gl @2
o k k

For the framework of sparse representation in Eq. (22), the last two terms are image priors
that enable every image patch P, X to have a sparse representation with limited error by intro-
ducing the redundant dictionary D, its corresponding coefficients «;, and the operator P, that
extracts the k’th patch x;, of image. Furthermore, the last penalty term is actually used to meet the
condition ||Da; — P;X||3 < cno? in the corresponding position. Specifically, the second term
ensures that the image inpainting effectively extracts available information from other spectral
bands by means of spatial-spectral patches. ¢ is a constant that is larger than the maximum
eigenvalue of DD, n; counts the existing pixels in this patch, and ¢ indicates the variance
of an additive Gaussian noise. Then, the dictionary should be updated according to the dictionary
learning’! so that it is appropriate for the given image.

4.3.2 Extract complementary information from other temporal/sensor images
large area missing information reconstruction

In some cases, all bands of the acquired HSI are contaminated the thick clouds. Although we can
use IR methods based on single HSI to solve this inverse problem, the result is far from
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satisfactory because of the lack of sufficient complementary information. As a result of the scan-
ning deviation of different sensors at different times, data over the same geographical region and
acquired at different periods can provide supplementary information. To integrate the comple-
mentary information from other temporal/sensor images, the missing information reconstruction
can be used to fill the large area missing information caused by thick clouds.

Most of the temporal-based methods”™!® for reconstructing missing information attempt to
build a clear functional relationship (linear or nonlinear) between the corrupted data and the
reference data in the temporal domain. In recent years, attempts have been made to establish
an unknown relationship using the approach of temporal learning under the perspective of com-
pressed sensing (CS) or sparse representation. The representative methods for multiple bands
were proposed by Lorenzi et al.'’" and Li et al.'” Lorenzi et al. proposed to obtain the CS sol-
ution through formulation within a genetic optimization scheme, and Li et al. considered it as a
multitemporal dictionary learning issue. Later, to more naturally fill a large area missing infor-
mation, Li et al.'®® also proposed a patch matching-based multitemporal group sparse represen-
tation (PM-MTGSR) by utilizing the local correlations in the temporal domain and the nonlocal
correlations in the spatial domain, in which spatial, spectral, and temporal information are joined
simultaneously. Different from the classic sparse representation in Eq. (22), group sparse rep-
resentation is given by joining the similar patches and the target patch

{&G/"DG/(} = arg mgl ZHMG;( ® (DGkaGk _XG;()H% + Z/’tkllaGkHO? (23)
aGk. Gy k k

where Mg, is the mask of X, and is extracted from M of entire image; ag, is the group sparse
coefficient of group X, containing the target patch and its similar patches; Dg, is the group
dictionary; @ represents the pointwise product of the two multipliers.

Using image permutation in Fig. 10, the above methods can effectively reconstruct the miss-
ing information for MS image. However, hundreds of bands of HSI are difficult to be processed
simultaneously. Hence, for each target band image covered by large area clouds, the same band
images and highly correlated bands in different periods can be matched. Finally, the target band
image and its matched band images are input into VM to achieve the result of target band image
after the iterative optimization.

4.3.3 Experimental evaluation

Dead-pixel inpainting. The above two types of methods, sparse representation-based”® and
low-rank matrix-based reconstructions,”® are compared in this section. An experiment was
conducted with MODIS reflectance L1B 500-m resolution products, which were directly
downloaded from the NASA website.'™* Fifteen of all the 20 detectors in Aqua MODIS
band 6 are either nonfunctional or noisy,”” thereby resulting in large-area dead or noisy pixels
[Fig. 11(a)]. At first, we made a mask to label the locations of the missing pixels, then the com-
plementary information from other spectral bands was fully used to recover the missing pixels
based on the above two methods. In sparse representation-based reconstruction, the regulariza-
tion parameters and the dictionary size were set by Ref. 96. In low-rank matrix-based recon-
struction, three weights can be adaptively calculated and affect the final reconstruction result,
compared with the parameter y with a value of 1. The comparison of the Aqua MODIS band 6
images before and after inpainting is shown in Figs. 11(a) and 11(b). Since the matrix rank is
generally recognized as a rational sparsity measure for matrix, both sparsity and low-rank mea-
sure are able to reflect global correlation along the spectral dimension. The result indicates that
they are effective for reconstructing the large-scale dead pixels while retaining the edge and
texture features well. However, the result using sparsity measure appeared some residual noises
while retaining more detailed features. This phenomenon is due to the relatively few redundan-
cies only in one dimension in model Eq. (22) in comparison with the intrinsic characteristics
underlying three unfolded dimensions of HSI in model [Eq. (21)].

Large area missing information reconstruction. Owing to the lack of effective varia-
tional means of HS cloud removal, considering that the nonlocal self-similarity and highly
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Fig. 11 The Aqua MODIS data recovery (acquired on January 18, 2009), with a size of 400 x 400.
(a) Original Aqua MODIS band 6. (b) Recovery result using low-rank matrix-based reconstruc-
tion.%® (c) Recovery result using sparse representation-based reconstruction.®

Fig. 12 Simulated experiment for missing information reconstruction with the band combination of
37, 27 and 17. (a) The Hyperion data in January 2004, with a simulated missing area. (b) The
reference Hyperion data in February 2004. (c) The real Hyperion data in January 2004.
(d) The reconstruction result in January 2004.

spectral correlation are important for the selection of effectively complementary information,
each target band image and its matched band images were put into PM-MTGSR to show the
performance of thick cloud removal on Hyperion data with a simulated missing area on all bands.
In this experiment, only one band with same spectral range was selected for each target band
image. All parameters related to PM-MTGSR were in accord with the values in Ref. 103. The
original image is acquired at January 2004, and a reference image acquired at February 2004, is
used to provide temporal complementary information. The pair of images is of Hubei Province,
China, with the size of 200 X 250 x 50. Due to serious noise interference on Hyperion data, some
denoising methods**'% were used to remove the mixed noise. The denoising processing may
reduce spatial details of image. The reconstruction result is shown in Fig. 12. It can be seen that
the reconstruction result is satisfactory due to remarkable spatial and spectral characteristic reten-
tion, although radiation resolution differences between two temporal images may lead to the loss
of spatial detailed information. If higher resolution data exist, then reconstruction and fusion can
be jointly used to further enhance the resolution of HSIL

4.4 HSI and PAN/MSI Fusion

As known, HST and PAN/MSI fusion technique is used to acquire the high-spatial resolution
HSI, which is difficult to acquire directly by sensors because of physical and financial limita-
tions. Compared with PAN sharpening for MSI, extracting complementary information from
other sensor images to enhance spatial resolution of HSI is a more sophisticated processing while
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Fig. 13 Two basic variational-based image fusion processing.

keeping spectral features unchanged. For HSI fusion, a registered PAN image or an MS image is
often used as the auxiliary data to break through the limitations of the sensor properties on
spatial, spectral, and temporal resolutions.

4.4.1 Space-field method and transform-field method using priors

The universal framework for fusion has been shown in Egs. (5) and (6), which can be regarded as
Bayesian framework and matrix factorization, respectively. For the Bayesian framework-based
method in the original space, methods'%*"'% use posterior distribution to estimate the required
image according to the image prior. According to the characteristics of circulation and down-
sampling matrix in image fusion, the closed-form solution of Sylvester equation can be obtained
by integrating prior information of image.'”” Under the Bayesian framework, some spatiospec-
tral joint priors'®® are applied to regularize the solution of the HRHS image. Furthermore, matrix
factorization is used to decompose image into some basis (or a set of spectral signatures) and
coefficient matrices, by defining as X = Da. a can be regarded as a component in a transformed
subspace. As shown in Fig. 13, the idea of fusing the HS—-MS images based on the spectral infor-
mation of both input images on a subspace has been the main source of inspiration.''*!'* Using
geometrical considerations devoted to the hybrid surface,’ several unmixing-based methods''>!!?
have been proposed for HS-MS fusion, which estimate high spatial resolution HSI by sharpening
the abundance maps on the endmember feature subspace, resulting in the state-of-the-art fusion
performance under the constraints of relative sensor characteristics, such as the coupled non-neg-
ative matrix factorization (CNMF).!!2

4.4.2 Fusion based on tensor-based model

Currently, the tensor factorization-based HSI fusion methods are few in number. Here, we intro-
duce one primary and state-of-the-art example along this line of research. A coupled sparse
tensor factorization (CSTF)*-based approach is proposed to fuse HRMS and LRHS images.
For the tensor-based model, the optimization problem can be formulated as the following con-
strained least-squares problem:

X =arg min[|Y - Cx; (PyW) x, (P,H) x5 (P3S)||5 + [|L(C)]|4
+ |2 =Cx; Wx, Hx; (P3S)[[

re

(24)
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where the first term is a data-fitting term, imposing that the target HRHS image X" should explain
the observed image ) according to the relationship model defined in Eq. (14). L(+) is the con-
straint function for prior knowledge of C. || Z — C x; W X, HX; (P3S)]|7 is the function that
defines the relationship between X and other available image Z.

4.4.3 Fusion based on data-driven prior

As for data-driven prior, the recent advances''*'!” are gradually found to solve remote sensing

image fusion. Dian''* et al. proposed to incorporate the priors learned by deep CNN-based
residual learning into the fusion framework. By two alternations between residual learning and
model optimization, the speed up of training is accelerated, and the fusion performance is evi-
dently boosted. Instead of learning regularizer on all pixels of the image, the gradient or spatial
detail feature priors learned by deep residual gradient CNN is exploited to construct the spatial
fidelity constraint rather than the denoiser prior.'"> By combining DLVM, Shen et al.'"® also
proved that in the spatial enhancement terms, the learned gradient consistency prior, which
directly represents the spatial information, can obtain better results than the learned image
consistency prior. In addition, Xie et al.!'” proposed MHF-net that unfolded the algorithm into
an optimization-inspired deep network for MSI/HSI fusion and obtained promising results.
In general, such a promising combination actually offers huge flexibility. Hence, the pretrained
regularizers exploiting different complementary information can be jointly utilized to solve one
specific problem.

Take DLVM that is the first proposed combination method as an example, HSI is divided into
different groups according to the spectral range of HSI. We selected one band from each group to
compose an LR MSI and then introduced the LR MSI into a pretrained deep residual gradient
netwok along with PAN to achieve an initial gradient output, as shown in Fig. 14. The energy
function constructed in DLVM can be written as

2
X =arg n}}nHY—AXH%—i-/lZ||VjX—Gj||12p+/4P(X), (25)

J=1

where the second term is a spatial enhancer, representing the gradients of the estimated image in
the horizontal and vertical directions should be consistent with gradient images G of the HR-MS
image obtained through the pretrained network. In DLVM, the regularization in the third term
can be a physical prior, such as Laplacian prior adopted in the following experiment, or a pre-
trained denoiser by CNN. More details of this method can be found in Ref. 115.

Horizontal

i el B
g;;dj)e{lt 24«%4 -
Ve I
ke The deep residual gradient CNN
o b,
Vertical
H gradient
Up-sampled | =il / =000 il
LR-HSI
I [€)) ) : Energy function
] construction

""" Optimization '
solution

1
Vertical gradient of
HR-HSI

Fig. 14 HSI fusion framework of DLVM with steps (1) to (7).
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(b)

Fig. 15 Results (57, 27, and 17 bands) with 4x magnification from two types of fusions in the
simulated experiments, derived from the basic function (5) and (6). (a) Fusion result based on
the space-field method'® (PSNR = 29.6632, SSIM = 0.9268, SAM = 6.3686, CC = 0.9908,
ERGAS = 2.7727). (b) Fusion result based on transform-field''® (PSNR = 34.2935, SSIM =
0.9784, SAM = 4.1479, CC = 0.9972, ERGAS = 1.381).

4.4.4 Experimental evaluation

Comparison between space-field method and transform-field method. To further
discuss the effectiveness of two kinds of HS-MS fusion algorithms, the methods that are pro-
posed by Shen et al.'” with simple 3D-Laplace regularizer and Simdes et al. (HySure)''® with
TV regularizer, one of the representative and basic algorithms based on Egs. (5) and (6), have
been applied on the HSI in Fig. 15. The parameters of all methods have been tuned to the opti-
mal, according to their references. HySure are available at Ref. 118. In the simulated experi-
ments, the Washington DC Mall dataset with the cropped size of 288 x 288 x 79 is used to
obtain the LRHS images of 288 x 288 x 5 size and HRMS images of 72 X 72 X 5. The simulated
LRHS image with the spectral range of 450 to 1750 nm was obtained by low-pass filtering and
downsampling by a factor of four in the spatial domain. The HRMS image was produced accord-
ing to the spectral characteristics of Landsat-7 ETM+ bands 1 to 5. As described in Ref. 109,
HRMS images were generated by filtering the ground-truth images along the spectral dimension
using the reflectance spectral responses, such as the IKONOS. For fusion experiments, PSNR,
SSIM, MSA, erreur relative globale adimensionnelle desynthese (ERGAS), and correlation coef-
ficient (CC) often serve as evaluation indices. The results shown in Fig. 15 suggest that the visual
effects of HS-MS fusion in the original space-field and the transform-field are not obviously
different. However, after transformation, the transform-field methods can inject high-resolution
features and reserve spectral information by effectively removing redundant spatial information.
Thus, when the regularizers of two models are simple, the fusion in the transformed subspace
may provide higher precision and show better spectral preservation.

Fusion comparison on different number of inputs. In addition, the flexibility of varia-
tional methods makes it possible to fuse multiple images that involve more sensors. In this
experiment, a method by Shen et al.'” with simple 3D-Laplace regularizer was chose. An aux-
iliary PAN image with the size of 288 X 288 X 1 is also created by the spectral characteristics of a
Landsat-7 PAN image covering 520 to 900 nm. Different from the experiment in Fig. 15, in the
spatial dimension, the simulated MS image was downsampled by a factor of two, and its size was
144 x 144 x 5. From Fig. 16, we can observe that for HSI fusion, more auxiliary images can be
used to better improve the final results by introducing more details and adjusting the spectral
features in Fig. 16(b). Relatively speaking, the PAN/MS/HS fusion result has slightly better
spatial details than the PAN/HS fusion result because of the incorporation of the MS images.
From a spectral perspective, the PAN/MS/HS fusion and the MS/HS fusion can effectively re-
cover more spectral characteristics, because the PAN/MS/HS fusion can make full use of the
complementary spectral information of the PAN and MS groups.

Effectiveness of tensor-based method. To demonstrate the differences between the
fusion results of the matrix-based and tensor-based methods, the experiments were conducted
with the University of Pavia image acquired by the reflective optics system imaging spectrometer
optical sensor over the urban area of the Pavia University, Italy. The size of the HRHS image is
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Fig. 16 Fusion experiments with 4x magnification using the different number of images. (a) The
results (36, 23, and 8 bands) from pan and HS image. (b) The results (36, 23, and 8 bands) from
pan, MS, and HS images.

Table 1 Quantitative results of the test methods on the Pavia University.

PSNR SSIM SAM CC ERGAS
HySure''° 38.8075 0.9779 3.019 0.9932 0.8594
CSTF*® 42.2704 0.9836 2.207 0.9964 0.5941

256 x 256 x 93. LRHS image is generated by bicubic downsampling HR-HSI, whose size is
32 X 32 x 93. HRMS image is synthetic from HRHS image through the spectral response func-
tion of the IKONOS sensor, whose size is 256 X 256 x 4. A state-of-the-art method called CSTF
(available at the Github repository: https://github.com/renweidian/CSTF) was used in this
experiment, and its parameters were set by Ref. 58. Table 1 shows the average objective results
that contain PSNR, SSIM, SAM, CC, and ERGAS. In Table 1 and Fig. 17, the evaluation indices
of the CSTF result are better than HySure in terms of both spatial enhancement and spectral
fidelity. Consistent with the quantitative results, from the magnified image region, the CSTF
method provides clearer and sharper spatial details while HySure produces fewer spectral dis-
tortions. The reason is that the tensor-based approach can deeply capture these relationships
between HR and LR information from three different dimensions underlying an HSIL

Effectiveness of data-driven prior-based method. To test the validity of the proposed
pretrained priors, HS data downloaded from 2018 IEEE hyperspectral GRSS Data Fusion
Contest were used to achieve the PAN/HS fusion. PAN and LRMS images are generated from
HRHS image with the cropped size of 200 X 200 x 33. Spectrally, PAN is synthetic from the
HRHS image through the spectral response function of the IKONOS sensor, whose size is
200 x 200 x 1. LRHS image is generated by bicubic downsampling HRHS image, whose size

Fig. 17 Fusion experiments with 8x magnification on the Pavia University. (a) The matrix-based
using HySure.'® (b) The tensor-based methods using CSTF.%®
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Table 2 Quantitative results of the test methods on 2018 IEEE Contest Dataset.

Method PSNR SSIM SAM cC ERGAS
3D-Laplace VM'® 37.761 0.9556 3.2688 0.9814 2.3858
CNMF®8 39.481 0.9602 3.2295 0.9834 2.2232
DLVM''® 43.669 0.9842 1.981 0.9946 1.2505

(a) Original image  (b) 3D-Laplace VM%7 (c) CNMF!10 (d) DLVM'3

Fig. 18 Experiments with 4x magnification in spatiospectral fusion (displayed as false color with
30, 15, and 3).

is 50 x 50 x 33. To deal with HSI, a state-of-the-art method called DLVM was employed group-
by-group in Fig. 14. In this experiment, the regularization parameters for the second and third
terms are set to 10 and 1, respectively. These deep learning regularizers must be trained again to
adapt to different HSIs. In this experiment, different prior models with 3D-Laplace'® (cross-
channel prior), CNMF*® (tensor-based model), and DLVM (data-driven prior) were compared
to test and verify the fusion effectiveness. Parameters of all the compared methods are adjusted to
the optimal. The CNMF code is available at Ref. 119. As shown in Table 2, the combined model
DLVM proposed by Shen'! achieved a satisfying performance. From a visual perspective,
DLVM can inject more spatial details and keep better spectral information preservation than
the two other fusion cases, especially for the red vegetation area in Fig. 17. However, insufficient
samples or poor network structure will greatly affect the accuracy of the results. Therefore, dis-
covering different network architectures is necessary to obtain better and robust performance.

5 Current Advantages and Future Challenges

5.1 Advantages of Variational Framework

Variational framework has proven its power in radiometric quality improvement of HSIs. In this
section, we give two main advantages of variational framework.

5.1.1 Variational framework has good compatibility for different problems

On the one hand, different degradations can be integrated into a general reconstruction model
based on variational framework. From denoising to reconstruction, variational framework can
exploit different degradation operators but same prior information to describe the input—
output relationship and the spatiospectral properties. On the other hand, different from deep
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learning-based methods that require a retraining for different images, multiple images from more
than two sensors can be simultaneously supplied into a VM to achieve the spatio—temporal—
spectral complementary information. A clear observation on the HS fusion also proves that more
auxiliary images can improve the final results better.

5.1.2 Flexible priors can be put into the variational framework

Variational framework can flexibly embed the most suitable prior according to different degra-
dation problems. These regularizations including cross-channel, tensor, and deep priors are con-
venient to combine other spectral/temporal/sensor images to obtain available information and
optimize the final results by multiple iterations. Furthermore, using the variational framework,
some existent methods can be directly introduced as an off-the-shelf prior or denoiser. Take the
PNP concept as an example, the energy function with associated different degradation problems
can be unrolled by variable splitting technique into some subproblem, and then the prior related
subproblem can be replaced by any off-the-shelf denoiser. Remarkably, the denoiser learned by
DNN gives rise to promising performance.

5.2 Promising Future Directions for Variational Approach

Despite rapid development and achieved promising progress of variational approach, there are
still many open issues for the future work. In the section, we suggest three future interesting
topics in HS data quality improvement.

5.2.1 Extension to rarely involved application

The research for haze and missing information problems on HSIs, such as clouds and cloud
shadows, is rare. Especially, the simultaneous coverage of clouds on all spectral bands arises
the difficulties. Furthermore, for temporal complementary information, it is also necessary to
consider the temporal—spatial change and maintain the authenticity of the results. From the per-
spective of technology, tensor decomposition with excellent preservation for 3D characteristics
and data-driven prior with great representation for deep features give a prominent capacity for
HSI. However, the combination of tensor and deep learning in a variational framework is still
few and requires more research in subsequent HS data processing.

5.2.2 Data-driven prior using insufficient training samples

The technique composed of the degradation model and the parallel deep network is effective for
enhancing the spatial resolution and maintaining the spectral feature. However, the insufficiency
of and the big difference between HSI training samples contribute greatly to the difficulty in
robust learning and credible representation. Although the variational framework based on the
degradation model can remedy the deficiency, further research with better optimization should
be developed. Unsupervised learning guided by the variational framework will be a valuable
direction in the future.

5.2.3 Integrated framework for multiple applications

HSIs are often simultaneously corrupted by multiple degradation factors. As introduced in this
review, current methods mainly aim at improving the quality caused by one degradation factor.
Although removal of mixed noises, denoising and fusion,'”® and cloud removal and fusion'*’
have been proposed in the recent years, they only involve two degradations. Hence, the problems
that are mixed by more degradation factors are still crucial and important. In addition, quality
improvement can reduce the error of subsequent applications, by eliminating the impact of
noises, dead pixels, and partial coverage of clouds. Therefore, an integrated approach containing
different degradation removal and their subsequent applications on HSI is a promising future
direction, such as denoising and HS mixing,'?! super-resolution and classification,'** and regis-
tration and fusion.'?

Journal of Applied Remote Sensing 031502-26 Jul-Sep 2021 « Vol. 15(3)



Li et al.: Radiometric quality improvement of hyperspectral remote sensing images: a technical tutorial. . .

6 Concluding Remarks

Due to its powerful compatibility and flexibility in dealing with different degradations, the varia-
tional framework has been a research hotspot. In this paper, we have systematically reviewed the
variational framework techniques for HS data, which can link different degradations as a whole
by a general reconstruction model. The review starts on generic model of radiometric quality
improvement, which can provide a basic architecture for each related degradation tasks. Then,
four main models, namely, single-channel prior-based model, cross-channel prior-based
model, tensor-based model, and data-driven prior-based model, are also briefly reviewed for
HSI quality improvement. Single-channel prior-based model only utilizes information from
single band itself. However, cross-channel prior-based model, tensor-based model, and data-
driven prior-based model can fully exploit and excavate spatiospectral complementary informa-
tion from other spectral bands and temporal/sensor images to solve various image degradations.
Specifically, available information from spectral bands is sufficient to remove noises, dead pix-
els, and hazes, while large missing areas reconstruction and image fusion more depend on addi-
tional information from other temporal/sensor images. For each specific problem, we introduce
corresponding representative methods that utilize spatiospectral priors (cross-channel prior, ten-
sor-based prior, and data-driven prior) and conduct some experiments to demonstrate the effec-
tiveness of variational framework. Finally, to gain a thorough understanding, we summarize the
current advantages and propose several promising future directions based on limitations of cur-
rent variational framework. On the one hand, some applications still need to be deeply explored,
such as hazes, clouds, and cloud shadows. To improve the efficiency and accuracy, the integrated
approach for multiple applications also requires further research. On the other hand, exploring
proper data-driven priors based on an optimization-inspired variational mode for more complex
problems also remains a big challenge.
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