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Abstract. This article proposes a surface reconstruction method from multiview projectional data acquired by
means of a rotationally mounted microlens array-based light detector (MLA-D). The technique is adapted for
in vivo small animal imaging, specifically for imaging of nude mice, and does not require an additional imaging
step (e.g., by means of a secondary structural modality) or additional hardware (e.g., laser-scanning
approaches). Any potential point within the field of view (FOV) is evaluated by a proposed photo-consistency
measure, utilizing sensor image light information as provided by elemental images (EIs). As the superposition of
adjacent EIs yields depth information for any point within the FOV, the three-dimensional surface of the imaged
object is estimated by a graph cuts-based method through global energy minimization. The proposed surface
reconstruction is evaluated on simulated MLA-D data, incorporating a reconstructed mouse data volume as
acquired by x-ray computed tomography. Compared with a previously presented back projection-based surface
reconstruction method, the proposed technique yields a significantly lower error rate. Moreover, while the back
projection-based method may not be able to resolve concave surfaces, this approach does. Our results further
indicate that the proposed method achieves high accuracy at a low number of projections. © The Authors. Published by
SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of
the original publication, including its DOI. [DOI: 10.1117/1.OE.53.2.023104]
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1 Introduction
Recently, a noncontact light detector utilizing a purposely
designed microlens array (MLA-D) has been developed.1

The detector consisted of a MLA, a septum mask, and a
photon sensor [cf. Fig. 1(a)]. In contrast to conventional
lens-based imaging systems, an MLA-D possesses a thin
construction size (<10 mm including cooling). Since its im-
aging performance is optimal for objects positioned close to
its optics, a single or a multitude of MLA-Ds can be arranged
circumferentially in close proximity to the imaged object,
hence allowing for confined system assembly. Further-
more, the whole optical imaging system can potentially be
encircled by another imaging system such as positron emis-
sion tomography or magnetic resonance imaging (MRI), in
which MLA-Ds are compatible or nearly “invisible.”2

An MLA-D does not form an immediate observer image.
Corresponding to each microlens, a local lattice of sensor
pixels forms a so-called elemental image (EI), as shown in
Fig. 1(b). Therefore, an image needs to be calculated by
inverse mapping3 or an iterative algorithm, as depicted in
Ref. 4. For noncontact optical in vivo imaging, the procedure
for localizing emitted photons within the imaged object—
with the purpose to further solve the inverse problem
involved in image reconstruction5,6—is crucially affected
by the exact knowledge of the three-dimensional (3-D)
surface of the imaged object. As of today, surface informa-
tion is mainly derived from secondary data as provided by

(1) imaging the object with another modality such as x-ray
computed tomography (CT)5 or MRI7 or (2) conducting
a structured light 3-D scanning procedure.8 Alternatively,
direct optical methods such as back-projection-based
(silhouette or visual hull) based approaches have also been
proposed.9–11 While the first class of methods requires
additional hardware and scanning steps, the second class
is generally considered less accurate, as concave areas cannot
always be resolved.

As both classes of approaches operate independently from
the light camera being used, they have been proposed in the
literature (a survey is given in Ref. 12) as either conventional
or multilens-based camera approaches such as the MLA-D
employed here.13,14 For the latter systems though, it has
been shown recently that 3-D imaging, including surface
reconstruction, can be achieved by so-called integral imaging
techniques.15,16

Using MLAs to record and recover light fields has
become a recent research highlight in the fields of optics
and computer vision.17–19 Shape reconstruction or depth
retrieval using MLAs can be performed from a single pro-
jection by finding corresponding points among neighboring
EIs or adjacent focal point images.15,20 Due to the limited
number of microlenses and/or light trajectories, the recon-
structed surface possesses a rather low-depth resolution and
is insufficient for the downstream task of image reconstruc-
tion from optical data (tomography).

Considering that the MLA-D is either part of a multide-
tector imaging setup or is positioned or rotated around
the imaged object, the aforementioned problem could be
improved upon by combining multiple projections from
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multiview data (at unchanged illumination condition), which
has been extensively studied in computer vision.21–23

However, the direct application of these algorithms in the
MLA-D system is difficult for two main reasons. First,
global illumination either by environmental light or by
fixed distributed light sources is difficult to achieve due to
the enclosed design.1 Second, the EIs of the MLA-Ds pos-
sess a comparatively low resolution so the visibility compu-
tation is difficult to perform.

Therefore, an integrated instrumentation setup for in vivo
small animal (mice) imaging is presented by means of a sim-
ulation study employing MLA-Ds of various sizes as well
as by a new light source setup for object illumination.
Furthermore, a dedicated surface reconstruction algorithm
is presented for this setup, which is based on a newly defined
photo-consistency measure (the concept of photo-consis-
tency measure can be referred in Ref. 22) and volumetric
graph cuts. It is particularly tailored to the comparatively
large number of EIs in our design, albeit each EI possesses
a rather low-spatial resolution.

2 Methods

2.1 MLA-D

As depicted in Fig. 2, the binary sensor data of an MLA-D
represents a two-dimensional (2-D) matrix B ¼ ½bm;n�ðm ¼
1; · · · M; n ¼ 1; · · · NÞ with square pixel size p, where M
and N are the number of pixels in x and y directions on the
photosensor plane, respectively. The arrangement of sensor-
aligned G ×H microlenses with lens pitch dl is represented

by L ¼ ½lg;h�ðg ¼ 1; · · · G; h ¼ 1; · · · HÞ. An elemental
image E is formed with local pixels corresponding to micro-
lens lg;h, represented as E ¼ ½eu;v�ðu ¼ 1; · · · U; v ¼
1; · · · VÞ, where U and V are the numbers of pixels in
2-D for each EI in x and y directions, respectively.

Currently, two types of MLA-D setups have been pro-
posed,1,14 for which the parameters are summarized in
Table 1, respectively. The first design has been assembled
and is being used in practice, whereas the second is still
under construction.

2.2 System Simulation

The simulation is performed within the physically based ren-
dering (PBRT) framework, which includes interfaces for
detector, lighting, and scenario (imaged object) descrip-
tions.24 The configuration of the MLA-Ds is defined by
the parameters in Table 1. As a result of the previously men-
tioned illumination source confinement, a local illumination
setup as illustrated in Fig. 3 is selected. As can be seen,
adjacent MLA-Ds share the same illumination. The whole
assembly is also rotatable around the long axis of the imaged
object to acquire the data at A angular views. At each pro-
jectional view, two sensor data, B1

a and B2
a ða ¼ 1; : : : ; AÞ,

are obtained from the detectors.
In order to define a realistic phantom representing an

imaged object, a triangulated mesh extracted from a nude
mouse CT dataset25 is adopted as input for the simulation,

MLA

Septum mask

Photon sensor

(a)

(b)

EI

Fig. 1 Cross-sectional view of the microlens-based optical detector
(MLA-D) containing a microlens array (MLA), a septum mask, and
a photon sensor (a). Experimental data of adjacent elemental images
(EIs) using an assembled MLA-D, as listed in setup 1 (Table 1). Each
EI contains 10 × 10 pixels (b).
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Fig. 2 Illustration of MLA-D notation.

Table 1 Microlens array-based light detector (MLA-D) specification
for the simulation setups.

Parameter Setup 1 Setup 2

Focal length, f (mm) 2.2 2.4

Lens pitch, dl (μm) 480 520

Half-cone angle, θ (deg) 6.2 6.2

Pixel size, p (μm) 48 6.5

Lens grid, G × H 70 × 60 64 × 54

Sensor resolution, M ×N 700 × 600 5120 × 4320

Elemental image (EI)
resolution, U × V

10 × 10 80 × 80

Detector size (mm2) 33 × 28 33 × 28

80 mm25 mm

Light source
2
aB1

aB

Fig. 3 Geometry of the proposed system design and notations. This
design ensures a local illumination condition, because two MLA-Ds
share the illumination by a pair of fixed diffuse line sources. When
the system rotates, both MLA-Ds and light sources rotate at the
same offset.
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as shown in Fig. 4. The actual (identical) fields of view
(FOVs) of the simulated MLA-Ds are marked by the red
box. Once the surface data have been derived, its reflectance
is set to be ideally diffusive (Lambertian surface).26,27

Considering the size of normal mice (approximately 25 mm
in diameter) as well as the depth of field for the individual
microlenses, the radius of rotation is set to be 40 mm. The
oblique angle between the two detectors is set to be 40 deg in
order to maintain the condition that any point on the surface
of the imaged object is being seen on either detector (photo-
consistency). Further details about the simulation can be
found in Ref. 14. The simulation is carried out by employing
a high-performance computer cluster with 128 CPU cores
(Intel E5450, 3.0 GHz, 16 GB memory for each core) for
parallel implementation of different microlens units.

2.3 Surface Reconstruction

Centrally important to the surface reconstruction procedure,
a photo-consistency measure is proposed by comparing the
formed EIs following the system shown in Fig. 3. By calcu-
lating and super-positioning all photo-consistency measures,
a photo-consistency volume of the imaged object is obtained.
The problem of surface reconstruction is applied onto the
formed volume, concretely to decide whether any voxel
belongs to the imaged object, also known as labeling prob-
lem.28 The labeling problem can be expressed as an energy
minimization form and is further solved by the graph cuts-
based method.29

2.3.1 Photo-consistency measure

To solve the problem of surface reconstruction from multi-
view stereo in computer vision, a number of approaches have
been proposed for evaluating the visual compatibility of
a reconstruction with a collection of input images.30 Most of
these measures (often entitled photo-consistency measures)
operate by comparing pixels in one image to pixels in
other images to see how well they correlate.21 To define a
suitable measure for the surface reconstruction employing
the MLA-D configuration, notations are first introduced.

In the process of image formation, any point Pðx; y; zÞ on
the surface of the imaged object, which is within the FOVof
either MLA-D, can potentially be detected by a number of
microlenses. A ray originating from Pðx; y; zÞ that forms a
trajectory forward an EI is called a valid ray. A set of EIs
containing all valid rays T̂ of a given Pðx; y; zÞ is referred to
as Ê, as shown in Fig. 5. The intensities as collected by the
sensor of the formed trajectories T̂ tend to be similar since
the corresponding sensor pixels in Ê measure the same point
P in space, only from slightly different angles. Instead of
comparing the absolute differences among the collected

trajectories directly, a more robust method is to compare
the similarities between two pixel windows since area match-
ing (pixel window) compares regularly sized regions of pixel
values in two images and, hence, is well suited for a texture
scene.31 For example, two arbitrary trajectories Tr and Tp
from T̂ can be extended to form corresponding pixel win-
dows Wp and Wr, respectively (for setup 1, a 3 × 3 pixel
window is used, while for setup 2, a 7 × 7 pixel window
is used). The collection of pixel windows is represented
as Ŵ. Following common strategies assessing similarities
between data formed by two pixel windows, the normalized
cross-correlation (NCC) is employed in this article as a sim-
ilarity measure. It is defined as31

NCCðWp;WrÞ ¼
P

i;jðWi;j
p − W̄pÞðWi;j

r − W̄rÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i;j
ðWi;j

p − W̄pÞ2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i;j
ðWi;j

r − W̄rÞ2
r ;

(1)

where W̄p and W̄r represent the average value of two cor-
responding pixel windows, respectively. This function yields
return values between −1 and 1. A perfect match would
reach the maximum of 1. In our context, a high correlation
is defined (NCC > 0.7), which is used in the following part.
Employing the NCC function as described decreases the
effect of noise in the data due to, among others, the inhomo-
geneous responses of sensor pixels.

In surface reconstruction procedure, a volume model is
adopted to represent the surface for its simplicity and uni-
formity.21 A reasonable simplification can be made, though.
Any voxel Vi;j;k (the concept “voxel” here refers to a point in
a spatial grid) can form trajectories onto the photon sensor
plane assuming that there would be no self-occlusion caused
by other voxels.22 Using the proposed design as illustrated in
Fig. 3, a voxel Vi;j;k can be seen through Q1 and Q2 micro-
lenses in the two MLA-Ds simultaneously. Hence, Ê, T̂, as
well as Ŵ are formed by two subsets: Ê1 and Ê2; T̂1 and T̂2;
and Ŵ1 and Ŵ2, as shown in Fig. 6.

Because of the specific design and configuration of MLA-
Ds, the problem of defining a photo-consistency measure is
extended from pair comparison between pixel windows, as
seen in Eq. (1), to formalize a new measure over two subsets
of EIs (Ê1 and Ê2) and the corresponding pixel windows (Ŵ1

and Ŵ2). A simple method is to choose one reference pixel
window Wr within the elemental image Er from Ŵ and to

Fig. 4 Exemplary projection image of a real mouse CT data acquis-
ition. A triangulated mesh is derived from the CT volume and acts as
the phantom for the simulation. The box marked in red refers to the
desired region of interest, as imaged by the MLA-Ds.

),,( zyxP

]...,[ˆ
1 QEE=Ε

]...,[ˆ
1 QTTT =

[ ] [ ]
]...,[ˆ

1 QWWW =

Fig. 5 Illustration of image formation by a single point. Any point P
would form a set of trajectories (T̂) corresponding to multiple EIs
(Ê). In order to estimate similarities among trajectories, the correlation
among pixel windows (Ŵ) is derived.
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compare it with the other formed pixel windows from the
same subset Ŵ, one by one. For an arbitrary Vi;j;k, it might
occur that some of the pixel windows possess a high degree
of correlation with Wr, while some other pixel windows
possess a low degree of correlation, as seen in Fig. 6(a).
Although the direct average of all NCC values could be
applied, the resolvability among adjacent voxels might be
hampered.22

Therefore, an alternative method is used. The assumption
is made that there exists an optic ray between Vi;j;k and
the optical center C of a chosen microlens, as depicted in
Fig. 6(b). Correspondingly, the formed pixel window of
this microlens is chosen as reference pixel window Wr.
As depicted in Fig. 6(b), an arbitrary point RðdÞ on the sup-
posed optic ray defined by Vi;j;k and C could be expressed
according to

RðdÞ ¼ Vi;j;k þ dðC − Vi;j;kÞ; (2)

where d is a variable to control the position of RðdÞ. RðdÞ
would form the same pixel window Wr within the corre-
sponding Er as d changes, as shown in Fig. 6(b).

However, in any other EI, e.g., a fixed Ef from Ê that can
detect Vi;j;k, RðdÞ would form different pixel windows as
compared with the pixel window formed by Vi;j;k within
Ef. The newly formed pixel window series by RðdÞ is rep-
resented as Ŵf as d changes. When comparing Wr with the
formed set Ŵf, a maximum NCC value can be found with
respect to d. If Vi;j;k is on the surface (or very close to the
surface of the object), the degree of correlation becomes a
maximum at d ¼ 0, as seen in Fig. 7. Contrarily, if Vi;j;k
is not on the surface, the degree of correlation is lower at d ¼
0 or becomes a maximum at d ≠ 0, as shown in Fig. 6(b).
In other words, the maximum value of NCC at d ¼ 0 can be
used as a strong indicator for determining whether Vi;j;k is
a point on the surface or not.

Having discussed the case of mapping Vi;j;k with one
microlens, we extend this principle to combine Vi;j;k with
multiple microlenses. Supposing Na microlenses are chosen
in the a-th projection, the number of occurrences, Ma, in

which a maximum NCC value is derived at d ¼ 0, would
be counted. The ratio Ma∕Na can be used to describe the
degree whether Vi;j;k is on the surface concerning the nor-
malization effect.

In order to reduce the computational complexity, the fol-
lowing strategies are employed. First,Wr and Ŵf are chosen
from two different detectors. Reasoning is due to the fact that
the MLA-Ds configuration is symmetric, as seen in Fig. 3. If
there is a case that Na microlenses are chosen from the first
MLA-D detector whileMa occurrences with maximum NCC
are obtained on the second MLA-D, equivalently, then it
could occur that N 0

a microlenses are chosen from the second
MLA-D detector while M 0

a occurrences are obtained on the
first MLA-D. Second, only EIs within limited s rows (Ê1) are
chosen for Wr, and t rows of EIs (Ê2) are chosen for Ŵf (s
and t are set as 3, in this article). The photo-consistency mea-
sure φðVi;j;kÞ is defined as

φðVi;j;kÞ ¼ exp

2
4−μ

PMaðVi;j;kÞ
NaðVi;j;kÞ þ

M 0
aðVi;j;kÞ

N 0
aðVi;j;kÞ

2VA

3
5; (3)

in which μ is a rate-of-decay parameter (set to be 0.5, in this
article), and VA is the number of effective projectional views
(Ma∕Na > 0.001 and M 0

a∕N 0
a > 0.001). The details about

the implementation could be found in Algorithm 1.

2.3.2 Volumetric surface reconstruction based on
graph cuts

By calculating the proposed photo-consistency for each
voxel employing Eq. (3), a volume of the imaged object
is derived. The surface reconstruction task in this context is
to assign a label to each voxel of the image object, i.e., a
voxel either belongs to the background or to the imaged
object. In accordance with labeling a voxel, an energy cost
is paid. The objective is to find a discrete labeling of voxels
with minimum systematic total energy, known as labeling
problem.28 In our context of a binary labeling problem
(only two labels for the background and the imaged object),
two energy parts are included. One part of cost concerns the
label itself (data cost), i.e., the volume of imaged object in
this context. This part of total cost can be seen as a volume
integration of the imaged object. The other part of cost

C

1Ŵ 2Ŵ
[ ]Ŵ

rW

kji ,,V

rW

rE

Ŵ [ ]

C

kji ,,V

1Ŵ 2Ŵ

(b)

rW

(a)

)()( ,,,, kjikji dd VCVR −+=

0≠d

Fig. 6 An arbitrary point Vi ;j ;k forms pixel windows on MLA-Ds repre-
sented as Ŵ (Ŵ1 and Ŵ2 on two detectors, respectively). One pixel
window Wr is chosen as reference window (correspondingly, the EI
formed is represented as Er ). Some pixel windows in Ŵ possess high
correlations with Wr , while others do not (a). Supposing that there
exists an optic ray (dashed line marked in red) between Vi ;j ;k and
the optical center C of the corresponding microlens forming Er ,
any point RðdÞ on the optic ray would form the same pixel window
Wr within Er . When RðdÞ is on the surface, the formed pixel windows
in Ŵ have high correlations with Wr , as seen in (b).

Ŵ [ ]

C

kji ,,V

1Ŵ 2Ŵ

C
0≠d

1Ŵ 2Ŵ

)()( ,,,, kjikji dd VCVR −+=

[ ]Ŵ

(a) (b)

rW
rW

kji ,,V

0=d

Fig. 7 When voxel Vi ;j ;k is on the surface of the imaged object,
the chosen reference window Wr possesses a high degree of
correlation with other pixel windows at d ¼ 0 (a). When d changes,
some pixel windows in Ŵ possess high correlations with Wr , while
others do not (b).
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concerns the regularity of labels among neighboring voxels
(regularity cost). When two neighboring voxels have the
same label, the regularity cost is zero, whereas two neighbor-
ing voxels with the different labels yield nonzero regularity
cost values. The regularity cost in this case is set to be
the value of the photo-consistency measure calculated by
Eq. (3). Because regularity cost is valid across the boundary
between the imaged object and its background, the total cost
of this part can be seen as a surface integration of the photo-
consistency measure. The surface reconstruction problem is
transformed to extract an optimal surface Sopt, over which the
surface integral of the photo-consistency measure φðVÞ is
minimized as well as the volume VðSÞ enclosed by Sopt is
maximized. This can be expressed as minimization of the
following equation:22

EðSÞ ¼
ZZ

S
φðVÞdA − λ

Z Z Z
VðSÞ

dV; (4)

in which λ is a parameter to control the weight of volume
integration (λ is set to be within 0.05 and 0.25, in this article).
In this context, the first term in Eq. (4) is comprehended to
be a collapsing force, whereas the second term of volume
integration is comprehended to be an expansion force.

The optimization problem in Eq. (4) is solved by the
graph-cuts-based method using the implementation by
Boykov et al. with expansion moves and swap moves.29

Each voxel is treated as a node in a graph. Given the initial
estimation of the imaged object as shown in Fig. 8, i.e., vox-
els inside of surface Sin, the total cost would decrease as the
nodes expand. This expansion would stop at the surface of
the imaged object, i.e., the balance between the collapsing
and ballooning forces (provided that any voxel on the surface
possesses a much lower photo-consistency measure, and
a good choice of λ as indicated above). The convergence
and efficiency of this approach has been validated in pre-
vious studies.32

2.4 Comparison with Back-Projection Method

For comparison, we also applied a previously presented
back-projection method14 to reconstruct the object’s surface
using data in one detector from multiview data. The
reconstructed surfaces from 6, 12, 18, 24, 30, and 36
views, respectively, are evaluated with respect to the two

Algorithm 1 Photo-consistency measure calculation.

Input:

Vi;j;k, B̂f ov ¼ ½B1
a;B2

a �ða ¼ 1 · · · AÞ

Begin:

Initialize VA ¼ 0

for each B1
a, B2

a in B̂fov

Choose Ê1 within s rows of EI’s from first detector and
corresponding lens center information

Choose Ê2 within t rows of EI’s from second detector

Begin Pixel windows-comparison:

Vi;j;k is visible through NaðVi;j;kÞ microlenses in Ê1

Reference pixel windows set: Ŵr ¼ ½Wl
r �ðl ¼ 1 · · · NaÞ

Optical center of Na microlenses: Ĉ ¼ ½Cl �ðl ¼ 1 · · · NaÞ

Vi;j;k is visible through FðVi;j;kÞ microlenses in Ê2

ÊF2 ¼ ½Ef �ðf ¼ 1 · · · FÞ

Initialize MaðVi;j;kÞ ¼ 0

for each Wl
r in Ŵr

for each Ef in ÊF2

for each d

RðdÞ ¼ Vi;j;k þ dðCl −Vi;j;kÞ

Calculate formed pixel window Wf within Ef by RðdÞ

Calculate NCC value between Wl
r and Wf

end loop for d

if NCC between Wl
r and Wf reaches maximum at d ¼ 0

MaðVi;j;kÞ þ þ

end loop for El

end loop for Wr

end Pixel window-comparison:

Choose Ê1 within s rows of EI’s from second detector and
corresponding lens center information

Choose Ê2 within t rows of EI’s from first detector

Do Pixel window-comparison again to obtain N 0
a and M 0

a

if Ma∕Na > 0.001 and M 0
a∕N 0

a > 0.001

VA þþ

end loop for B1
a, B2

a

Photo-consistency: φðVi;j;kÞ ¼ exp

0
@−μ

PMa ðVi;j;k Þ
Na ðVi;j;k Þþ

M 0
a ðVi;j;k Þ

N 0
aðVi;j;k Þ

2VA

1
A

Optimal Surface

outS

inS

Fig. 8 Illustration of how the optimal surface is obtained between the
estimated initial outer boundary Sout and the inner boundary Sin.
Given the initial estimation of the imaged object, the nodes expand
until they reach the surface. A minimal systematic cost is achieved
when voxels on the surface possess a lower photo-consistency mea-
sure value.
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methods, and an error rate η¼jVphantom

L
Vreconj∕jVphantomj

is derived, where Vphantom represents the binary volume of
the phantom, and Vrecon is the binary volume after surface
reconstruction.

L
means exclusive or operation between

two binary volumes, and j · j is a l1-norm operation of
binary data.

3 Results
PBRT simulations have been carried out for both setups as
listed in Table 1 to generate multiview projection data. Two
exemplary MLA-D simulations showing a single view
according to the configurations are depicted in Fig. 9. The
total computational burden, for example to generate 36
views, was about 4 h for setup 1 and 16 h for setup 2.

Volumetric surface reconstruction is performed on a 256 �
256 � 249 voxel grid with 0.13 mm between two neighbor-
ing voxels. Calculated slices of photo-consistency measures
according to the 6 and 36 views are compared, as shown
in Fig. 10.

For the same slice, the results from back-projection and
the proposed method are compared in Fig. 11. The first row

Fig. 9 Exemplary MLA-D raw images resulting simulations from
a single view alongside magnified views within the red box. (a and b)
The results according to the configuration of setup 1 and setup 2,
respectively.

Fig. 10 Photo-consistency measure comparison calculated from 6 and 36 views of data, respectively.
(a) The ground truth (from the CT volume); (b and c) results for setup 1; and (d and e) results for setup 2.
Note that (b and d) are using 6 projections, while (c and e) are using 36 projections.

Fig. 11 Comparison of reconstructed slices by the back-projection and the proposed methods using the
two setups for the same slice, as in Fig. 10. (a and b) The results by back-projection method using 6 and
36 projections, respectively; (c and d) Results by the proposed method employing the same number of
views as for setup 1. (e–h) Results according to setup 2 following the same order as (a–d).
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shows reconstructed slices for setup 1 employing 6 and 36
views of data by the back-projection method [Figs. 11(a) and
11(b), respectively] and by the proposed method [Figs. 11(c)
and 11(d)]. The second row of Fig. 11 shows the results
using setup 2 following the same order as the first row of
figures.

When 36 projectional views are used, setup 1 yields an
error rate of 14.18%, while setup 2 results in an error rate
of 1.95%. A quantitative evaluation of error rate comparing
the back-projection method and the proposed method is per-
formed for setup 2, as shown in Fig. 12. The curves indicate
that the proposed method shows a significant improvement
of accuracy as compared with the back-projection method.

Results of rendered surfaces for setup 2 are shown in
Fig. 13. Considerable errors in shape restoration for results
of the back-projection method, such as particularly in the leg
areas of the mouse, are clearly evident [cf. Fig. 13(c)].
In contrast, these unresolved structures are being better
preserved by using the proposed method, as shown in
Fig. 13(b).

4 Discussion and Conclusion
In the field of in vivo optical imaging, the back-projection
method is a frequently used approach for surface
reconstruction. This method not only requires a high number
of projections (100 to 300 in general) to produce acceptable
results,9,10 but it also possesses inherent shortcomings,
mainly regarding its inability to resolve concave areas.
Surface reconstruction from multiview projection data
using the proposed method has been demonstrated to resolve

concave surface areas better. Furthermore, the required num-
ber of projections can be significantly reduced when employ-
ing MLA-Ds, since MLA-Ds provide additional angular
information per detector position. The simulation results
indicate that satisfying results can be achieved by 6 to 36
views of projection using the proposed new setup. In contrast
to other surface detection approaches used within the
research field of in vivo optical imaging, such as using struc-
tured light or employing a secondary structural imaging
procedure, the approach as proposed in this article does
not require any other additional hardware.

Because experimentally acquired data were not available
as the final MLA-D construction is still to be completed,
results are obtained using the PBRT simulation approach.
However, as we run the simulation on highly realistic object
data, experimentally acquired by x-ray CT of a nude mouse
scan, relying on a simulation study does not degrade its
value. By incorporating ray-tracing techniques tailored spe-
cifically to the optical layout of the MLA-Ds investigated,
the PBRT framework has once more proven to be a state-
of-the-art tool for PBRT in computer graphics and, in our
context, 3-D in vivo imaging. In addition, we neglected
noise in the process of MLA-D image generation mainly
due to the fact that the images are acquired under controlled
illumination with high signal-to-noise ratio in practice
[cf. Fig. 1(b)].

As described in Ref. 22, reference pixel windows were
compared with images taken with six closest cameras to
calculate the NCC value, which further worked as photo-
consistency measure. In contrast to conventional single-lens
cameras, MLA-Ds provide multitude EIs covering the same
area of interest from (slightly) different views. Hence, a
greater number of EIs can be chosen as reference or com-
paring images and further analyzed to calculate similarity
measures. Rather than using the NCC value directly, the
proposed measure as described herein combines these inher-
ent characteristics of MLA-Ds by calculating the rate of
occasions when the NCC value reaches a maximum at
d ¼ 0. Statistically it uses more information from the neigh-
boring views. However, as RðdÞ changes along the virtual
optic ray, pairwise comparison of pixel windows from multi-
tude EIs yields very high computational complexity. The
calculation of similarity between one pair of pixel windows
is independent from the others. Hence, the calculation of
photo-consistency could be decomposed into several sub-
tasks and could be further accelerated using parallel comput-
ing techniques in the future.

Fig. 12 Measured error rates for the proposed and the back-projec-
tion methods using different numbers of views for setup 2.

Fig. 13 Comparison of the rendered surface for the phantom (a), reconstructed surface by the proposed
method (b), and the back-projection method (c) from 36 views using setup 2.
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Increasing the number of projectional views does improve
the reconstruction results, as seen in Fig. 10; cf. also Ref. 22.
The performance of the two setups for 3-D surface
reconstruction differs significantly. Because pixel size of
setup 2 is about seven times smaller than that of setup 1,
setup 2 features a much higher space sampling rate than
that of setup 1. Hence, higher-frequency information can
be resolved which could potentially make pixel window
comparison even more robust. Moreover, the EIs of setup
2 possess higher spatial resolution, such that a bigger pixel
window could be used when the similarity measure is calcu-
lated. These two advantages are helpful in suppressing false-
positive cases in the presence of noise.33

In conclusion, this article verifies the feasibility of recon-
structing 3-D surfaces from multiview data solely by using
MLA-D data within the research field of in vivo small animal
imaging. We presented a new imaging instrumentation
design with respect to the alignment of MLA-Ds and light
sources. Given this conceptional imaging system setup, a
corresponding algorithm for 3-D surface reconstruction is
presented and investigated. The results indicate that the pro-
posed method does have the ability to resolve concave areas
and to achieve a high accuracy, even when using a signifi-
cantly low number of projection views, without the require-
ment of any additional hardware.
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