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1 Introduction
The optical field originated from a point object changes as it
interacts with an optical imaging system. The phase, ampli-
tude, and polarization state of the optical field at the entrance
pupil of the system can be adversely changed, that is aber-
rated, when it arrives at the exit pupil. The polarization
effects of diattenuation and retardance are one reason for
the optical field to change in an adverse manner for produc-
ing optimum imaging. Diattenuation refers to the difference
in amplitude that the two polarization states may acquire
upon refraction or reflection and retardance to the change
in phase that those states can also acquire. Polarization issues
in optical systems have been long known and some effects
and their correction have been reported in the literature.1–8

The subject of polarization aberrations has been defined and
studied previously9,10 using a system’s Jones matrix, which
depends on the field of view and the aperture of the system.
This matrix is expanded, for example, in terms of the Pauli
spin matrices to provide different terms that represent polari-
zation aberrations.

This article provides an alternative way for understanding
polarization aberrations by constructing a set of polarization
fields.11 These basic fields are useful not only for describing
the optical field at the entrance pupil of the optical system but
notably for describing the optical fields at the exit pupil as a
superposition of basic fields. In this article, we provide equa-
tions and graphical displays for the first 63 polarization
fields. We express the optical field at the entrance pupil
plane of an axially symmetric optical system as

~E ¼ ~Að~H;~ρÞ exp
�
i
2π

λ
Φð~H;~ρÞ

�
; (1)

where the time dependence has been omitted, ~Að~H;~ρÞ is the
field amplitude in vector form, and Φð~H;~ρÞ represents the

optical phase; these depend on the field ~H and aperture ~ρ
of the system.

We then show that in the presence of retardance the
incoming optical field is split into two mutually orthogonal
fields.

The surface of constant optical path is the wavefront and
there exist two separated wavefronts, or a wavefront of two
sheets, that produce two distinct images.

We develop and highlight the concepts of polarization
fields and of wavefronts of two sheets for understanding
polarization aberrations and imaging. These concepts ease
the understanding of how the optical field propagates in an
optical system and provide useful insight. Although the
effects caused by diattenuation and retardance have been
long known, there still exists a need for a clear theoretical
foundation of the subject. This article aims at providing
such a foundation while providing insight for optical engi-
neering applications.

2 Construction of the Optical Fields
The first step is to define the optical field at the entrance
pupil, and for this we construct the field amplitude
~Að~H;~ρÞ. Since we wish to construct fields that are smooth
in their behavior with respect to the field and aperture of
a system and that have symmetric properties, we use the
aberration function of a plane symmetric system.12 We estab-
lish the unit vector ~i in the field of view to define the direc-
tion of plane of symmetry. Since the aberration function is
a scalar, it must depend on the dot products of the field
vector ~H, the aperture vector ~ρ, and the symmetry vector ~i.
This aberration function is written as

Wð~i; ~H;~ρÞ ¼
X∞

k;m;n;p;q

W2kþnþp;
2mþnþq;
n;p;q

ð~H · ~HÞkð~ρ · ~ρÞm

× ð~H · ~ρÞnð~i · ~HÞpð~i · ~ρÞq; (2)
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where W2kþnþp;2 mþnþq;n;p;q is the coefficient of a particular
aberration form defined by the integers k,m, n, p, and q. The
lower indices in the coefficients indicate the algebraic
powers of H, ρ, cosðϕÞ, cosðχÞ, and cosðχ þ ϕÞ in a given
aberration term. The angle χ is between the vectors~i and ~H,
and the angle ϕ is between the vectors ~H and ~ρ, and the angle
χ þ ϕ is between the vectors ~i and ~ρ.

The fields, called here the ~Rn fields, must have a vector
character; for constructing them we take the gradient of the
aberration function for plane symmetric systems,

~Rn ¼ ~∇ρWð~i; ~H;~ρÞ; (3)

where for simplicity the lower index indicates a field number.
We construct a complementary set of fields, called the ~Tn
fields, by rotating the ~Rn fields by π∕2.

As shown in Fig. 1, we define the unit vector ~r parallel to
~ρ, the unit vector ~t perpendicular to ~r, the unit vector ~h par-
allel to ~H, the unit vector ~k perpendicular to ~h, and the unit
vector ~j perpendicular to ~i. Vectors ~i and ~j are fixed and
define the coordinate system. The vector ~H ¼ H~h defines
the field point, and the vector ~ρ ¼ ρ~r defines the pupil
point through which a given ray passes.

The first 63 ~Rn and ~Tn fields that result from taking the
gradient of the aberration function for plane symmetric sys-
tems are given in Table 1. Piston terms have zero gradient
and do not contribute to the fields. As a function of the sym-
metry, field, and aperture vectors, there are three fields of first
order, fifteen fields of third order, and forty five fields of fifth
order. The ~Rn and ~Tn fields are graphically shown in
Appendices A and B, respectively; each field display is num-
bered and the functional dependence on the field, aperture,
and coordinate vectors is also given next to each field. By
construction, the ~Rn and ~Tn fields are orthogonal:

~Rn · ~Tn ¼ 0; (4)

A different route to obtain the ~Tn fields is as follows.13

The components of ~Rn are on the pupil plane. Let the
unit vectors ~x, ~y, and ~z define a Cartesian coordinate system
with ~z parallel to the optical axis. Then, we can express the
~Tn fields as

~Tn ¼ curl½Wð~i; ~H;~ρÞ~z� ¼ ~x
∂Wð~i; ~H;~ρÞ

∂y
− ~y

∂Wð~i; ~H;~ρÞ
∂x

:

(5)

Since

~Rn ¼ ~∇Wð~i; ~H;~ρÞ ¼ ~x
∂Wð~i; ~H;~ρÞ

∂x
þ ~y

∂Wð~i; ~H;~ρÞ
∂y

: (6)

We have that ~Rn · ~Tn ¼ 0 as ~Tn results by rotation of ~Rn by
π∕2; this is ~Tn ¼ ~j~Rn.

Furthermore, since the curl of ~Rn is zero then the ~Rn fields
are irrotational; and since the divergence of ~Tn is zero then
the ~Tn fields are solenoidal. A given vector field that is
continuous as well as its derivatives can be resolved into
an irrotational part and a solenoidal part. Thus, the ~Rn
and ~Tn are an adequate basis to express the amplitude ~A
of an optical field. For completeness purposes, we have
presented the first 63 ~Rn and ~Tn fields. In practice, however,
one would be mostly concerned with the low-order fields;
high-order fields represent higher-order amplitude polariza-
tion aberrations.

3 Optical Field Changes of Second Order
In this section, we determine the optical field changes to sec-
ond order of approximation as a function of the field and
aperture of an optical system. These changes relate to the
field amplitude and to the field phase. Assume an optical
system where the stop aperture is located at the center of
curvature of a spherical surface. Therefore, the entrance and
exit pupils coincide with the stop location. At the entrance
pupil, we have the optical field ~E

~E ¼ ~Að~H;~ρÞ exp
�
i
2π

λ
Φð~H;~ρÞ

�
; (7)

where ~Að~H;~ρÞ, or simply ~A, is the field amplitude and
Φð~H;~ρÞ is the optical phase, which depends on the field
and aperture of the system.

When light is refracted by the surface the polarization
state may be changed. For the s polarization state, the surface
may change the field amplitude by the factor ts and introduce
a phase change ð2π∕λÞδA2ð~ρ · ~ρÞ. For the p polarization
state, the surface may change the field amplitude by the
factor tp and introduce a phase change ð2π∕λÞðδþ
ΔδÞA2ð~ρ · ~ρÞ. The coefficients δ and Δδ describe phase
changes or retardance, and the parameter A ¼ ni where i
is the first-order marginal ray angle (slope) of incidence on
the surface. According to the Fresnel equations, an uncoated
refracting surface does not contribute retardance; however, if
the surface has an optical coating then retardance takes place.
Retardance is also introduced from light reflection on a
metal. The retardance is usually a fraction of a wavelength
and to be significant it requires large angles of incidence. In
high-numerical-aperture, multilens systems, the cumulative
effects of retardance need to be taken into account. The coef-
ficients δ and Δδ can analytically be calculated for simple
structures but they can be obtained from phase changes
data provided by an optical thin films program.

Fig. 1 Relation between unit vectors. Vectors~i and ~j are fixed in ori-
entation and define the coordinate system. The vectors~i , ~h, and ~r are
perpendicular to ~j , ~k , and ~t , respectively.
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Table 1 ~Rn and ~T n fields.

Aberration term ~Rn field ~Tn field

First group

W 01001ð~i · ~ρÞ R1
~i T 1

~j

W 11100ð~H · ~ρÞ R2
~H T 2H~k

W 02000ð~ρ · ~ρÞ R3~ρ T 3ρ~t

Second group

W 02002ð~i · ~ρÞ2 R4ð~i · ~ρÞ~i T 4ð~i · ~ρÞ~j

W 11011ð~i · ~HÞð~i · ~ρÞ R5ð~i · ~HÞ~i T 5ð~i · ~HÞ~j

W 03001ð~i · ~ρÞð~ρ · ~ρÞ R6ð~ρ · ~ρÞ~i T 6ð~ρ · ~ρÞ~j

R7ð~i · ~ρÞ~ρ T 7ð~i · ~ρÞρ~t

W 12101ð~i · ~ρÞð~H · ~ρÞ R8ð~H · ~ρÞ~i T 8ð~H · ~ρÞ~j

R9ð~i · ~ρÞ~H T 9ð~i · ~ρÞH~k

W 12010ð~i · ~HÞð~ρ · ~ρÞ R10ð~i · ~HÞ~ρ T 10ð~i · ~HÞρ~t

W 21001ð~i · ~ρÞð~H · ~HÞ R11ð~H · ~HÞ~i T 11ð~H · ~HÞ~j

W 21110ð~i · ~HÞð~H · ~ρÞ R12ð~i · ~HÞ~H T 12ð~i · ~HÞH~k

W 04000ð~ρ · ~ρÞ2 R13ð~ρ · ~ρÞ~ρ T 13ð~ρ · ~ρÞρ~t

W 13100ð~H · ~ρÞð~ρ · ~ρÞ R14ð~H · ~ρÞ~ρ R15ð~ρ · ~ρÞ~H T 14ð~H · ~ρÞρ~t T 15ð~ρ · ~ρÞH~k

W 22200ð~H · ~ρÞ2 R16ð~H · ~ρÞ~H T 16ð~H · ~ρÞH~k

W 22000ð~H · ~HÞð~ρ · ~ρÞ R17ð~H · ~HÞ~ρ T 17ð~H · ~HÞρ~t

W 31100ð~H · ~HÞð~H · ~ρÞ R18ð~H · ~HÞ~H T 18ð~H · ~HÞH~k

Third group

W 03003ð~i · ~ρÞ3 R19ð~i · ~ρÞ2~i T 19ð~i · ~ρÞ2~j

W 12012ð~i · ~HÞð~i · ~ρÞ2 R20ð~i · ~HÞð~i · ~ρÞ~i T 20ð~i · ~HÞð~i · ~ρÞ~j

W 21021ð~i · ~HÞ2ð~i · ~ρÞ R21ð~i · ~HÞ2~i T 21ð~i · ~HÞ2~j

W 04002ð~i · ~ρÞ2ð~ρ · ~ρÞ R22ð~i · ~ρÞð~ρ · ~ρÞ~i R23ð~i · ~ρÞ2~ρ T 22ð~i · ~ρÞð~ρ · ~ρÞ~j T 23ð~i · ~ρÞ2ρ~t

W 13011ð~i · ~HÞð~i · ~ρÞð~ρ · ~ρÞ R24ð~i · ~HÞð~ρ · ~ρÞ~i T 24ð~i · ~HÞð~ρ · ~ρÞ~j

R25ð~i · ~HÞð~i · ~ρÞ~ρ T 25ð~i · ~HÞð~i · ~ρÞρ~t

W 22002ð~i · ~ρÞ2ð~H · ~HÞ R26ð~i · ~ρÞð~H · ~HÞ~i T 26ð~i · ~ρÞð~H · ~HÞ~j

W 22020ð~i · ~HÞ2ð~ρ · ~ρÞ R27ð~i · ~HÞ2~ρ T 27ð~i · ~HÞ2ρ~t

W 31011ð~i · ~HÞð~i · ~ρÞð~H · ~HÞ R28ð~i · ~HÞð~H · ~HÞ~i T 28ð~i · ~HÞð~H · ~HÞ~j

W 13102ð~i · ~ρÞ2ð~H · ~ρÞ R29ð~i · ~ρÞð~H · ~ρÞ~i R30ð~i · ~ρÞ2 ~H T 29ð~i · ~ρÞð~H · ~ρÞ~j T 30ð~i · ~ρÞ2H~k

W 22111ð~i · ~HÞð~i · ~ρÞð~H · ~ρÞ R31ð~i · ~HÞð~H · ~ρÞ~i R32ð~i · ~HÞð~i · ~ρÞ~H T 31ð~i · ~HÞð~H · ~ρÞ~j T 32ð~i · ~HÞð~i · ~ρÞH~k
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From the Fresnel equations, the amplitude coefficients ts
and tp upon light refraction can be derived and to second
order of approximation these are

ts ¼ T þ TtA2ð~ρ · ~ρÞ; (8)

tp ¼ T þ Tðtþ ΔtÞA2ð~ρ · ~ρÞ; (9)

where

T ¼ 2n
n 0 þ n

; (10)

t ¼ −
1

2

�
n 0 − n
n2n 0

�
; (11)

Table 1 (Continued).

Aberration term ~Rn field ~Tn field

W 31120ð~i · ~HÞ2ð~H · ~ρÞ R33ð~i · ~HÞ2 ~H T 33ð~i · ~HÞ2H~k

W 05001ð~i · ~ρÞð~ρ · ~ρÞ2 R34ð~ρ · ~ρÞ2~i R35ð~i · ~ρÞð~ρ · ~ρÞ~ρ T 34ð~ρ · ~ρÞ2~j T 35ð~i · ~ρÞð~ρ · ~ρÞρ~t

W 14010ð~i · ~HÞð~ρ · ~ρÞ2 R36ð~i · ~HÞð~ρ · ~ρÞ~ρ T 36ð~i · ~HÞð~ρ · ~ρÞρ~t

W 14101ð~i · ~ρÞð~H · ~ρÞð~ρ · ~ρÞ R37ð~H · ~ρÞð~ρ · ~ρÞ~i T 37ð~H · ~ρÞð~ρ · ~ρÞ~j

R38ð~i · ~ρÞð~ρ · ~ρÞ~H T 38ð~i · ~ρÞð~ρ · ~ρÞH~k

R39ð~i · ~ρÞð~H · ~ρÞ~ρ T 39ð~i · ~ρÞð~H · ~ρÞρ~t

W 23001ð~i · ~ρÞð~H · ~HÞð~ρ · ~ρÞ R40ð~H · ~HÞð~ρ · ~ρÞ~i T 40ð~H · ~HÞð~ρ · ~ρÞ~j

R41ð~i · ~ρÞð~H · ~HÞ~ρ T 41ð~i · ~ρÞð~H · ~HÞρ~t

W 23110ð~i · ~HÞð~H · ~ρÞð~ρ · ~ρÞ R42ð~i · ~HÞð~ρ · ~ρÞ~H T 42ð~i · ~HÞð~ρ · ~ρÞH~k

R43ð~i · ~HÞð~H · ~ρÞ~ρ T 43ð~i · ~HÞð~H · ~ρÞρ~t

W 23201ð~i · ~ρÞð~H · ~ρÞ2 R44ð~H · ~ρÞ2~i T 44ð~H · ~ρÞ2~j

R45ð~i · ~ρÞð~H · ~ρÞ~H T 45ð~i · ~ρÞð~H · ~ρÞH~k

W 32010ð~i · ~HÞð~H · ~HÞð~ρ · ~ρÞ R46ð~i · ~HÞð~H · ~HÞ~ρ T 46ð~i · ~HÞð~H · ~HÞρ~t

W 32101ð~i · ~ρÞð~H · ~HÞð~H · ~ρÞ R47ð~H · ~HÞð~H · ~ρÞ~i T 47ð~H · ~HÞð~H · ~ρÞ~j

R48ð~i · ~ρÞð~H · ~HÞ~H T 48ð~i · ~ρÞð~H · ~HÞH~k

W 32210ð~i · ~HÞð~H · ~ρÞ2 R49ð~i · ~HÞð~H · ~ρÞ~H T 49ð~i · ~HÞð~H · ~ρÞH~k

W 41110ð~i · ~HÞð~H · ~HÞð~H · ~ρÞ R50ð~i · ~HÞð~H · ~HÞ~H T 50ð~i · ~HÞð~H · ~HÞH~k

W 41001ð~i · ~ρÞð~H · ~HÞ2 R51ð~H · ~HÞ2~i T 51ð~H · ~HÞ2~j

W 06000ð~ρ · ~ρÞ3 R52ð~ρ · ~ρÞ2~ρ T 52ð~ρ · ~ρÞ2ρ~t

W 15100ð~H · ~ρÞð~ρ · ~ρÞ2 R53ð~ρ · ~ρÞ2 ~H T 53ð~ρ · ~ρÞ2H~k

R54ð~H · ~ρÞð~ρ · ~ρÞ~ρ T 54ð~H · ~ρÞð~ρ · ~ρÞρ~t

W 24000ð~H · ~HÞð~ρ · ~ρÞ2 R55ð~H · ~HÞð~ρ · ~ρÞ~ρ T 55ð~H · ~HÞð~ρ · ~ρÞρ~t

W 24200ð~H · ~ρÞ2ð~ρ · ~ρÞ R56ð~H · ~ρÞð~ρ · ~ρÞ~H T 56ð~H · ~ρÞð~ρ · ~ρÞH~k

R57ð~H · ~ρÞ2~ρ T 57ð~H · ~ρÞ2ρ~t

W 33300ð~H · ~ρÞ3 R58ð~H · ~ρÞ2 ~H T 58ð~H · ~ρÞ2H~k

W 33100ð~H · ~HÞð~H · ~ρÞð~ρ · ~ρÞ R59ð~H · ~HÞð~ρ · ~ρÞ~H T 59ð~H · ~HÞð~ρ · ~ρÞH~k

R60ð~H · ~HÞð~H · ~ρÞ~ρ T 60ð~H · ~HÞð~H · ~ρÞρ~t

W 42200ð~H · ~HÞð~H · ~ρÞ2 R61ð~H · ~HÞð~H · ~ρÞ~H T 61ð~H · ~HÞð~H · ~ρÞH~k

W 42000ð~H · ~HÞ2ð~ρ · ~ρÞ R62ð~H · ~HÞ2~ρ T 62ð~H · ~HÞ2ρ~t

W 51100ð~H · ~HÞ2ð~H · ~ρÞ R63ð~H · ~HÞ2 ~H T 63ð~H · ~HÞ2H~k

Optical Engineering 035102-4 March 2014 • Vol. 53(3)

Sasián: Polarization fields and wavefronts of two sheets for understanding polarization aberrations. . .



Δt ¼ 1

2

�
n 0 − n
nn 0

�
2

: (12)

The optical field is described at the entrance pupil plane
located at the surface’s center of curvature, and to second
order of approximation, the unit vector ~r is in the plane
of incidence of a ray specified by ~H and ~ρ, and the unit vector
~t is perpendicular to the plane of incidence of the ray.

After light refraction the field ~E 0 at the exit pupil can be
written as if both amplitude and phase changes occur simul-
taneously

~E 0 ¼ exp

�
i
2π

λ
δA2ð~ρ · ~ρÞ

��
tsð~E ·~tÞ~tþ exp

�
i
2π

λ
ΔδA2ð~ρ · ~ρÞ

�

× tpð~E · ~rÞ~r
�
; (13)

or as if amplitude and phase changes occur sequentially.
For simplicity, we take the later route.

When there is no retardance Δδ ¼ 0 between the
two polarization states, the optical field ~E 0 can be written
as

~E 0 ¼ exp

�
i
2π

λ
δA2ð~ρ · ~ρÞ

�
½tsð~E · ~tÞ~tþ tpð~E · ~rÞ~r�

¼ exp

�
i
2π

λ
δA2ð~ρ · ~ρÞ

�
f½T þ TtA2ð~ρ · ~ρÞ�ð~E ·~tÞ~t

þ ½T þ Tðtþ ΔtÞA2ð~ρ · ~ρÞ�ð~E · ~rÞ~rg

¼ exp

�
i
2π

λ
δA2ð~ρ · ~ρÞ

�
½T~Eþ TtA2ð~ρ · ~ρÞ~E

þ TΔtA2ð~E · ~ρÞ~ρ�: (14)

When the retardance Δδ is introduced the optical field ~E�

becomes

~E� ¼ exp

�
i
2π

λ

�
1

2
ΔδA2ð~ρ · ~ρÞ

��

×

(
ð~E 0 · ~tÞ~t exp�−i 2πλ 1

2
ΔδA2ð~ρ · ~ρÞ�þ

ð~E 0 · ~rÞ~r exp
�
i 2πλ

1
2
ΔδA2ð~ρ · ~ρÞ�

)
: (15)

We define the unit vector ~a parallel to ~E 0 and the unit vec-
tor ~b perpendicular to ~E 0. Then, we write ~E 0 ¼ j~E 0j~a and
define a field ~E 0⊥ ¼ j~E 0j~b perpendicular to the field ~E 0.

The unit vectors ~r and ~t can be decomposed in a compo-
nent parallel to ~a and a component parallel to ~b, where we
have j~aj ¼ 1, j~bj ¼ 1, and ~a · ~b ¼ 0. The decomposition is

~r ¼ ð~a · ~rÞ~aþ ð~b · ~rÞ~b ~t ¼ ð~a ·~tÞ~aþ ð~b ·~tÞ~b: (16)

We also can write the relationships

ð~E 0 · ~rÞ~r ¼ ð~a · ~rÞ2~E 0 þ ð~a · ~rÞð~b · ~rÞ~E 0⊥

ð~E 0 ·~tÞ~t ¼ ð~a · ~tÞ2~E 0 þ ð~a · ~tÞð~b ·~tÞ~E 0⊥: (17)

The optical field at the exit pupil then becomes

~E� ¼ exp

�
i
2π

λ

�
1

2
ΔδA2ð~ρ · ~ρÞ

��

×

8<
:
½ð~a ·~tÞ2~E 0 þ ð~a ·~tÞð~b ·~tÞ~E 0⊥� exp

h
−i 2πλ

1
2
ΔδA2ð~ρ · ~ρÞ

i
þ

½ð~a · ~rÞ2~E 0 þ ð~a · ~rÞð~b · ~rÞ~E 0⊥� exp
h
i 2πλ

1
2
ΔδA2ð~ρ · ~ρÞ

i
9=
;:

(18)

The field ~E� can be separated into a component ~Eo

parallel and a component ~Ee perpendicular to the field ~E 0.
These field components ~Eo and ~Ee can be written (see
Appendix C) as

~Eo ¼ ~E 0
exp

�
i
2π

λ

�
1

2
ΔδA2ð~ρ · ~ρÞ

�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
cos2

�
2π

λ

1

2
½ΔδA2ð~ρ · ~ρÞ

��
þ sin2

�
2π

λ

1

2
½ΔδA2ð~ρ · ~ρÞ�

�
½ð~a · ~rÞ2 − ð~a ·~tÞ2�2

�s

× exp

�
i × arct

�
Tan

�
2π

λ

1

2
½ΔδA2ð~ρ · ~ρÞ�

�
½ð~a · ~rÞ2 − ð~a ·~tÞ2�

��
≅ ~E 0

exp

�
i
2π

λ

�
ΔδA2ð~a · ~ρÞ2

��
(19)

and

~Ee ¼ ~E 0⊥
exp

�
i
2π

λ

�
1

2
ΔδA2ð~ρ · ~ρÞ

�
þ i

π

2

�

×
�
2ð~a · ~rÞð~b · ~rÞ

��
sin

2π

λ

1

2
ΔδA2ð~ρ · ~ρÞ

�

≅ ~E 0⊥
exp

�
i
2π

λ

�
1

2
ΔδA2ð~ρ · ~ρÞ

�
þ i

π

2

�

×
�
2π

λ
ΔδA2ð~a · ~ρÞð~b · ~ρÞ

�
: (20)

We note that j~Eoj2 þ j~Eej2 ¼ j~E 0j2 and thus the energy in
the ~E 0 field is conserved and shared by the ~Eo and ~Ee fields.

The superscripts o and e are used to avoid confusion with
the usage of parallel and perpendicular as they often refer to
the plane of light incidence.

In this decomposition, each field component, ~Eo and ~Ee,
has amplitude and phase and is perpendicular to the other
over the entire pupil. Thus, the incoming optical field is
split into two fields. Furthermore, for a given optical path
length OPL from an object point, a wavefront can be defined
for the ~Eo field. Similarly, for the same OPL a distinct and
separated wavefront can be defined for the ~Ee field.
Therefore, in the presence of retardance, we can speak of
the concept of a wavefront of two sheets, one sheet belong-
ing to the ~Eo field component, the other sheet belonging to
the ~Ee field component. Given the wavefront of two sheets
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then two distinct images of the source point can be expected.
Retardance, and therefore wavefront splitting, can be intro-
duced by a thin film coating on a lens, by reflection on metal,
or by a birefringent material. For example, by placing a z-cut,
uniaxial crystal in an optical system with its optical axis
aligned with the system’s optical axis, one can introduce
retardance due to the crystal birefringence.

4 Optical Field upon Stop Shifting
Now, we consider the optical field when the aperture stop is
not located at the center of curvature of the spherical surface.

For this we perform stop shifting, which is achieved by
replacing in the fields ~Eo and ~Ee the aperture vector ~ρ

with the shift vector ~ρshift ¼ ~ρþ ðĀ∕AÞ~H and by term expan-
sion.11 The factor Ā ¼ nī where ī is the first-order chief ray
angle of incidence on the surface, and the factor A ¼ ni
where i is the first-order marginal angle of incidence. We
only retain second-order terms as a function of the field vec-

tor ~H and the aperture vector ~ρ.
By substitution of the shift vector ~ρshift in ~Eo the field is

obtained for a general stop location

~Eoð~H;~ρÞ ¼ T exp

�
i
2π

λ
δ½A2ð~ρ · ~ρÞ þ 2ĀAð~H · ~ρÞ þ Ā2ð~H · ~HÞ�

�

×

 
~Eþ t½A2ð~ρ · ~ρÞ þ 2ĀAð~H · ~ρÞ þ Ā2ð~H · ~HÞ�~Eþ
Δtf½A2ð~E · ~ρÞ~ρþ ĀAð~E · ~HÞ~ρ� þ ½ĀAð~E · ~ρÞ~H þ Ā2ð~E · ~HÞ~H�g

!

× exp

�
i
2π

λ
fΔδ½A2ð~a · ~ρÞ2 þ 2ĀAð~a · ~ρÞð~a · ~HÞ þ Ā2ð~a · ~HÞ2�g

�
: (21)

Similarly, for the ~Ee field component after neglecting
fourth-order terms we can write

~Eeð ~H;~ρÞ¼T exp

�
i
2π

λ

��
δþ1

2
Δδ
��

A2ð~ρ ·~ρÞ

þ2ĀAð ~H ·~ρÞþĀ2ð ~H · ~HÞþλ

4

���

× ~E⊥
�
2π

λ
Δδ
�
Að~a ·~ρÞð~b ·~ρÞþĀAð~a · ~HÞð~b ·~ρÞþ
AĀð~a ·~ρÞð~b · ~HÞþĀ2ð~a · ~HÞð~b · ~HÞ

��
;

(22)

where ~E⊥ is the optical field ~E rotated 90 deg. In both of
these expressions, the field ~E is at the entrance pupil after
stop shifting. The field ~E is either already known or is
obtained by substitution of the shift ~ρshift vector in the
field at the plane of the surface center of curvature.

5 Polarization Aberration Coefficients
We now determine the coefficients that define the optical
field for an optical system of several surfaces. We assume
that to second order the individual surface coefficients add
to form the coefficients for the entire optical system. The
transmission from two surfaces is the product of the individ-
ual surface transmissions. However, when the amplitude
factors have zero- and second-order terms, the second-order
terms of the product are the sums of the second-order terms
of the factors (weighted by the zero-order terms). Regarding
phase, it follows from the fact that optical paths add,
that we can add second-order phase terms. However, we
neglect some extrinsic14 second-order terms that might be
present due to the interaction between second-order terms
due to light refraction and second-order terms due to polari-
zation retardance. These extrinsic terms depend on the
product of the gradient of second-order aberrations. Since
second-order effects from retardance are small then the
extrinsic contributions are expected to be comparatively neg-
ligible. Effectively, phase contributions due to pure refraction

or reflection are accurately accounted by the first-order ray
trace. However, when the phase is changed due to polariza-
tion retardance, then the standard first-order ray trace based
on the surface optical powers will not fully account for first-
order ray paths. There will be a small error which would be
accounted for with extrinsic terms. One way to avoid first-
order errors is to include the second-order phase contributions,
optical power, from retardance in the first-order ray trace.

Table 2 presents a summary of second-order polarization
aberration coefficients for a system of q surfaces. These coef-
ficients are the sums of individual surface coefficients for
amplitude and phase terms. Their calculation requires the
ray tracing of a marginal and a chief first-order (paraxial)
rays. The factor Ā ¼ nī is the first-order chief ray refraction
invariant, and the factor A ¼ ni is the first-order marginal ray
refraction invariant. Those rays have paraxial angles (slopes)
of incidence ī and i at a given system surface. Coefficients
similar to the presented in Table 2 have been previously
introduced by Chipman.15

To express the optical field at the exit pupil, we also
define the retardance functions δð~H;~ρÞ, Δδað~H;~ρÞ,
Δδbð~H;~ρÞ, Δδcð~H;~ρÞ as

δð~H;~ρÞ ¼ δ1ð~ρ · ~ρÞ þ δ2ð~H · ~ρÞ þ δ3ð~H · ~HÞ (23)

Δδað~H;~ρÞ ¼ Δδ1ð~ρ · ~ρÞ þ Δδ2ð~H · ~ρÞ þ Δδ3ð~H · ~HÞ (24)

Δδbð~H;~ρÞ ¼ Δδ1ð~a · ~ρÞ2 þΔδ2ð~a · ~HÞð~a · ~ρÞ þΔδ3ð~a · ~HÞ2

(25)

Δδcð~H;~ρÞ ¼ Δδ1ð~a · ~ρÞð~b · ~ρÞ þ Δδ2ð~a · ~ρÞð~b · ~HÞ þ Δδ2

× ð~a · ~HÞð~b · ~ρÞ þ Δδ3ð~a · ~HÞð~b · ~HÞ: (26)
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6 Optical Field at the Exit Pupil
In this section, we present expressions for the optical field at
the exit pupil to second order of approximation. In the
absence of retardance Δδ ¼ 0 and using the polarization
aberration coefficients in Table 2, we can write the optical
field ~Eo at the exit pupil of an optical system as

~Eo ¼ ~A 0ð~H;~ρÞ exp
�
i
2π

λ
½Φð~H;~ρÞ þ δð~H;~ρÞ�

�
; (27)

where the amplitude function ~A 0ð~H;~ρÞ is

~A 0ð~H;~ρÞ

¼
�
Tq

~Aþ P1ð~ρ · ~ρÞ~Aþ P2ð~H · ~ρÞ~Aþ P3ð~H · ~HÞ~A
P4ð~A · ~ρÞ~ρþ P5½ð~A · ~HÞ~ρþ ð~A · ~ρÞ~H� þ P6ð~A · ~HÞ~H

�
;

(28)

and the retardance function δð~H;~ρÞ is

δð~H;~ρÞ ¼ δ1ð~ρ · ~ρÞ þ δ2ð~H · ~ρÞ þ δ3ð~H · ~HÞ: (29)

The terms in the amplitude function ~A 0ð~H;~ρÞ represent
changes to the field amplitude and orientation. The field
amplitude ~A 0ð~H;~ρÞ at the exit pupil depends on the field
amplitude ~A ¼ ~Að~H;~ρÞ at the entrance pupil. If we have a
uniform field amplitude ~A ¼~i, a linearly polarized field,
then the field amplitude ~A 0ð~H;~ρÞ involves the ~Rn fields
~R6 through ~R12. These seven ~Rn fields are often the ampli-
tude changes that take place and are shown in Fig. 2. If we
have a radial field amplitude ~A ¼ ~r, then the field amplitude
~A 0ð~H;~ρÞ involves the ~Rn fields ~R13 through ~R18, which are
shown in Fig. 3.

The terms in retardance function δð~H;~ρÞ represent change
of focus, change of magnification, and piston aberrations.
Therefore, in the presence of retardance δ ≠ 0, the first-
order properties of the system change.

In the absence of retardance, Δδ ¼ 0, the ~Ee field com-
ponent is absent too.

When there is retardance, Δδ ≠ 0, the ~Eo field component
can be written as

~Eo ¼ ~A 0ð~H;~ρÞ exp
�
i
2π

λ
½Φð~H;~ρÞ þ δð~H;~ρÞ þΔδbð~H;~ρÞ�

�
:

(30)

In this case, the field phase includes three more terms
according to the retardance function

Δδbð~H;~ρÞ ¼ Δδ1ð~a · ~ρÞ2 þΔδ2ð~a · ~HÞð~a · ~ρÞ þΔδ3ð~a · ~HÞ2:
(31)

When ~a ¼ ~i these terms are astigmatism, anamorphic
magnification, and piston aberrations.

Furthermore, when there is retardance, Δδ ≠ 0, the ~Ee

field component can be written as

~Eeð~H;~ρÞ ¼ ~A0⊥ð~H;~ρÞ
�
2π

λ
Δδcð~H;~ρÞ

�

× exp

�
i
2π

λ

�
Φð~H;~ρÞ þ δð~H;~ρÞ þ 1

2
Δδað~H;~ρÞ þ λ

4

��
;

(32)

where ~A 0⊥ð~H;~ρÞ ¼ j~A 0ð~H;~ρÞj~b. In this case, the ~Ee field
amplitude is strongly apodized by the function

Δδcð~H;~ρÞ ¼ Δδ1ð~a · ~ρÞð~b · ~ρÞ þ Δδ2ð~a · ~ρÞð~b · ~HÞ þ Δδ2

× ð~a · ~HÞð~b · ~ρÞ þ Δδ3ð~a · ~HÞð~b · ~HÞ: (33)

The phase for the ~Ee field includes three more terms
through the retardance function

Δδað~H;~ρÞ ¼ Δδ1ð~ρ · ~ρÞ þ Δδ2ð~H · ~ρÞ þ Δδ3ð~H · ~HÞ:
(34)

These terms change the first-order properties of the sys-
tem and represent change of focus, change of magnification,
and piston aberrations.

7 Pupil and Image Plane Irradiances
In this section, we illustrate irradiance and the point spread
function for the ~Eo and ~Ee fields when ~a ¼ ~i and ~H ¼ 0. The
rows in Fig. 4 shows three cases for different amounts of
retardance Δδ ¼ λ∕8, Δδ ¼ λ∕4, and Δδ ¼ λ∕2. For the
field ~Eo, column A gives the irradiance at the exit pupil
and column B gives the point spread function assuming
no phase errors and that the astigmatism term Δδ1ð~a · ~ρÞ2
has been corrected. For the field ~Ee, column C gives the irra-
diance and column D gives the point spread function assum-
ing no phase errors. Column E gives the incoherent sum of
columns B and D.

Note that the irradiance distribution for the ~Eo field at the
exit pupil is reminiscent of the irradiance distribution under
crossed polarizers of a lens that contributes diattenuation.
However, in the former case, the pattern resembling a cross
appears illuminated (see case A for Δδ ¼ λ∕2) and in the
latter case the pattern appears dark.

A more realistic case is when the astigmatism term
Δδbð~H;~ρÞ ¼ Δδ1ð~a · ~ρÞ2 is present. Then, the irradiance
patterns as calculated at the medial focus change as shown
in Fig. 5. Note that for a retardance Δδ ¼ λ∕4, there is

Table 2 Polarization aberration coefficients for a system of q
surfaces.

P1 ¼ Tq
Pq

j¼1 ðtA2Þj δ1 ¼Pq
j¼1 ðδA2Þj

P2 ¼ 2Tq
Pq

j¼1 ðtAĀÞj δ2 ¼ 2
Pq

j¼1 ðδAĀÞj
P3 ¼ Tq

Pq
j¼1 ðt Ā2Þj δ3 ¼Pq

j¼1 ðδĀ2Þj
P4 ¼ Tq

Pq
j¼1 ðΔtA2Þj Δδ1 ¼Pq

j¼1 ðΔδA2Þj
P5 ¼ Tq

Pq
j¼1 ðΔtAĀÞj Δδ2 ¼Pq

j¼1 ðΔδAĀÞj
P6 ¼ Tq

Pq
j¼1 ðΔt Ā2Þj Δδ3 ¼Pq

j¼1 ðΔδĀ2Þj
t j ¼ − 1

2 ðn
0−n

n2n 0 Þj Δt j ¼ 1
2 ðn

0−n
nn 0 Þ2j

T j ¼
Qj

k¼1 ð 2n
nþn 0Þk A ¼ ni

Ā ¼ nī
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a significant change in the point spread function as calculated
at medial focus.

8 Elliptical Polarizaiton
In the presence of retardance, the state of polarization of
a linearly polarized field changes to elliptical polarization.
It is also of interest to determine the properties of the polari-
zation ellipse.

Using the definitions,

tanðαÞ ¼ j~Eej
j~Eoj

; (35)

tanðχÞ ¼ ∓
b
a
: (36)

We write the relationships for the orientation and ellipticity
of the polarization ellipse,

tanð2ψÞ ¼ tanð2αÞ cos
�
2π

λ
Δδd

�
; (37)

sinð2χÞ ¼ sinð2αÞ sin
�
2π

λ
Δδd

�
; (38)

where ψ is the angle that the major axis of the polarization
ellipse makes with the ~a direction, and the ellipticity tanðχÞ is
the ratio of the minor b to major axis a of the polarization
ellipse.

We can approximate the tangent of α to second order by

tanðαÞ ¼ j~Eej
j~Eoj

≅
2π

λ
Δδc: (39)

The retardance Δδd is given by

Δδd ¼ Δδbð~H;~ρÞ − 1

2
Δδað~H · ~ρÞ − λ

4
: (40)

Then, we can write

cos

�
2π

λ
Δδd

�
¼ sin

�
2π

λ

�
Δδbð~H;~ρÞ − 1

2
Δδað~H · ~ρÞ

��

≅
2π

λ

�
Δδbð~H;~ρÞ − 1

2
Δδað~H · ~ρÞ

�
;

(41)

which is a second-order quantity. Similarly, the parameter α
to second order is given by

α ≅
2π

λ
Δδcð~H;~ρÞ

¼ 2π

λ

�
Δδ1ð~a · ~ρÞð~b · ~ρÞ þ Δδ2ð~a · ~ρÞð~b · ~HÞþ
Δδ2ð~a · ~HÞð~b · ~ρÞ þ Δδ3ð~a · ~HÞð~b · ~HÞ

�
: (42)

Therefore, the angle ψ is a fourth-order quantity implying
that for a small amount of retardance Δδ the orientation of

Fig. 2 Graphical display of the ~R6 to ~R12 fields.

Fig. 3 Graphical display of the ~R13 to ~R18 fields.
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the polarization ellipse is not too different from the orienta-
tion of the field amplitude ~A 0ð~H;~ρÞ.

For sin½ð2π∕λÞΔδd�, we can write to second order of
approximation

sin

�
2π

λ
Δδd

�
≅ 1: (43)

Then, the ellipticity for small amounts of retardance Δδ
can be approximated to second order by

tanðχÞ ¼ b
a

≅
2π

λ

�
Δδ1ð~a · ~ρÞð~b · ~ρÞ þ Δδ2ð~a · ~ρÞð~b · ~HÞþ
Δδ2ð~a · ~HÞð~b · ~ρÞ þ Δδ3ð~a · ~HÞð~b · ~HÞ

�
:

(44)

For the zero field position ~H ¼ 0, the ellipticity is maxi-
mum when the aperture vector ~ρ is at an angle of 45 deg with
respect to the vector ~a, and at the edge of the aperture
j~ρj ¼ 1. In this case, we can write

b
a
≅
π

λ
Δδ1: (45)

For the case of having Δδ1 ¼ λ∕10, the ellipticity is esti-
mated to be 0.314. Figure 6 left shows a polarization pupil
map for a refractive system with no coatings and therefore no
retardance Δδ1 ¼ 0. However, when the lens surfaces are
coated, retardance is introduced and the polarization
state changes to elliptical as shown with ellipses in Fig. 6
right.

9 Summary
A useful way to understand polarization aberrations is by the
concepts of polarization fields and of wavefronts of two
sheets. In this article, we have constructed polarization fields
requiring smoothness, symmetry properties, and physical
plausibility. To this end, we have used the aberration function

of a plane symmetrical system and have taken the gradient to
pass from a scalar field to a vector field. We have thus
defined the ~Rn and ~Tn fields as an adequate basis to describe
polarization fields. These fields carry both aperture and field
dependence. For completeness purposes, we have presented
the first 63 ~Rn and ~Tn fields. However, given an axially sym-
metric system and a linear input polarization state, one would
be mostly concerned with the seven third-order ~Rn fields (~R6

to ~R12). If the input polarization state is radial, then one
would be mostly concerned with the six third-order ~Rn fields
(~R13 to ~R18). Higher-order fields represent higher-order
amplitude polarization aberrations.

For an axially symmetric system, we have expressed to
second order the optical field at the exit pupil as a superpo-
sition of polarization field components. We also have pro-
vided the coefficients of these fields as a function of the
system parameters and have used sums over the system sur-
faces to find the polarization aberration coefficients for the
entire system. Data from a first-order marginal and chief ray
is used to compute the polarization aberration coefficients.

In the absence of retardance Δδ ¼ 0 introduced by an
optical surface, the field amplitude changes its orientation
and magnitude. In addition, the first-order properties of
the system change as the optical phase changes according
to the function δð~H;~ρÞ, which represents change of focus,
change of magnification, and piston aberrations.

In the presence of retardance Δδ ≠ 0, the incoming opti-
cal field is split into two field components ~Eo and ~Ee. Each of
these components is perpendicular to the other, and for
a given optical path length, a wavefront of two sheets is
defined. In addition, the phenomenon of elliptical polariza-
tion takes place. For small amounts of retardance, the orien-
tation of the polarization ellipse is a fourth-order quantity
and substantially coincides with the orientation of the
transmitted field amplitude. The ellipticity is however a
second-order quantity and is proportional to the amount of
retardance.

The treatment presented in this article is based on
previous work, and it is a refinement in that it provides ana-
lytically and graphically up to the first 63 ~Rn and ~Tn fields.

Fig. 4 Three cases of retardance, Δδ ¼ λ∕8, Δδ ¼ λ∕4, and Δδ ¼ λ∕2. For the field ~E
o
column A gives

the irradiance at the exit pupil and column B gives the point spread function assuming no phase errors.
For the field ~Ee column C gives the irradiance and column D gives the point spread function assuming no
phase errors. Column E gives the incoherent sum of columns B and D.
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Most importantly, this article highlights the occurrence of
a wavefront of two sheets. In the treatment presented
here. the phase calculation avoids a linear approximation to
the exponential function and shows that the optical field is
split into two mutually orthogonal components that would
produce two distinct images. We also illustrate the amplitude
apodization for the two mutually perpendicular fields and the
point spread function due to both fields. Effectively, in the
presence of retardance, an incoming beam is split into two
beams and therefore accounting for the effects from each
beam is of relevance.

The understanding of the classic aberrations of spherical,
coma, astigmatism, field curvature, and distortion often
presents difficulties. The case of understanding polarization
aberrations can be more challenging. However, with the con-
cepts of polarization fields and wavefront of two sheets,

the understanding of polarization aberrations is eased, and
simplicity and useful insights are gained. This article
aims at providing a theoretical foundation to ease the under-
standing of polarization aberrations for optical engineering
applications.

Appendix A
Figure 7 shows a graphical display of the ~R1 to ~R63

fields.

Appendix B
Figure 8 shows a graphical display of the ~T1 to ~T63

fields.

Fig. 5 Three cases of retardance,Δδ ¼ λ∕8,Δδ ¼ λ∕4, andΔδ ¼ λ∕2. For the field ~E
o
column A gives the

irradiance at the exit pupil and column B gives the point spread function calculated at medial focus. For
the field ~E

e
column C gives the irradiance and column D gives the point spread function calculated at

medial focus. Column E gives the incoherent sum of columns B and D.

Fig. 6 (a) Polarization pupil map showing the orientation and magnitude of the field at the exit pupil of a
lens system. At the entrance pupil the field is uniform and linearly polarized. (b) When coatings are added
to the surfaces retardance is introduced and the polarization state changes from linear to elliptical as
shown by ellipses.
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Fig. 7 Graphical display of the ~R1 to ~R63 fields.
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Fig. 8 Graphical display of the ~T 1 to ~T 63 fields.
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Appendix C
This appendix provides some algebraic steps in obtaining the optical field. We start with the expression for the ~E� field

~E� ¼ exp

�
i
2π

λ

�
1

2
ΔδA2ð~ρ · ~ρÞ

��8><
>:

½ð~a ·~tÞ2~E 0 þ ð~a ·~tÞð~b ·~tÞ~E 0⊥� exp
h
−i 2πλ

1
2
ΔδA2ð~ρ · ~ρÞ

i
þ

½ð~a · ~rÞ2~E 0 þ ð~a · ~rÞð~b · ~rÞ~E 0⊥i
exp
h
i 2πλ

1
2
ΔδA2ð~ρ · ~ρÞ

i
9>=
>;: (46)

The field ~Eo is

~Eo ¼ exp

�
i
2π

λ

�
δA2ð~ρ · ~ρÞ þ 1

2
ΔδA2ð~ρ · ~ρÞ

��
~E 0

8<
:

ð~a ·~tÞ2 exp
h
−i 2πλ

1
2
ΔδA2ð~ρ · ~ρÞ

i
þ

ð~a · ~rÞ2 exp
h
i 2πλ

1
2
ΔδA2ð~ρ · ~ρÞ

i
9=
;: (47)

By expressing the exponential function with a cosine and a sine term, we can write

~E0 ¼ exp

�
i
2π

λ

�
δA2ð~ρ · ~ρÞ þ 1

2
ΔδA2ð~ρ · ~ρÞ

��264 ½ð~a ·~tÞ2~E 0�


cos
n
− 2π

λ
1
2
½ΔδA2ð~ρ · ~ρÞ�

o
− i sin

n
2π
λ

1
2
½ΔδA2ð~ρ · ~ρÞ�

o�
þ

½ð~a · ~rÞ2~E 0�


cos
n
2π
λ

1
2
½ΔδA2ð~ρ · ~ρÞ�

o
þ i sin

n
2π
λ

1
2
½ΔδA2ð~ρ · ~ρÞ�

o�
3
75:

(48)

Or,

~E0 ¼ exp

�
i
2π

λ
½δA2ð~ρ · ~ρÞ þ 1

2
ΔδA2ð~ρ · ~ρÞ�

�
~E 0
�
cos

�
2π

λ

1

2
½ΔδA2ð~ρ · ~ρÞ�

�
þ i sin

�
2π

λ

1

2
½ΔδA2ð~ρ · ~ρÞ�

�
½ð~a · ~rÞ2 − ð~a ·~tÞ2�

�
:

(49)

By expressing the complex factor in terms of its argument and phase, we can write

~E0¼ ~E 0
exp

�
i
2π

λ

�
δA2ð~ρ ·~ρÞþ1

2
ΔδA2ð~ρ ·~ρÞ

�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
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��
: (50)

We can simplify by writing the field ~Eo to second order of approximation as

~Eo ≅ ~E 0
exp

�
i
2π

λ

�
δA2ð~ρ · ~ρÞ þ 1

2
ΔδA2ð~ρ · ~ρÞ

��
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�
i
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�
: (51)

Let us now consider the field ~Ee which is

~Ee ¼ exp

�
i
2π

λ

�
δA2ð~ρ · ~ρÞ þ 1

2
ΔδA2ð~ρ · ~ρÞ

��
~E 0⊥

8<
:

ð~a ·~tÞð~b ·~tÞ exp
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−i 2πλ

1
2
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i
þ
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1
2
ΔδA2ð~ρ · ~ρÞ

i
9=
;: (52)
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Using the cosine and sine functions, we can write

~Ee ¼ ~E 0⊥
exp

�
i
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λ
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2
ΔδA2ð~ρ · ~ρÞ
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(53)

The cosine terms cancel and we obtain

~Ee ¼ ~E 0⊥
exp

�
i
2π

λ

�
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2
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�
2π

λ

1

2
ΔδA2ð~ρ · ~ρÞ

�

¼ ~E 0⊥
exp

�
i
2π

λ

�
δA2ð~ρ · ~ρÞ þ 1

2
ΔδA2ð~ρ · ~ρÞ þ λ

4

��

× ½2ð~a · ~rÞð~b · ~rÞ� sin
�
2π

λ

1
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; (54)

which is the expression given above.
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