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Abstract. A stereo approach to resolve the occlusion problem in stereo video sequence is introduced. We define a
measure to evaluate the reliability of an initial disparity in combination with a left-right consistency check. An initial
matching cost volume is computed with an absolute difference-census measure. In the spatial propagation stage,
the outlier with a low reliability value is replaced/updated with the reliable disparity information in the support region.
Because previous methods establish correspondence on a per-frame basis, they cannot obtain temporally coherent
disparity results over a stereo sequence. In order to overcome the occlusion problem in a dynamic situation, we
employ the modified codebook with color, disparity, reliability, array of the matching cost, and final access time in a
temporal propagation procedure. Experimental results show that the proposed algorithm with general-purpose com-
puting on graphics processing units (GPGPU) provides better performance when applied to disparity maps of real-
time indoor/outdoor scenes. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or
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1 Introduction
Dense stereo matching is one of the most extensively studied
topics in computer vision.1–18 It is an effective three-dimen-
sional reconstruction method, since it can usually recover a
dense disparity map from a stereo view.

Kinect sensor using an infrared band captures precise
range information, but it is only for indoor use and its oper-
ation range is substantially limited. Stereo systems are useful
in both indoor/outdoor applications, such as robot navigation
and autonomous vehicle control.

Stereo matching algorithms are classified widely into local
and global matching methods, In addition, stereo algorithms
are described in more detail according to four individual com-
ponents in stereo matching, matching cost computation, cost
aggregation, disparity computation, and disparity refinement.1

Most global stereo methods are computationally expensive
and involve many parameters, while local stereo methods
are generally efficient and easy to implement.

In the local approaches, most common pixel-based match-
ing costs include absolute difference (AD), normalized
cross-correlation (NCC), and Birchfield and Tomasi’s mea-
sure (BT) to examine the matching cost in a search window.
The central problem of local window-based methods is how
to determine the size and shape of the aggregation window.
Hirschmüller and Scharstein proposed a census method that
is robust to brightness changes,2 but it causes matching ambi-
guity in image regions with repetitive or similar local struc-
tures. Yoon and Kweon assigned different support weights to
pixels in the window by using the photometric and geometric
relationship with the pixel under consideration, but many
problems, including textureless regions, repeated similar pat-
terns, and occlusions, still remain unsolved.3

In the global matching approaches, an energy function is
used to find the optimal solution in terms of matching cost. It
consists of a data term and a smoothness term. The data term
represents the degree of image difference between the left
and right stereo images according to the disparity level.
The smoothness term represents the compensation level of
the discontinuity in neighboring pixels. The algorithms
make an explicit smoothness assumption, but the search
step to find a global solution minimizing the energy function
incurs a heavy computational load. The popular energy min-
imization frameworks, such as graph cuts,4 belief propaga-
tion,5 and dynamic programming,6 have attracted attention
due to their good performance. Hirschmüller suggested
the semiglobal method, which substitutes global and two-
dimensional smoothness constraints by the combined one-
dimensional constraint in different aggregation directions
for pixel-wise matching.7

Researchers also developed image segmentation and
plane-fitting methods.8–10 Segmentation methods are based
on the assumption that scene structure can be approximated
by a set of nonoverlapping planes in the disparity space and
that each plane is coincident with at least one homogeneous
color segment in the reference image. While segmentation
information is generally useful for accurate disparity results,
these methods require a large number of computationally
demanding iterations. When the color distribution of the
foreground object is similar to that of the background
element, it is difficult for us to estimate a precise result.
The disparity plane-fitting based stereo methods model
the scene structure using a set of planar surface patches.
These methods estimate an individual plane at each pixel
onto which the support region is projected. However, they
have a lot of difficulties in finding one of minimum aggre-
gated matching costs among all the candidate planes.*Address all correspondence to: Hyunki Hong, E-mail: honghk@cau.ac.kr
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Blyer et al. and Richardt et al. built a disparity map using
temporal propagation,10,11 but the occlusion problem in vari-
ous dynamic situations still remain unsolved.

In order to reduce the heavy computational load in the
dense matching of stereo views, graphics processing unit
(GPU)-based methods were proposed.11–16 The traditional
sum of square difference was used to independently aggre-
gate matching costs in GPU and embedded stereo systems.
The GPU-based adaptive window approach can change the
shapes of cost aggregation windows according to the content
of the local image area, taking into account edges and cor-
ners.13 In Ref. 14, the belief propagation based method is
implemented to run at real-time on a GPU. Specifically, com-
pute unified device architecture (CUDA) has been one of the
most popular high-performance computing engines to imple-
ment real-time stereo matching methods.15,16

Some recently proposed methods are suggested to
improve both matching accuracy and processing efficiency
on a GPU.17,18 In addition, the stereo video process has dif-
ferent challenges from that in stereo image: the application of
techniques on a per-frame basis is not enough to achieve
flicker-free and temporally coherent disparity maps.
Generally, a video sequence is temporally and spatially cor-
related with scene elements, such as a human being or
objects in an interested scene. However, most of the previous
stereo matching methods dealt with correspondence problem
on a per-frame basis, so they cannot obtain temporally coher-
ent disparity maps over a stereo video sequence.

The proposed method obtains a more accurate disparity
map by using temporal and spatial propagation of reliable
disparity information over the stereo sequence. The contri-
bution of this paper consists of three parts. First, we define
a measure to evaluate the reliability of an initial disparity
map and combine this measure with a left-right consistency
(LRC) check. Second, we propose a spatial propagation of
the reliable disparity to remove the outliers. Third, we intro-
duce a temporal propagation based on a codebook. Figure 1
shows a flow chart of the proposed algorithm.

To tackle half-occluded (objects scene in one image and
not in other) regions in a dynamic situation, we consider
background information that is occluded by foreground ele-
ments. Several methods have been used for foreground/back-
ground segmentation.19–21 In the generalized mixture of
Gaussians, backgrounds with fast variations are not easily
modeled with just a few Gaussians. In addition, it is difficult
to determine an optimal learning rate to accurately adapt to
background changes.19 The nonparametric technique com-
putes the probability density function at each pixel from
many samples using a kernel density estimation.20 When
sampling the background for a long time period, however,
this method has a memory constraints problem. The previous
codebook with the quantized background values at each
pixel was designed to obtain sample values over a long
video sequence without making parametric assumptions.21

We modify the codebook to resolve the occlusion problem
in stereo matching by using a temporal correlation over the
stereo sequence. We store and use color, reliability, array of
the matching cost, and final access time of the scene ele-
ments, including background and foreground objects. Our
proposed codebook contains temporally coherent informa-
tion of scene elements over the stereo sequence.

2 Proposed Method

2.1 Initial Matching Cost Computation

The initial matching cost volume at each pixel and each dis-
parity level is computed using AD-census in parallel, which
combines the AD measure and census transform.17 Because
the AD measure examines only the pixel intensity, it is sub-
stantially affected by lighting changes. The census transform
encodes local image structures with relative orderings of the
pixel intensities rather than the intensity value itself to tolerate
outliers caused by radiometric changes and image noise.

In the stereo view, the brightness distribution of the left
image is different from that of the right image because of
different illumination conditions and surrounding environ-
ments. A longer baseline length allows us to handle a larger
space, but the difference between the two views will increase
substantially. So many outlier regions occur in an initial cost
volume obtained by the AD-census. To reduce the outlier
regions, we aggregate each pixel’s matching cost throughout
the support region on the assumption that neighboring pixels
with similar colors should have similar disparities.3,17,22

For each anchor pixel p, an upright cross skeleton of the
support region is adaptively constructed with four varying
arm lengths determined by color similarity and connectivity
constraints. When local cross results are given, a shape-adap-
tive full support region UðpÞ can be dynamically built by the
process of merging horizontal segments of the crosses in the
vertical neighborhood.22 When a pair of hypothetical corre-
spondences is established [p ¼ ðx; yÞ in the left image and
p 0 ¼ ðx 0; y 0Þ in the right], we can measure the matching cost
between p and p 0 by aggregating the initial cost C0 in the
local support region. The coordinates of p and p 0 are corre-
lated with a disparity hypothesis d∶x 0 ¼ x − d and y 0 ¼ y.

Figure 2 shows an example for a cross skeleton construc-
tion of the support region in theTeddy stereo image. Thepixel-
wise adaptive crosses define the cross skeleton for p and
shape-adaptive support regions are dynamically constructed.

Fig. 1 Proposed flow chart.
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InFig. 2(b), the shaded regions are sample shape-adaptive sup-
port regions. In order to symmetrically consider both the left
local support region UðpÞ and the right region U 0ðp 0Þ, we
combine two local regions and compute the normalized
matching cost C1 as follows:

C1ðp; dÞ ¼
1

kUdðpÞk
X

q∈=UdðpÞ
C0ðq; dÞ;

UdðpÞ ¼ fðx; yÞjðx; yÞ ∈ UðpÞ; ðx − d; yÞ ∈ U 0ðp 0Þg; (1)

where UdðpÞ is the combined local support region that con-
tains the valid pixels between the support regions only, and
kUdðpÞk is the number of pixels to normalize the initial cost.

2.2 Disparity Refinement

2.2.1 Disparity reliability evaluation

Even after the above-described aggregation process, the fol-
lowing factors still cause many disparity errors: difference of
illuminations in two views, repeated similar patterns, and
occlusion by the foreground. Figure 3 shows typical match-
ing cost distributions in aggregated regions. There is a single
minimum matching cost within the disparity level in Fig. 3(a),
so we can obtain a precise disparity. In Fig. 3(b), we cannot
determine the correct disparity level among several candidates
as to an image region with repeated pattern. Figure 3(c) shows
matching cost distribution of the textureless region. We cannot
determine the precise disparity level because many similar
matching costs exist.

The matching cost for the disparity level at each pixel is
examined to determine whether it is significantly smaller
than any other competitors. In Figs. 3(b) and 3(c), however,
the matching ambiguities cannot be completely overcome.
The confidence map of the support region describing the reli-
ability of the obtained disparity is computed to improve the
matching performance.23

At the pixel p in the support region, initial disparity maps
for the left imageDL

0 ðpÞ and the right imageDR
0 ðpÞ are com-

puted using a winner-takes-all (WTA) strategy as provided in
Eq. (2).1 Here dmax represents the maximum disparity level.
RðpÞ in Eq. (3) means the reliability degree of the disparity at
p. When the reliability degree RðpÞ approaches 1, the
obtained disparity value becomes more precise.

D0ðpÞ ¼ argmin
d

C1ðp; dÞ; d ∈ ½0; dmax�; (2)

RðpÞ ¼
�
0; kDL

0 ðpÞ −DR
0 ðp 0Þk > 0

R1ðpÞ; otherwise
; (3)

R1ðpÞ¼
�
min

�
mind∈=D0ðpÞ∧d≠D0ðpÞ�1C1ðp;dÞ

C1½p;D0ðpÞ�
;τRtrunc

�
−1

�

∕ðτRtrunc−1Þ: (4)

An LRC check is used to see if the existence of
false matching caused environmental lighting changes,

Fig. 2 Construction of cross skeleton and local support region on Teddy image: (a) pixel-wise adaptive
cross skeleton at pixel p and (b) sample shape-adpative support regions.

Fig. 3 Typical three matching cost distributions on disparity level: (a) distinguished feature region;
(b) repeated pattern region; and (c) textureless region.
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background effects, and occlusions. It is performed by taking
the computed disparity value in one image and reprojecting it
into the other image. We employ the LRC check to consider
the unreliable disparity at half-occluded pixels in the final
disparity map. The top portion of Eq. (3) shows that LRC
check fails at pixel p and its disparity is unreliable. We
put the reliability RðpÞ ¼ 0 to remove unreliable disparity
in the temporal and spatial propagation process. The bottom
portion of Eq. (3) shows that the disparity is reliable when
the LRC check passes, and then the reliability RðpÞ
becomes R1ðpÞ.

Equation (4) computes the reliability of the first cost
space. Here, we examine every depth level excluding both
the depth by Eq. (2) and the next/previous depth
[D0ðpÞ � 1], to find the disparity level with the minimum
matching error among the matching cost C1. A truncation
constant value τRtrunc is used to make the reliability R1ðpÞ
between 0 and 1.

If the difference between the smallest cost and the second
smallest cost is large enough as in Fig. 3(a), the precise
matching disparity can be obtained. On the contrary,
when repeated patterns are present as in Fig. 3(b), the differ-
ence becomes a relatively small value. Since the reliability
should include a confidence degree of the obtained disparity,
we examine more various depth levels along the scan line,
except the neighboring levels around the initially
obtained depth.

Figure 4 shows the initial disparity map for the Teddy
image by WTA and its reliability map. The dark region
with relatively unreliable disparity can be refined further
using both temporal and spatial propagation.

2.2.2 Spatial propagation

After the LRC check to detect the outliers, the outlier is filled
with the neighboring reliable disparity in the segmented or
the support region by the iterative region voting.17,24 This
means the disparity of the outlier is replaced with that of
the highest bin value (most votes) in the support region
when neighboring pixels with similar colors have similar dis-
parities. However, when the outlier region is too large or the
depth of the foreground is much different from that of the
neighboring area in spite of its color similarity, the previous
iterative voting would be unsuccessful.

We propose a spatial propagation approach to overcome
the outlier problem by using reliable disparity rather than

simply filling outliers with the disparity value of the highest
bin value. Table 1 shows the spatial propagation of reliable
disparity and updating of the codewords. The proposed
method builds a histogram φp of only the reliable disparity
in the support region UðpÞ. In II(ii) of Table 1, we obtain the
most reliable disparity dp� and replace the outlier disparity at
p by dp�.

Because there may be many points with dp� in the support
region, we determine the specific pixel position sp� to update
the codewords (the reliability and the matching cost space) of
p for further disparity refinement procedures. In III of
Table 1, the subset Sp satisfying jD0ðspÞ − dp�j < ε is deter-
mined from any element sp of the entire set UðpÞ and ε is the
threshold value. Then we compute the color distance
between p and sp, and the pixel with the smallest color dis-
tance is determined as the final position. Here, Dcð·Þ is L-1
color distance measure between two pixels in the RGB
space. Both the matching cost C1ðp; dÞ and the reliability
RðpÞ at pixel p are updated as III(iii) in Table 1. ρðc; λÞ
is a robust function on variable c and it is used to control
the influence of the color similarity between two pixels
with the control parameter λ. If there is no pixel satisfying
the above condition, the reliability RðpÞ is updated to 0.

In Fig. 5(b), the disparity space image of the Teddy stereo
image shows the matching error at a position on the scan line
(green line) relative to the disparity level [0 ∼ dmax]. A more
precise disparity map can be obtained at the position with a
lower intensity value (matching error). Many undistin-
guished disparities happen in A region because of the match-
ing ambiguity problem. Much more unreliable disparities
happen in B region because of many repeated patterns.
As shown in Fig. 5, the spatial propagation method improves
the reliability of the disparity in the invalid areas (A and B).
For further details, the proposed method fills A region with
more reliable neighboring disparity and reduces the
unwanted staircase effects caused by the repeated pattern
in B region.

The enhanced matching cost and reliability information
obtained from the spatial propagation are used to overcome
the occlusion problem by the foreground objects in the tem-
poral propagation process.

2.2.3 Temporal propagation using codebook

In order to overcome the occlusion and the depth disconti-
nuity of an object, we propose a temporal propagation

Fig. 4 (a) Initial disparity map and (b) its reliability evaluation result.
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process using color, reliability, matching cost set, and final
access time values as codewordm in the modified codebook.

In the conventional codebook approach, the background
region is modeled and parameterized only with the minimum
and the maximum color values, which are updated at a regu-
lar interval to account for the effects of object movement and
illumination change.21 The process is not good enough to
overcome the occlusion problem in various situations
because it stores only the color information before the occlu-
sion. Bleyer et al. proposed a temporal propagation using the
slanted planes over successive frames for a stereo image
sequence.10 It does not sufficiently consider the update fre-
quency of the prior information about the scene.

This proposed codebookMðpÞ consists of color valuemx,
reliabilitymR, array of the matching costmC, and final access
time mt at pixel p. The matching cost and the reliability of
the codebook are updated as described in Table 2.

For the pixel p, we find the codeword m satisfying the
condition II(i)(a) in Table 2 and update both the matching
cost space and the reliability. In Table 2, ωi represents the
relative weight of the previous codewords C1ðp; dÞ and
RðpÞ, and the current passed information mCðdÞ and mR

at pixel p. Dcð·Þ and ρð·Þ represent the color distance mea-
sure and the robust function in spatial propagation as in
Sec. 2.2.2. In II(ii)(a) of Table 2, the matching cost
C1ðp; dÞ is updated with the weighted sum of the previous
cost at p and that of the chosen position. In the same way, the
reliability RðpÞ is replaced using II(ii)(b) in Table 2. Here,
the color similarity between two pixels is considered as in
the spatial propagation process.

The codeword of a codebook is updated using the
matched codeword as in Table 3. The codebook MðpÞ is
an empty set at an initial time (t ¼ 0). For the reliable
pixel p, the codeword satisfying the condition II(i) in
Table 2 is used to update the codebook as II(i) in Table 3.
If there is no match, a new codeword m 0, including color,
reliability, matching cost, and frame number, is generated
in the codebook MðpÞ.

When the codeword is not matched for a while (τt ¼ 100),
ourmethodconcludes that the codeword insufficiently reflects
the current image information due to the scene element
changes, such as object movement. As shown in Table 4,
after examining the effectiveness of the codeword, the unused
codeword is removed to improve memory usage efficiency.

Table 1 Spatial propagation of reliable disparity and updating codewords.

I. For the outlier pixel p, build a histogram of an initial disparity D0ðpÞ with dmax þ 1 bins.

II. (i) Obtain the histogram φp of only the disparity with a high reliability [RðpÞ ≥ τ] in UðpÞ.

(ii) Find the most frequent disparity dp
� with the highest bin value from φp.

(a) Examine if the total number of reliable disparities and the number of dp
� are more than the threshold values.

(b) When the above conditions are satisfied, replace the outlier disparity at p by the reliable disparity dp
�.

III. Determine the specific pixel position sp� to update the codewords (the reliability and the matching cost space) of p.

(i) Determine the subset Sp satisfying jD0ðspÞ − dp
�j < ε in UðpÞ.

(ii) sp� ¼ argminSp∈SpDcðp; spÞ.

(iii) Update the matching cost space C1ðp; dÞ and the reliability RðpÞ at p.

(a) C1ðp; dÞ ¼ C1ðsp�; dÞ, d ∈ ½0; dmax�.

(b) RðpÞ ¼ Rðsp�Þ − ρ½Dcðp; sp�Þ; λc �, where ρðc; λÞ ¼ 1 − expð−c∕λÞ.

Fig. 5 (a) Teddy image. (b) Matching cost space enhancement by spatial propagation: example area,
reliability map, disparity space image (DSI) on scan line, and enhanced DSI (from up to down).
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To further alleviate the matching ambiguity in the dispar-
ity map, an optimizer with smoothness constraints and mod-
erate parallelism should be adopted. We employ a
multidirection scan line optimizer based on Hirschmüller’s
semiglobal method.7,17 Four scan line optimization processes
are performed independently: two along horizontal direc-
tions and two along vertical directions. We examine the
matching cost distribution of neighboring pixels along the
scan line direction, including the appropriate penalty for dis-
continuities (a threshold value τSO for color difference).

After computing the matching space with the smoothness
in four scan directions, a subpixel enhancement based on
quadratic polynomial interpolation is employed to reduce
the errors caused by disparity levels.24 The interpolated dis-
parity is computed with three discrete depth candidates: the
depth (d) with the minimal cost and its two neighboring
depth levels (d − 1 and dþ 1). The final disparity is obtained

by smoothing the interpolated results with a 3 × 3 median
filter.

3 Experimental Results
The following computational equipment is used for the
experiment: a PC with Intel Core i7 3.4 GHz CPU and
4 GB RAM with Nvidia GTX680 graphics card. The pro-
posed system is tested with the Middlebury benchmark25

and the stereo images (320 × 240) captured by a
Bumblebee 3 from Point Grey Inc. in Canada at 15 frames
per second. The proposed method is implemented on a
GPGPU with CUDA to handle the heavy computational
loads of both the stereo matching and the cost refinement.26

Figure 6 shows Tsukuba, Venus, Teddy, and Cones stereo
datasets and the disparity maps from this method. Table 5
shows the quantitative evaluation results by stereo matching
algorithms with a near-real-time computation performance
for the Middlebury database set. Here, the performances
are evaluated only in the non-occluded region “non-occ,”
all (including half-occluded) regions “all,” and regions
near depth discontinuities “disc,” respectively. Our method
produces the best results on the Venus image pair because
the simple scene element would be suitable for spatial propa-
gation. In comparison, the proposed method provides better
results than any other method except AD-census.17

Additionally, the proposed temporal propagation with code-
book is useful for improving the matching performance in a
stereo image sequence as in Fig. 6.

In Table 6, the computation performances of the modules
on a stereo image (400 × 300) with the maximum depth of 40
are compared on CPU and GPU implementation. The pro-
posed temporal propagation employs codewords with back-
ground and stereo matching information. As shown in
Tables 2 and 3, the codebook matching step requires
much more memory access and codeword comparisons
than any other module. Table 6 shows that the codebook
matching step provides relatively less performance improve-
ment in spite of its GPU implementation. Thus, GPU imple-
mentation is suitable for single instruction multiple data
processing, such as initial cost volume process.

The proposed method is designed for dynamic situations,
such as mobile robots. When the camera is moved, it is dif-
ficult for us to precisely model the background information
with the codebook in real-time. For this reason, we do not
include the temporal propagation step based on the codebook
in a dynamic environment with camera movement. In a
dynamic situation with camera movement, the proposed
method with spatial propagation requires only 81.71 ms.

As shown in Tables 5 and 7, even though AD-census17

provides a better accuracy performance, it requires more
processing time and it cannot be used for real-time systems,
such as mobile robots and natural user interface. The pro-
posed method is suitable for near-real-time application

Table 2 Updating both matching cost and reliability.

I. For the pixel p at a current frame t , with color information
x ¼ ðR;G; BÞ.

II. (i) Find the codeword m satisfying condition (a) as well as
minimizing the color distance.

(a) Dcðp; mxÞ < τc .

(ii) Form satisfying (i), update both the cost space and the reliability
as follows:

(a) C1ðp; dÞ ¼ ω0C1ðp; dÞ þ ω1mC ðdÞ, d ∈ ½0; dmax�.

(b) RðpÞ ¼ ω0RðpÞ þ ω1ðmRÞ − ρ½Dcðp; mxÞ; λc �,

where ω0 ¼ RðpÞ∕½RðpÞ þmR �, ω1 ¼ mR∕½RðpÞ þmR �.

Table 3 Updating codeword and generating new codeword.

I. For the pixel p at a current frame t ,

II. When condition RðpÞ ≥ τR is satisfied,

(i) m satisfying condition II (i) in Table 1 is updated as follows:

(a) mx i ¼ ðmx i þ xi Þ∕2, i ∈ fR;G;Bg.

(b) mR ¼ RðpÞ.

(c) mC ðdÞ ¼ C1ðp; dÞ, d ∈ ½0; dmax�.

(d) mt ¼ t .

(ii) Otherwise, a new codeword m 0 is generated in the codebook
as follows:

(a) m 0
xi ¼ xi , i ∈ fR;G;Bg.

(b) m 0
R ¼ RðpÞ.

(c) m 0
C ðdÞ ¼ C1ðp; dÞ, d ∈ ½0; dmax�.

(d) m 0
t ¼ t .

(e) MðpÞ ¼ MðpÞ ∪ m 0

Table 4 Evaluating effective codeword.

I. For a pixel p at a current frame t ,

II. Remove m satisfying condition (i).

(i) t–mt > τt, where m ∈ MðpÞ.
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because it provides improved matching accuracy and
processing efficiency.

The accuracy of the disparity map can be evaluated quan-
titatively by using the reference depth map of Middlebury
database sets. Table 7 provides comparison of the average
squared errors by stereo matching methods. The AW
method3 is usually classified as a non-real-time stereo algo-
rithm. The system also helps us to overcome various occlu-
sions by using temporal propagation based on the codebook.

In an indoor environment, the scene background is ini-
tially modeled for 5 to 10 frames and the codebook is
updated at regular intervals to reduce the unwanted effects
of background and lighting changes.

Figure 7 shows an input stereo image (left view) and the
results by successive procedures. The minimum averaged
squared error on each image is highlighted in boldface.
Figures 7(b) to 7(d) show the disparity between the AD-census,
initial disparity map by cost aggregation, and the reliability
map, respectively. In the reliability map, there are the dark
regions with relatively unreliable disparity around people
according to their movements. Figures 7(e) and 7(f) show
the disparity map for only the spatial propagation, and that

for both spatial and temporal propagation, respectively.
These unreliable disparity areas in Figs. 7(c) and 7(d) are
refined further using spatial and temporal propagation. For
example, the reliability map [Fig. 7(d)] shows the ceiling
area with a relatively unreliable disparity.

Figures 7(g) and 7(h) show the final disparity map by
optimization/subpixel enhancement of Fig. 7(e) and that
of Fig. 7(f), respectively. The final disparity results show
these regions are much enhanced through semiglobal optimi-
zation and subpixel enhancement. In final disparity maps
[Figs. 6(g) and 6(h)], we obtain a more accurate disparity
map by using both spatial and temporal propagation based
on the codebook over the stereo sequence.

In the comparison of matching performances in the out-
door scene (Fig. 8), the proposed algorithm produces better
disparity map than the dual-cross-bilateral grid (DCB) grid,
adaptive weight method, and cross-based matching.3,11,29

According to two important threshold parameters, the color
difference (τSO ¼ 5 to 63) in scan line optimization and the
reliability (τR ¼ 0.00 to 0.87), the matching performances of
the proposed method in all (including half-occluded) regions
for the Cones and Teddy images are shown in Fig. 9.

Fig. 6 (a) Tsukuba, Venus, Teddy, and Cones stereo datasets (from left to right). (b) Disparity maps by
the proposed algorithm.

Table 5 Quantitative evaluation results for Middlebury database set belief propagation (BP), bitwise fast voting (BFV), Adaptive support-weight
(AW), and dual-cross-bilateral grid (DCB).

Tshkuba Venus Teddy Cones Aver.

Non-occ All Disc Non-occ All Disc Non-occ All Disc Non-occ All Disc

AD-census17 1.07 1.48 5.73 0.09 0.25 1.15 4.10 6.22 10.90 2.42 7.25 6.95 3.97

Proposed method 1.71 2.46 7.54 0.15 0.51 1.73 4.43 10.3 12.70 2.80 8.81 7.88 5.09

PlaneFitBP27 0.97 1.83 5.26 0.17 0.51 1.71 6.65 12.10 14.7 4.17 10.70 10.60 5.78

AW3 1.38 1.85 6.90 0.71 1.19 6.13 7.88 13.3 18.6 3.97 9.79 8.26 6.67

Real-time BFV12 1.71 2.22 6.74 0.55 0.87 2.88 9.90 15.00 19.5 6.66 12.60 13.40 7.65

Real-time GPU28 2.05 4.22 10.6 1.92 2.98 20.30 7.23 14.40 17.60 6.41 13.70 16.50 9.82

DCB grid11 5.90 7.26 21.00 1.35 1.91 11.20 10.50 17.20 22.20 5.34 11.90 14.90 10.90

occ, occluded; AD, absolute difference.
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Table 6 Computation time (millisecond) of modules.

Preparing step Initial cost volume Refinement Codebook matching Semiglobal optimization Total

CPU 343.62 1022.58 98.67 38.21 1729.83 3232.91

GPU 3.75 17.34 14.19 36.30 46.43 118.01

Table 7 Comparison of averaged squared errors belief propagation (BP), bitwise fast voting (BFV), Adaptive support-weight (AW), and dual-cross-
bilateral grid (DCB).

Tshkuba Venus Teddy Cones Average

AD-census17 0.3248 0.2439 0.6426 0.6508 0.4655

AW3 0.2488 0.3212 0.8120 0.7678 0.5375

Proposed method 0.3585 0.2081 0.7744 0.8259 0.5417

PlaneFitBP27 0.2218 0.3177 0.7399 1.2084 0.6220

Real-time BFV12 0.3216 0.3274 1.0886 1.1188 0.7141

Real-time GPU18 0.3968 0.3803 0.8814 1.0841 0.6857

DCB grid11 1.0408 0.2374 1.0613 0.9344 0.8185

Fig. 7 (a) Stereo image (left view). (b) Disparity by absolute difference-census. (c) Initial disparity map by
cost aggregation. (d) Reliability map. Disparity map (e) by spatial propagation and (f) by both spatial and
temporal propagations. (g) Final disparity map by optimization/subpixel enhancement of (e). (h) Final
disparity map by optimization/subpixel enhancement of (f).
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By analyzing matching error distributions of the Middlebury
images, we can determine two threshold values for the mini-
mum matching error: τR and τSO are set to 0.172 and 27.552.
In addition, λc, ε, and τC are set to 2, 1, and 15, respectively.

In order to show the effectiveness in qualitative character-
istics, we compare the disparity map for non-real-time algo-
rithm30 with that for the proposed method on a publicly
available, real-world stereo video set: an Ilkay sequence
from Microsoft i2i database. The disparity result [Fig. 10(b)]

by ST-2 has more accurate depth borders and less noise. On
the contrary, the proposed method has a near-real-time
processing performance and obtains more accurate disparity
in textureless areas, such as wall and ceiling.

Even though the kinect sensor captures precise depth
information about the scene element, it can be operated
within a substantially limited operation range and only in
an indoor environment. It is also greatly affected by the
reflection properties of the environmental elements, such

Fig. 8 (a) Outdoor scene image. Disparity map by (b) DCB grid;11 (c) adaptive weight;3 (d) cross-based
matching;19 and (e) proposed method. (f) Three-dimensional (3-D) reconstruction view of (e).

Fig. 9 Performance according to threshold parameters (τR is reliability and τSO is color difference in
scanline optimization) on (a) Cones image and (b) Teddy image set.

Fig. 10 Snapshots of Ilkay stereo sequence from Microsoft i2i database: (a) reference frame. Disparity
result by (b) aggregation with enhanced segment tree30 (b) proposed method; and (f) 3-D reconstruction
view of (e).

Optical Engineering 063107-9 June 2014 • Vol. 53(6)

Kang and Hong: Near-real-time stereo matching method using temporal and spatial propagation. . .



as the monitor. Our proposed stereo system provides an
extended usage range and a precise depth map result. Thus,
it can be used for real-time indoor/outdoor applications.

In the codebook update process, we average the previ-
ously stored codeword and the new computed one to reflect
the new codeword value as in Table 2. This may lead to run-
away codewords if some misclassifications occur, so we will
employ another weighted update method for the codebook.
The proposed method considers much important information
for stereo matching over the stereo video sequence in addi-
tion to the color value. However, because we just observe the
pixel-wise data, there may be some errors in the disparity
map for the proposed method. In order to improve the match-
ing performance, we extend the pixel-wise codebook method
into the patch- or segment-based method with spatial
correlation.

4 Conclusion
The proposed method improves matching performance by
using temporal and spatial propagation of reliable disparity
over a stereo sequence. First, we compute a reliability map of
an initial matching cost. After examining the LRC to detect
the outliers created by occlusion, the proposed spatial propa-
gation fills the outliers with the neighboring reliable disparity
information in the support region. In order to overcome the
occlusion problem, we employ a codebook including color
value, reliability, array of the matching cost, and final access
time. The proposed method is implemented on a GPGPU for
real-time application. Experiments show that the proposed
matching method obtains a more precise depth map of
indoor/outdoor scenes with extended usage range.
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