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ABSTRACT. In recent decades, various subfields within neuroscience, spanning molecular, cel-
lular, and systemic dimensions, have significantly advanced our understanding of
the elaborate molecular and cellular mechanisms that underpin learning, memory,
and adaptive behaviors. There have been notable advancements in imaging tech-
niques, particularly in reaching superficial brain structures. This progress has led to
their widespread adoption in numerous laboratories. However, essential physiologi-
cal and cognitive processes, including sensory integration, emotional modulation of
motivated behavior, motor regulation, learning, and memory consolidation, are intri-
cately encoded within deeper brain structures. Hence, visualization techniques such
as calcium imaging using miniscopes have gained popularity for studying brain
activity in unrestrained animals. Despite its utility, miniscope technology is associ-
ated with substantial brain tissue damage caused by gradient refractive index lens
implantation. Furthermore, its imaging capabilities are primarily confined to the neu-
ronal somata level, thus constraining a comprehensive exploration of subcellular
processes underlying adaptive behaviors. Consequently, the trajectory of neuro-
science’s future hinges on the development of minimally invasive optical fiber-based
endo-microscopes optimized for cellular, subcellular, and molecular imaging within
the intricate depths of the brain. In pursuit of this goal, select research groups have
invested significant efforts in advancing this technology. In this review, we present a
perspective on the potential impact of this innovation on various aspects of neuro-
science, enabling the functional exploration of in vivo cellular and subcellular proc-
esses that underlie synaptic plasticity and the neuronal adaptations that govern
behavior.
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1 Evolution of In Vivo Deep Brain Imaging Technologies
The complexity of the brain demands comprehensive methodologies for exploring the intercon-
nected brain regions and understanding how neuronal communication shapes behavior. Highly
polarized neurons in the brain feature a numerous en passant presynaptic boutons [Fig. 1(1)],
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which are crucial for neurotransmitters and neuromodulators release.1 In addition, they possess
postsynaptic sites that extend along their dendrites, often associated with compartmentalized
dendritic spines or positioned within the dendritic shaft itself.2,3 These intricate structural ele-
ments collectively enable an adaptable mode of cell-to-cell communication known as synaptic
transmission.4 The consolidation of diverse forms of memories and the neuronal adaptations
underlying behavior are orchestrated by the coordinated engagement of pre- and postsynaptic
mechanisms within specific brain circuits.5–11

Two-photon (2P) microscopy has emerged as a promising tool to monitor neuronal activity
in behaving animals.12 This technique has undergone continuous refinements, driven by both
software-13 and hardware-based advancements, including adaptive optical correction of aberra-
tions,14,15 three-photon approaches,16–18 and the design of red-shifted indicators, which reduce
the scattering of the emitted light, further improving imaging depth.19,20 Despite the substantial
progress achieved in the past two decades, extending imaging depth remains a challenge. This
was initially achieved through the implementation of rod-shaped gradient refractive index
(GRIN) lenses, typically ranging in diameter from 500 to 1000 μm. These innovations paved
the way for the development of miniscopes, enabling imaging in unrestrained animals.21–26

While GRIN lens implantation is commonly described as a minimally invasive imaging tech-
nique, it is essential to recognize that it can still cause substantial tissue damage. Consequently,
this damage can lead to significant necrosis and gliosis that may persist for weeks after surgery.27

Furthermore, the postsurgical effects have the potential to induce artificial dendritic arbor
reorganization.28

In the field of neurophotonics, recent breakthroughs with the implementation of multimode
fiber-based imaging techniques,29 allowing imaging through ultra-thin fibers, have yielded sig-
nificant advancements for the in vivo brain imaging.30 Subsequently, these led to the creation of a
remarkable 110 μm thin laser-scanning endo-microscope.31,32 This imaging technology is char-
acterized by the minimal tissue damage, sub-1 μm lateral resolution, three-dimensional random-
access capabilities, and multiwavelength detection. Furthermore, the fiber small size allows pre-
cise positioning within the region of interest, enabling the assessment of neural activity in various
dendritic branches and axonal subregions in behaving animals—a distinct advantage not present
in GRIN lens technology.

2 Combinatorial Imaging of Synaptic Neurotransmission,
Neuronal Connectivity, and Structural Changes Underlying
Plasticity

Understanding the correlation between adaptive behavior and the interplay of presynaptic
release, neuronal connectivity, and structural changes in dendritic branches up to the resolution
of single dendritic spines and synaptic boutons in the brains of actively engaged animals is of
crucial importance. Recent collaborative efforts among genetic engineers and molecular biolo-
gists have provided a large repertoire of advanced molecular probes enabling the assessment of
neurotransmission in correlation with structural modifications in synaptic compartments
[Fig. 1(1)]. Among these probes, there are several generations of single-wavelength reporters
designed to sense glutamate, γ-aminobutyric acid (GABA), norepinephrine, dopamine, etc.
The first group includes circularly permuted green fluorescent protein (cpGFP)-based
iGluSnFR,33–35 a membrane-tethered version based on cp superfolder GFP, sf-iGluSnFR, with
specific point mutations enabling high spatial and temporal precision in glutamate detection,36,37

an improved version of sf-iGluSnFR featuring enhanced trafficking to the plasma membrane
through the addition of Golgi export- and an endoplasmic reticulum (ER) exit motif sequences,38

and a red glutamate sensor based on cp mApple, R-iGluSnFR1.39 The imaging of inhibitory
neurotransmission can be effectively accomplished by employing either iGABASnFR or
iGABASnFR.mRubi3.40 Several generations of cpGFP-based norepinephrine sensors, with the
latest developments referred to as GRAB-NE3.1 and GRAB-NE2h,41,42 are complemented by a
range of dopamine sensors extending the dLight1 family,43–47 allowing imaging of modulatory
inputs. An approach, utilizing fluorescent protein reconstitution at synaptic sites with probes
such as mGRASP48–50 dual-eGRASP,51 can effectively label synaptic connections within neuro-
nal circuits. Furthermore, the recent advancement in the SynapShot probe, utilizing dimerization-
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dependent fluorescent proteins, enables the real-time observation of reversible and bidirectional
alterations in synaptic contacts during physiological stimulation and enables real-time monitor-
ing of structural changes in synaptic contacts in the brain of behaving mice.52 In addition, Split
Protein HEmispheres for REconstitution (SPHERE) technology for both iGluSnFR and
iGABASnFR probes has been recently established enabling separate expression in pre- and post-
synaptic neurons parts of splitted iGluSnFR and iGABASnFR for the functional detection of
neurotransmitters at the contact sites.53 The latter approach provides the opportunity to simulta-
neously assess functional synaptic neurotransmission and neuronal connectivity for evaluating
circuit-related behaviors. In combination with ultra-thin fiber imaging technology, these
approaches would enable in vivo imaging of functional neuronal connectivity within the circuit
of interest.

While the structural plasticity of dendritic spines, including spine motility, stability, expe-
rience-dependent growth, as well as axon branching, synaptic bouton dynamics, and synaptic
structure turnover within cortical and dorsal hippocampal areas has been extensively studied,54–60

its longitudinal examination in deep brain regions of behaving animals remains relatively unex-
plored. Synaptic distribution within a neuron’s dendritic arbor is organized into functional clus-
ters and critical for the segregation of synaptic inputs, the phenomenon, known as “clustered

Fig. 1 Perspectives on in vivo fiber-based imaging: synaptic neurotransmission, neuronal connec-
tivity, structural plasticity, and membrane dynamics in deep brain structures in awake animals. (1)
Schematic overview of imaging of synaptic neurotransmission using cpGFP-based reporters
designed to detect various neurotransmitters such as glutamate, acetylcholine, GABA, norepi-
nephrine, dopamine, etc. SVs, synaptic vesicles. (2) Structural imaging of dendritic compartmen-
talization down to the resolution of a single dendritic spines, as well as imaging of neuronal
connectivity while animals are actively engaged in learning tasks or social behavior. (3) A sche-
matic drawing of a CA1 pyramidal neuron, depicting distinct dendritic domains capable of receiving
unique synaptic inputs. Proximal-to-distal arrows depict dendritic integration. CA1, cornu ammonis
1 subfield of the hippocampus; SO, stratum oriens; SP, stratum pyramidale; SR, stratum radiatum;
SLM, stratum lacunosum moleculare; EC, entorhinal cortex. (4) Imaging of membranous organelle
trafficking in vivo in correlation with neuronal activity in awake animals. A, autophagosome; ER,
endoplasmic reticulum; MVB, multivesicular bodies; RE, recycling endosome; TGN, trans-Golgi
network; SA, spine apparatus; LE, late endosome; GS, Golgi satellites; L, lysosome; EE, early
endosome; LE, late endosome. (5) The schematic depicts organelle labeling with an acidification
probe within neuronal somata of the VTA and LC for in vivo imaging using dual-color ultra-thin
fiber-based imaging technology. (Images of animals were obtained from www.biorender.com.)
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synaptic plasticity.”61–65 In conjunction with clustered synaptic plasticity, dendritic compartmen-
talization entails the division of a neuron’s dendritic tree into discrete segments, each with unique
functional properties [Figs. 1(2) and 1(3)].66,67 Furthermore, the application of Ca2þ imaging in
deep tissue has the potential to significantly enhance our understanding on multiple aspects of
Ca2þ signaling and Ca2þ homeostasis. Beyond serving as a valuable tool for providing precise
spatiotemporal resolution of axonal spiking activity,68 imaging of Ca2þ transients delves into
various facets of Ca2þ homeostasis, including residual Ca2þ concentration, clearance, decay,
and summation. Although these aspects have been extensively studied in vitro,69–72 the question
of the relevance of presynaptic heterogeneity in ongoing behavior remains an open inquiry.
Therefore, imaging of Ca2þ transients within subcellular compartments, such as mossy fiber
axons in the memory-related brain region, dentate gyrus, in combination with engram technol-
ogies such as mGRASP based c-Fos or Arc-dependent labeling of synaptic engrams,48,50,51 ena-
bles the comparison of residual Ca2 dynamics between engram and non-engram mossy fiber
boutons during memory retrieval.73 This comparative analysis sheds light on the mechanistic
underpinnings of function-dependent processing in these synapses, where the coupling between
the action potential and the calcium influx (AP-ICa coupling) is indistinguishable.74

Thus, although the application of ultra-thin endo-microscope technology already extends
investigations into synaptic neurotransmission, neuronal connectivity, and structural changes
underlying plasticity within deep brain regions, further improvement in this technique is
adequate. In the future, this technology should enable in vivo examination of the organization
and function of axonal boutons larger than 1 μm, including corticothalamic boutons75 and the
mnemonic calyx of Held,76 while also allowing imaging of wider areas of dendritic branches and
axonal arbors.

3 Exploring Membrane Trafficking In Vivo in Correlation
with Neuronal Activity and Animal Behavior

The ultra-thin laser-scanning endo-microscope allows for subcellular membranous compartment
resolution, including vesicular structures of the size of lysosomes.31 This offers new prospects for
in vivo subcellular imaging, encompassing multiple membranous compartments, their functional
attributes, and trafficking patterns in response to neuronal activity. A subset of membrane traf-
ficking processes includes trafficking of organelles to specific locations within neurons. This
ensures the timely delivery of essential building blocks, proteins, and protein complexes while
also facilitating a delivery of post-translationally modified transmembrane proteins and receptors
to the neuron’s plasma membrane through outward biosynthetic-secretory membrane traffick-
ing.77–83 The trafficking of double-membrane autophagosomes84,85 and amphisomes,86–89 which
subsequently fuse with lysosomes, plays a critical role in maintaining neuronal proteostasis and
is integral to the degradation of unwanted cellular cargos such as misfolded proteins and even
damaged organelles.90 While there is a continuous exchange of membranes taking place, specific
resident proteins or peptides are efficiently employed to target fluorescent proteins to particular
organelles and allow for their visualization in living cells [Fig. 1(4)]. Widely used example
probes include the GFP-KDEL probe, utilized for ER labeling,91 KFERQ-sequence fused to
Dendra for imaging of chaperone-mediated autophagy,92 YFP-ERGIC-53, a marker indicating
ER-Golgi Intermediate Compartment (ERGIC),93,94 GM130, which labels somatic Golgi,77

TGN38 for Trans-Golgi-Network labeling,83 the pGolt-mCherry probe for Golgi satellites label-
ing,81,82,95 Rab5 for early- and Rab7 for late-endosome labeling,96 the autophagy-related protein
(ATG) ATG8/LC3 for labeling a subset of autophagosomes,97 and LAMP1 and LAMP2 for lyso-
some labeling.97–101 Furthermore, alterations in organelle function can be monitored in various
animal models of neurodevelopmental and neurodegenerative disorders, particularly in the deep
brain regions such as ventral tegmental area (VTA) and locus coeruleus (LC), which are par-
ticularly vulnerable to neurodegeneration. For example, the tandem mRFP-GFP fusion with
LC3, serving as an acidification probe, differentiates non-acidified autophagosomes labeled with
the dual signal from acidified autolysosomes marked with mRFP due to their low pH
environment.102 The combination of dual color ultra-thin fiber-based imaging technology and
the use of the acidification probe may provide insightful information on alteration in neuronal
proteostasis in these brain regions underlying neurodegeneration [Fig. 1(5)]. Moreover, the
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scientific community has access to diverse mouse models expressing specific organelle
markers.82,92,103,104 Thus, circuit-specific organelle labeling approach, when combined with
ultra-thin fiber-based imaging technology, provides a novel perspective for visualizing mem-
brane trafficking and specific organelle functions in deep brain regions of both healthy and dis-
eased animals.

4 Limitations and Future Developments
In this review, we have centered our discussion on elucidating the perspectives and emerging
opportunities afforded by the development of ultra-thin fiber imaging technology. Although the
challenge of achieving longitudinal imaging with the immersible endo-microscope remains unre-
solved, the potential to enable the continuous observation of neural connections across consecu-
tive days, may be enabled by custom connector solutions or exploitations of implantable thin-
wall guiding glass tubes,23 thereby providing valuable insights into the dynamics of learning or
behavioral assessments.

The integration of GRIN lenses into miniscope applications has marked a significant
advancement in neuroscience over the past decade, enabling the observation of brain activity
in real-time during ongoing behavior. Looking ahead, we envision a synergistic relationship
between these two technologies, tailored to the specific scientific inquiries. While a GRIN lens
boasts a larger size and an expanded field of view, the microendoscope is constrained to ∼100 μm
in diameter, making it better suited for very deep brain structures. Furthermore, the GRIN lens
demonstrates compatibility with 2P excitation, facilitating exploration of deeper regions at the
GRIN lens output. In contrast, the multimodal fiber endoscope is currently limited to one-photon
excitation compatibility. While the microendoscope requires a digital micromirror device and cal-
ibration, making it currently more challenging to employ, ongoing developments by the growing
scientific community holds promise in developing more user-friendly solutions in the near future.
The potential complementarity of GRIN lenses and microendoscope technologies underscores
their collective capability to address diverse scientific questions. In summary, the utilization
of this imaging technology in freely moving animals introduce a transformative advancement,
opening up new possibilities for the investigating cellular, subcellular, and molecular processes.
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