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which is obtained by using a phase-shifting technique with
an arbitrary number of phase shifts between intensity mea-
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1 Introduction

Phase-shifting interferometry methods have been widely
used in optical interference systems in recent years.
Widespread use of these methods has resulted from the sim-
plicity of specifying the values of phase shifts, the low com-
plexity of the algorithms, and the high precision that they can
achieve. At the same time, the layouts of interferometers can
be easily modified.

A large number of expressions for phase reconstruction
with an arbitrary number of phase shifts are known. The ear-
liest algorithms used decoding equations with three or four
shifts. With an increased amount of available computational
power, it became possible to use algorithms with a larger
number of shifts. Thus, in Ref. 1, an algorithm that uses
15 phase shifts was introduced, and an algorithm using
101 phase shifts was described in Ref. 2.

The equations used for the reconstruction are derived by
solving trigonometric equations. In Ref. 3, an analysis of for-
mulas for phase reconstruction with an arbitrary number of
the phase shifts is given, but the number of shifts should be
constant. In this work, we propose a generic algorithm that
allows the structure of known algorithms to be determined
and the construction of new algorithms with an unlimited
number of arbitrary, and not always constant, phase shifts.

2 Synthesis of the Algorithm

Phase-shifting methods are based on the capture of several
interferograms while the phase of the reference wave contin-
ues to follow the specified values. At different phase shifts,
the intensity of an interferogram with phase shift §; can be
represented as

where A(x,y) and B(x,y) are the average brightness of the
interferogram and the amplitude of the interference pattern
in the point (x,y), respectively, i =0,1,2,...,m—1, m is
the number of phase shifts, and 6, = O.

The algorithms obtained at m different values are called
m-point algorithms. There are many algorithms that work for
different numbers of phase shifts. Many of the possible
implementations arose from an interest in determining a
generic scheme for the algorithms. A generic scheme allows
evaluation of the pros and cons of a specific variant and
determining the methodology of the algorithm construction.

Equation (1) can be represented in vector form as

T=A+ (B cos ¢)C — (B sin ¢)§, )

where 7 is the set of intensities for different phase shifts §; at
each point of the interferogram /;(x,y), A=A - (1,...,1)T
is an m-dimensional vector, C = (cos Jy,...,cos &,_1)7,
S = (sin &, ...,sin §,,_;)7, and the size of the vectors is
determined by the number of phase shifts.

Let us rewrite Eq. (2) as follows:

7-6L:A~él+(3-cos¢)6-él—(B-sinqﬁ)S‘
(3a)
and
f~§L:A-§l+(B~cos¢)6’~§L—(B-sin¢)§ st
(3b)

To extract the quadrature components sin ¢ and cos ¢,
we can use a property of the dot product for orthogonal vec-
tors (a - a = 0. Let ct be the result of the cross product A
and C, C = C X A and S* be the result of the cross product
A and S, SJ‘ =S X A. Taking into account that S* is ortho-
gonal to A and S and the mentioned property of the dot
product, we obtain

I-C"=—(B-sin¢)S-C" (4a)
and
7.5t = = (B -cos $)C - S (4b)
then
> 2l
I1-C
Bsin ¢ =—-—— (%)
S-C
and
I-s*
Bcos ¢ = =——. (6)
c-S*

Considering the properties of the dot product and the
cross-product ¢(b X a) = —b(c X a) in the case of the non-

Ii(x,y) = A(x,y) + B(x,y) cos(¢(x, y) + &), ) cyclic permutation of the vectors, we obtain
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Then, a reconstruction formula can be represented in the
vector form as

- -

i *.c *.c
sing _ = gb:arctan(?), @)
cosp .8 IS

because in this case only the vector T* is calculated. For the
case of three shifts,

! 3 0o 1 -17 _
F=Ix|1|=M-T=|-1 0 1|1
1 1 -1 0
I, -1
=\|5-1|, (8)
I -1,

where M is a matrix, which calculates the cross-product of
the vectors.* Then, we obtain the equation described in

Ref. 5:
¢:arctan(12_13)cos 81+ (I3 —1,)cos 8, + (I, — 1) cos 3
(I3 =1y)sin 8; + (I, = I3)sin 8, + (I, — 1) sin &3
©)

If 6, = n/4, 6, =3xn/4, and 63 = 57/4, we obtain the
expression described in Ref. 6,

L-1 (10)

¢ = arctan
1— D

The m-dimensional matrix M (m > 3) can be presented as

[0 1 0 —1]
-1 1 0 0
0o -1 - 0 0
M= oo : : : (D
0 0 O 0 1
1 o o0 --- -1
L 4 mXm

and for the case of four shifts,

Optical Engineering

030501-2

0 1 0 -1 I, L-1I,
a_ |-t o 1 o0 L| |-IL+1
0 -1 0 1 I L+,
1 0 -1 0 1, I, -1

12)

If 6, =0, 6, = n/2, 65 = x, and 6, = 37/2, we obtain
the expression found in Ref. 7:

I,—1
¢ = arctan 14 12 . 13)
1~ 13

Obtaining Eqgs. (9), (10), and (13) is not necessary if a
generic algorithmic procedure that implements Eq. (7) is
used:

¢ = arctan === ! [(Tmod(i--1.m) = Tmod(m+i-1.m) - (8]
'

- 1mod(m+i—l.m)) ’ Sin(é‘i)] ’
14)

2%
21

( mod(i+1,m)

where mod(i, m), the remainder when i is divided by m.

3 Conclusions

We have proposed an algorithm that can be used to obtain
reconstruction formulas without solving systems of trigono-
metric equations. Our procedure can be used for any set of
arbitrary phase shifts. Note that the proposed method allows
corresponding real, but not assumed, values of phase shifts to
be used in the reconstruction formulas. This property can
undoubtedly help to increase the precision of phase calcula-
tion in phase-shifting interferometry.
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