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Abstract. The supporting ellipsoids and linear programming reflector
design methods build upon the property of conics to address the inverse
problem of finding the freeform surface that directs light from a point
source to produce a prescribed target distribution. We review the proper-
ties and main computational limitations of the two methods and show that
a fast flux estimation method based on contour detection can be used in
combination with the supporting ellipsoid algorithm. Once the intersections
between neighboring conic patches on the reflector are known, it is pos-
sible to estimate the collected flux using the vertices of the intersection
boundary. The advantage of using the intersection method to estimate
the flux instead of the more common approach—Monte Carlo ray trac-
ing—is that there is no tradeoff between speed and accuracy.
Examples of flux estimation with the intersection method for different target
configurations are shown. © 2014 Society of Photo-Optical Instrumentation Engineers
(SPIE) [DOI: 10.1117/1.OE.53.3.031306]
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1 Introduction
The problem of deriving the optical surface that redirects
light from a point source to a predetermined target has
great relevance in the field of illumination design. While
real sources are extended sources, the point source problem
is of interest, since some real sources can be approximated as
point sources, or the point source solution can be used as a
starting point from which to derive the extended source sol-
ution. If the problem has rotational or translational sym-
metry, it is straightforward to derive the surface that
produces the required illumination,1 but in general nonrota-
tionally symmetric surfaces are needed. This paper reviews
the properties of two reflector design methods that produce a
point source solution using conic patches and presents some
examples of the application of a flux estimation method that
was inspired by conic intersection properties.

2 Supporting Ellipsoids Method
The supporting ellipsoid algorithm produces a discrete sol-
ution to the point source reflector problem.2 It can be formu-
lated with ellipsoids for the near-field problem or with
paraboloids for the far-field problem. The source and target
distributions are sampled with NS and NT points, respec-
tively, and the reflector is made up of patches of ellipsoids
(or paraboloids), each of which directs light from the source
to a different target point. We refer to the equation of an
ellipse with one focus at the origin as shown in Fig. 1(a)
in the form

ρi;j ¼
fj

1 − ejSi · Tj
; (1)

with i ¼ 1; 2; : : : ; NS and j ¼ 1; 2; : : : ; NT , where ρi;j is the
distance to the j’th ellipse along the i’th ray direction, fj and
ej are the focal parameter and eccentricity of the j’th ellipse,
Si and Tj are unit vectors that describe the NS source and NT
target directions, as shown in Fig. 1. The vector Tj describes
the major axis of the ellipse. A three-dimensional surface is
obtained by rotating the ellipse about its major axis, produc-
ing an ellipsoid.

As the eccentricity of the ellipse tends to 1, the ellipsoid
becomes a paraboloid with focus at the origin, as shown in
Fig. 1(b).

In the following, we refer to the case of ellipsoids, for
near-field target illumination; the same method can also
be applied to paraboloids for the far-field problem. The iter-
ative supporting ellipsoids method builds upon the imaging
property of conics; all ellipsoids are set to have a common
focus at the origin, while the other focal point corresponds to
a different target point. By varying the parameters of each
ellipsoid, it is possible to control the amount of light col-
lected by that ellipsoid and, thus, control how much light
is directed to the corresponding target point. An example
of a 4 × 4 reflector obtained with the supporting ellipsoids
method is shown in Fig. 2; we chose all target points to
lie in the same plane and be equally spaced for this example
and all the following, but this is not a limitation of the
method. Symmetry considerations were not used for this
example and the following, but can be leveraged for a faster
computation.

In the initial phase of the algorithm, all the flux is col-
lected by one ellipsoid, the reference ellipsoid, whose param-
eters are chosen to set the scale of the reflector.3 The
remaining ellipsoids are then iteratively scaled until the
desired target distribution is produced. The main steps of
the supporting ellipsoids algorithm are shown in Fig. 3.0091-3286/2014/$25.00 © 2014 SPIE
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There are two possible geometries for any given problem,
converging or diverging. The difference between the two is
whether the rays cross each other after reflection by the conic
patches. The choice of the desired geometry must be made at
the initialization stage of the algorithm.

The exit condition is usually defined by assigning a maxi-
mum tolerated error to the merit function. The merit function
is typically taken to be the sum of the squared difference
between desired and actual normalized target flux.3

Commonly, the evaluation of the target distribution is
done by Monte Carlo ray tracing. The choice of how
many rays to trace affects the speed and the accuracy of
the computation; as the number of rays traced per ellipsoid
increases, the computational complexity increases linearly,
while the accuracy only improves as the square root.4

Fig. 1 (a) Ellipse with one focus at the origin, focal parameter f j , eccentricity ej , and second focus in direction T j . The distance to the parabola
along direction Si is given by ρi ;j . (b) Parabola with focus at the origin, focal parameter f j , and axial direction T j . The distance to the parabola along
direction Si is given by ρi ;j .

Fig. 2 Reflector made of 4 × 4 ellipsoid patches obtained with the
supporting ellipsoid design method to uniformly illuminate a square
target. Each of the 16 ellipsoids reflects rays from the point source
to a different target point. The rays collected from different ellipsoids
are shown with different colors. The source emission is uniform within
a 40-deg square emission in the tangent plane.

Fig. 3 Supporting ellipsoids algorithm. The steps are described for
the converging (diverging) geometry case.
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An example of a reflector obtained for a uniform 4 × 4
target derived with the supporting ellipsoids for a uniform
source emission over a 40-deg square in the tangent plane
is shown in Fig. 4. The discrete target points shown in
Fig. 4(b) are each illuminated by a different ellipsoid
patch. The raster chart of the flux in Fig. 4(c), obtained
by tracing 16,000 rays and averaging the flux collected
over each bin, shows that the desired uniform target distri-
bution is achieved.

3 Linear Programming Method
A variational formulation of the inverse problem has been
proposed independently by Wang and by Oliker.5,6 In the lin-
ear programming method, the reflector problem is formu-
lated as a maximization problem.

max½ISðSÞuðSÞ þ ITðTÞvðTÞ�; (2)

with linear constraint

uðSÞ þ vðTÞ ≤ − logð1 − hS; TiÞ; (3)

where ISðSÞ and ITðTÞ are the normalized source and target
intensities in directions S and T, respectively, h·; ·i denotes

the inner product, and the solutions uðSÞ and vðTÞ are related
to the focal parameters fðTÞ and the polar radii ρðSÞ of the
paraboloids as

uðSÞ ¼ log½ρðSÞ�; (4)

− vðTÞ ¼ log½fðTÞ�: (5)

For energy conservation, the total source flux collected by
the reflector has to be equal to the total flux at the target.

The linear programming method can be formulated in
matrix form, and the resulting matrix has size
NSNT × ðNS þ NTÞ. As the number of rays and targets
increases, the matrix quickly becomes very large, and the
computation time increases quadratically.6,7

It was shown that there is a special relationship between
number of rays and number of targets that makes it possible
to obtain the solution with a minimum number of rays equal
to ðNx þ 1ÞðNy þ 1Þ, where NT ¼ NxNy.

7 An example of a
reflector obtained for a uniform 4 × 4 target and a source
emission over a 40-deg square in the tangent plane with
the linear programming when the condition is satisfied
(i.e., with 25 rays used to sample the source distribution)
is shown in Fig. 5.

Fig. 4 (a) LightTools® model of a 4 × 4 reflector obtained with the supporting ellipsoids method. (b) Target illumination of the discrete spots in the
target plane. (c) Raster chart of the normalized flux averaged over each bin corresponding to a discrete target point, evaluated tracing 16,000 rays.

Fig. 5 (a) LightTools® model of a 4 × 4 reflector obtained with the linear programming method run with the 25 rays shown as dots on the reflector.
(b) Normalized flux evaluated tracing 16,000 rays.
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When only ðNx þ 1ÞðNy þ 1Þ rays are used, they must be
selected according to the mapping between rays and targets,
which is in general not known a priori.8 In cases for which
the mapping is known, such as the example shown in Fig. 5,
the linear programming method offers advantages over the
supporting ellipsoids method in terms of speed; an example
of the corresponding reflector obtained with the supporting
ellipsoids method run with Monte Carlo flux estimation with
only two rays/ellipsoids is shown in Fig. 6.

In general, however, given that the mapping between
source and targets is not known, the linear programming
method is still mainly limited by computational complexity
when used to address problems of interest (e.g., Nx,
Ny > 10).

4 Intersection of Conics
While the linear programming method has been shown to
provide the intersections between conic patches, if the cor-
rect ray selection is made,7 the supporting ellipsoids method
provides complementary information—if enough rays are
traced, the centroid of each patch can be estimated.
However, it was recently shown that by calculating the inter-
sections between neighboring ellipsoids, it is possible to esti-
mate the collected flux, as an alternative to Monte Carlo ray
tracing.9

If the border of a conic patch is known, it is possible to
calculate its area and thus estimate the collected flux.10

Fournier investigates using ray tracing to identify the border
of each facet for flux estimation within the supporting ellip-
soids algorithm and shows that this approach has significant
overhead compared to Monte Carlo ray tracing.11

An alternative way to find the border of each conic patch
is to calculate the intersections between neighboring conics.
The task of finding the intersection point between quadrics
has been investigated in the realm of computer graphics for
decades. In general, it is a complex problem for which a
robust solution was proposed by Lazard et al.12,13 The
method deals with the general case of finding the intersection
curves between two quadric surfaces at an arbitrary location
in space. A major drawback is that, because of the generality
of the framework needed to address generic quadrics, the
computation of the intersection curves is too slow to be
used for flux estimation in conjunction with the supporting
ellipsoids algorithm. However, given that the geometry of

interest in the methods described in Secs. 2 and 3 is the par-
ticular case of ellipsoids or paraboloids sharing a common
focus at the origin, for which a simple expression is given
in Eq. (1), the intersection between multiple ellipsoids can
in fact be calculated analytically.9

Under the assumption that the knowledge of neighboring
ellipsoids can be determined by the arrangement of the target
points, the maximum number of 3-ellipsoid intersections that
needs to be calculated is 4 (Nx − 1) (Ny − 1), for a target
made of a grid of Nx × Ny points.9 On the other hand, if
a brute force Monte Carlo ray tracing approach is used to
estimate the flux with n rays per ellipsoid, n (Nx × Ny)
(Nx × Ny) ray traces must be performed.

An example of flux estimation for a 10 × 10 reflector
obtained with the supporting ellipsoids method with a
point source placed at the origin emitting a Lambertian dis-
tribution into a 40-deg square in the tangent plane is shown
in Fig. 7. The flux estimation done with the intersection
method was ∼459 times faster than Monte Carlo ray tracing
with 1000 rays∕ellipsoid. In addition to being faster, the
intersection method also provides a more accurate result.

The standard deviation of the area estimated with the
intersection method in Fig. 7(b) is <0.05%. To achieve a stat-
istical noise of 0.05% with Monte Carlo ray tracing, a num-
ber of rays per ellipsoid equal to ð1∕0.0005Þ2 ¼ 4 million
would be needed.

5 Flux Estimation with the Intersection Method
The intersection method can be used in conjunction with the
supporting ellipsoids algorithm to provide a faster and more
accurate target flux estimation than Monte Carlo ray tracing.
Because of the assumptions made about the knowledge of
the neighboring ellipsoids from the target layout, the inter-
section method can be applied once all ellipsoids are sup-
porting and the condition is met. For a uniform 10 × 10
square target grid of width 10 located at z ¼ 100 and rotated
10 deg about the z axis, we ran the supporting ellipsoids
method with flux estimation done by Monte Carlo ray trac-
ing until the intermediate reflector shown in Fig. 8(a) was
obtained; we then continued the supporting ellipsoids
method switching to the intersection method for flux estima-
tion. The final reflector obtained is shown in Fig. 8(b).

The normalized standard deviation of the target flux cal-
culated with the intersection method was 114% for the

Fig. 6 (a) LightTools® model of a 4 × 4 reflector obtained with the supporting ellipsoids method run with target evaluation by Monte Carlo ray
tracing with 32 rays. (b) Normalized flux evaluated tracing 16,000 rays.
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intermediate reflector in Fig. 8(a) and 0.036% for the final
reflector in Fig. 8(b); the target flux estimated with the inter-
section method for the reflectors of Fig. 8 is shown in Fig. 9.

The intersection method can be applied to estimate the
flux of reflectors with conic patches with significantly differ-
ent shapes, as can be seen in Fig. 10. In this example, the

Fig. 7 Normalized flux calculated (a) with Monte Carlo ray tracing with 1000 rays∕ellipsoid and (b) with the intersection method.

Fig. 8 Projection in the x -y plane of the rays hitting the 10 × 10 reflec-
tor obtained with the supporting ellipsoids algorithm (a) with Monte
Carlo flux estimation for 100 iterations and (b) switching to the inter-
section method until the final solution is obtained. The target was a
uniform grid with a 10-deg twist about the optical axis. Rays hitting
different ellipsoids have different colors for visualization purposes;
the vertices and boundaries calculated with the intersection method
are shown in black.

Fig. 9 Normalized flux calculated with the intersection method for the reflector of Figs. 8(a) and 8(b), respectively. After convergence, the nor-
malized flux at all target points is one.

Fig. 10 (a) Projection in the x -y plane of the rays hitting a 10 × 10
reflector that produces a uniform target rotated 30 deg about the opti-
cal axis. (b) Normalized target flux evaluated with the intersection
method.
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reflector produced a 10 × 10 discrete uniform target that is
rotated 30 deg about the optical axis. A raster chart of the
flux is shown in Fig. 10(b); the target flux was nearly per-
fectly uniform, with normalized standard deviation well
below 10−5.

An example of a circle-to-square reflector and the normal-
ized flux of the target are shown in Fig. 11. The source had a
Lambertian distribution over a 40-deg cone in cosine space.
The target flux produced by the reflector was nearly perfectly
uniform, with normalized standard deviation well
below 10−5.

6 Conclusion
The linear programming and supporting ellipsoids methods
for reflector design exploit the properties of conics to
build a reflector surface that solves the point source problem.
The intersection method, a fast and accurate flux
estimation method for conic patches of a reflector based
on the calculation of the intersections between neighboring
ellipsoids, can be used in conjunction with the supporting
ellipsoids design algorithm for faster flux estimation than
what is possible with the more commonly used Monte
Carlo ray tracing. Thanks to its linear dependence on the
number of targets, this flux estimation method is more scal-
able than Monte Carlo ray tracing, which has a quadratic
dependence. Additionally, the intersection method provides
an accurate result without having to compromise computa-
tional speed.
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