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Abstract. Signal reconstruction, especially for nonstationary signals, occurs in many applications such as opti-
cal astronomy, electron microscopy, and x-ray crystallography. As a potent tool to analyze the nonstationary
signals, the linear canonical transform (LCT) describes the effect of quadratic phase systems on a wavefield
and generalizes many optical transforms. The reconstruction of a finite discrete-time signal from the partial infor-
mation of its discrete LCT and some known samples under some restrictions is presented. The partial informa-
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1 Introduction
Signal reconstruction, especially for nonstationary signals,
plays an important role in optical signal processing and
evokes considerable interest in these literatures.1,2 In many
applications, such as optical astronomy,3 electron micros-
copy, and x-ray crystallography,4 it is desired to reconstruct
a complete sequence from incomplete information about the
signal. The incomplete information that we have assumed to
be available is usually the Fourier transform (FT) phase or
the FT magnitude. Generally, a signal cannot be uniquely
specified only from its FT magnitude or phase unless there
is some additional information. Early works5–7 on signal
reconstruction have shown that a finite sequence can be
uniquely specified by its FT magnitude with some samples
under some restrictions. This reconstruction is based on an
assumption that signals are band-limited in the Fourier
domain. However, some nonstationary signals, such as
chirp signals, are not band-limited in the Fourier domain.
Applying the conventional reconstruction methods to signals
nonband-limited in the Fourier domain may lead to wrong or
at least suboptimal conclusions.

Since the FT is not suitable for analyzing and processing
nonstationary signals, many useful tools have been intro-
duced, such as short time FT, wavelet transform, and linear
canonical transform (LCT). Among all these processing
tools, the LCT, which is a linear integral transform with four
parameters ða; b; c; dÞ, has been proven to be a perfect tool in
solving problems in quantum physics, optics, and nonsta-
tionary signal processing,8 because nonstationary signals are
band-limited in the linear canonical domain. The well-known
operations, such as the FT, the fractional Fourier transform

(FRFT),8,9 the Fresnel transform,10 and the scaling operation,
are all special cases of the LCT. Besides, the definition
and the implementation of the discrete LCT have been
derived,11,12 and have potential applications in areas of
filter design, signal synthesis, phase retrieval, and pattern
recognition.8–13 Moreover, the one-dimensional (1-D) LCT
is the fundamental of two-dimensional (2-D) LCT due to
the separable property of 2-D LCT,14 and then we only con-
sider the application of the 1-D LCT in first-order optical
systems. Therefore, the reconstruction of nonstationary sig-
nals in the linear canonical domain is investigated in this
paper.

In this paper, we present that a finite sequence can be
completely reconstructed from its discrete LCT magnitude
or phase and some samples under some loosen restrictions.
Especially, our works are effective for nonstationary signals.
The paper is organized as follows. In Sec. 2, the definitions
of LCT and discrete LCT are introduced and the uniform
sampling theorem for band-limited signals in the linear
canonical domain is presented. In Sec. 3, the formulas to
reconstruct a finite sequence from its discrete LCT magni-
tude or phase and some samples are derived when some con-
ditions are known and the restrictions using in this algorithm
are discussed. In addition, Sec. 4 illustrates an example.
Finally, we make a conclusion in Sec. 5.

2 Preliminaries

2.1 Linear Canonical Transform

The LCT of a continuous signal xðtÞ with parameters
ða; b; c; dÞ is defined as8

XMðuÞ ¼
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where M ¼ ½ a b; c d � is the parameter matrix and
detðMÞ ¼ ad − bc ¼ 1. Two successive LCTs with*Address all correspondence to: Ran Tao, E-mail: rantao@bit.edu.cn
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matrices M1 and M2 are another LCT with the matrix
M3 ¼ M2M1, and consequently the inverse LCT is
given by the LCT with parameters (d, −b, −c, a). It is
easy to verify that the LCT with parameter matrix M ¼
½ cos α sin α; − sin α cos α � reduces to the FRFT
which, in specific case α ¼ π∕2, becomes the FT.15,16 The
LCT also reduces to the Fresnel transform if M ¼
½ 1 b; 0 1 �.17 The scaling operator can be viewed
as a special case of the LCT with parameter matrix M ¼
½ d−1 0; 0 d �. It should be noted that when b ¼ 0, the
LCTof a signal is just a chirp multiplication which is of no
particular interest, so we only consider the case of b ≠ 0.
Without loss of generality, we assume b > 0 in this paper.
For further details about the definitions and properties of
the LCT, readers can refer to Refs. 8–17.

2.2 Uniform Sampling Theorem for Band-Limited
Signal in the LCT Domain

A continuous signal xðtÞ is band-limited to ΩM in the sense
of the LCT with parameter matrix M, which means that18

XMðuÞ ¼ 0 for j uj > ΩM; (2)

where ΩM is called the bandwidth of the signal xðtÞ in the
linear canonical domain.

Lemma Assume xðtÞ to be band-limited to ΩM in the
linear canonical domain with parameters ða; b; c; dÞ, then
the sampling theorem expansion for the continuous signal
xðtÞ can be expressed as19
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where Δt is the sampling interval and the Nyquist rate of
sampling theorem associated with the LCT is ΩM∕ðπbÞ.

Equation (3) establishes the relationship between the sig-
nal samples and the original signals. That is to say, we can
reconstruct the original signal from the uniform sampling
points of the signal in the LCT domain provided that the
sampling interval satisfies the uniform sampling conditions.

2.3 Discrete Linear Canonical Transform

The uniformly sampled signal of the continuous
signal xðtÞ with sampling interval Δt is xsðtÞ ¼P∞

n¼−∞ xðnΔtÞδðt − nΔtÞ. Here, the Dirac function δðtÞ is
a generalized function depending on a real parameter t
such that it is zero for all values of the parameter except
when the parameter is 0, and its integral over the parameter
t from −∞ to ∞ is equal to 1. That is to say, δðtÞ ¼ þ∞ for
t ¼ 0 and δðtÞ ¼ 0 for t ≠ 0, and ∫ ∞

−∞δðtÞdt ¼ 1. Then, the
LCT of the sampled signal xsðtÞ is
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Equation (4) shows that the LCT of the uniform sampled
signal xsðtÞ replicates XsMðuÞ with a period of 2πb∕Δt along
with linear phase modulation. By sampling uniformly N
points in the replicated period 2πb∕Δt in the linear canonical
domain, the sampling interval Δu in the linear canonical
domain is Δu ¼ 2πb∕ðNΔtÞ. Then the discrete LCT of
the discrete-time signal x½n� can be defined as11,12
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ffiffiffiffiffiffiffiffiffi
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and the corresponding inverse transform is

x½n� ¼
ffiffiffiffiffiffiffiffiffi
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where hNi denotes the interval ½0; 1; : : : ; N − 1� without
generality.

3 Reconstruction of Signals From the Partial
Information Associated with the LCT

A discrete-time signal x½n� can be easily reconstructed from
the complete information about its discrete LCT. However,
only partial information about its discrete LCT may be re-
corded or acquired in many practical applications. In broad
terms, the partial information about its discrete LCT that we
have assumed to be available is the discrete LCT phase alone
or the discrete LCT magnitude alone. The attempt to recon-
struct a signal exactly from its transform magnitude informa-
tion is commonly referred to in the literature as the phase-
retrieval problem.5,20 For example, the magnitude or the
intensity of a diffraction pattern or an interference pattern
in optical astronomy is recorded to reconstruct more com-
plete information. Correspondingly, reconstruction from its
transform phase alone is typically referred to as the magni-
tude-retrieval problem. Although both of these are of poten-
tial practical importance, the discrete LCT magnitude or
phase alone is, in general, not sufficient to uniquely specify
a discrete-time signal. So some additional information and
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restrictions need to be added to ensure adequate information
for the reconstruction of a discrete-time signal. One way is to
add some information to frequency domain, such as a bit of
phase in the reconstruction of a sequence by its transform
magnitude.21 The other way is to add some known samples
in the time domain which can be obtained more easily than
other ways.22 Therefore, the reconstruction of a discrete-
time signal from its discrete LCT magnitude or phase and
some known samples under some restrictions needs to be
considered.

Suppose a continuous-time signal xðtÞ, whose most
energy is concentrated in a narrow time range T, is band-lim-
ited to ΩM in the linear canonical domain with parameter
M ¼ ½ a b; c d �. The signal is sampled uniformly by
a sampling rate fs ¼ 1∕Δt in the time range T, then we
can obtain a sampled signal x½n� where the number of sam-
ples is N ¼ Tfs. Without loss of generality, we suppose that
the number of samples N is even.

The discrete LCT of the sampled signal, x½n�, for
n ¼ 0; 1; 2; : : : ; N − 1, is given by

XM½m� ¼
ffiffiffiffiffiffiffiffiffi
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where x½n� ¼ xðnΔtÞ for all n. Since the magnitude of
XM½m� is only related to the magnitude of

XN−1

n¼0

x½n� exp
�
j
a
2b

n2Δt2 − j
2π

N
mn

�
;

we can rewrite it as

XN−1

n¼0

x½n� exp
�
j
a
2b

n2Δt2 − j
2π

N
mn

�

¼
����XN−1

n¼0

x½n� exp
�
j
a
2b

n2Δt2 − j
2π

N
mn

����� expðjθ½m�Þ:
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Therefore, the magnitude of XM½m� can be defined as
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and the phase of XM½m� can be expressed as

θM½m� ¼ θ½m� þ d
2b

m2Δu2 þ 2πD; (10)

where D means an integer. For the special case when m ¼ 0,
it gives

XM½0� ¼
ffiffiffiffiffiffiffiffiffi
1∕N

p
·
XN−1

n¼0

x½n� exp
�
j
a
2b

n2Δt2
�

¼ jXM½0�j:

By replacing m in Eq. (7) with N −m, the discrete LCT of
x½n� is expressed as follows:
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The Parseval relation and energy-preserving property can
be viewed as consequences of the fact that the LCT is based
on a set of orthonormal basis functions.14,23 Due to the
energy-preserving property of the LCT, the squared LCT
magnitude is often called the linear canonical energy spec-
trum of the signal and can be interpreted as the distribution of
the signal’s energy among the different chirps. From its dis-
crete form, we can obtain the energy either from the finite
sequence x½n� or from the discrete LCT magnitude jXM½m�j.
If we want to acquire the energy from the less samples of the
discrete LCT magnitude, we can consider the even symmetry
property of the discrete LCT magnitude, that is to say
jXM½m�j ¼ jXM½N −m�j. By this way, the number of the dis-
crete LCT magnitude in the computation of the energy can be
reduced to N∕2. From Eq. (9), we can deduce that this
sequence x½n� exp½jða∕2bÞn2Δt2� should be real. So the
choice of parameter matrix M ¼ ½ a b; c d � is associ-
ated with the continuous-time signal xðtÞ. Note that the
phase of
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N
mn
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has the odd symmetry property when the sequence x½n�
exp½jða∕2bÞn2Δt2� is real. Using this odd property, the
phase of XM½N −m� becomes

θM½N −m� ¼ −θ½m� þ d
2b

ðN −mÞ2Δu2 þ 2πD 0;
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where D 0 means an integer. Because of these properties, the
sequence x½n� can be rewritten as
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Based on the sampling theorem for band-limited signal in
the linear canonical domain, the sampling rate should be
greater or equal to the Nyquist rate. That is to say, the sam-
pling rate fs should be satisfied fs ≥ ΩM∕ðπbÞ. When the
sampling rate fs satisfies fs ¼ ΩM∕ðπbÞ, the number of
samples becomes N ¼ Tfs ¼ TΩM∕ðπbÞ. Due to the fact
that xðtÞ is band-limited to ΩM in the linear canonical
domain, the discrete LCT XM½m� is nonzero only in the lim-
ited band ΩM with the replicated period 2πb∕Δt in the linear
canonical domain. For the case thatm ¼ N∕2, we can obtain
XM½N∕2� ¼ 0. Then Eq. (12) can be rewritten as
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where the symbol dαe represents the smallest integer greater
than or equal to α.

When the sampling rate fs satisfies fs > ΩM∕ðπbÞ, the
number of samples becomes N ¼ Tfs and Tfs > TΩM∕
ðπbÞ. According to the relationship between the continuous
form and the discrete form of the LCT, we can deduce that
there are N þ 1 − dTΩM∕πbe values of the discrete LCT
magnitude equal to zeros which distribute at m ¼
dTΩM∕ð2πbÞe, dTΩM∕ð2πbÞe þ 1; : : : ;N − dTΩM∕ð2πbÞe.
Since this products, Eq. (12) can be rewritten as
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(14)

From Eq. (14) we can obtain that the whole sequence x½n�
can be uniquely reconstructed by the discrete LCT magni-
tude jXM½m�j and M samples of x½n� if M samples of
θ½m� can be solved uniquely, whereM is dTΩM∕ð2πbÞ − 1e.

Rewritten Eq. (14) in matrix form

x½n� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1∕ðTfsÞ
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where A½m; n� ¼ 1∕2 for m ¼ 0 otherwise A½m; n� ¼
cos½θ½m� þ ð2π∕NÞmn�. Therefore, if RankðAÞ ¼ M, the
whole sequence x½n� can be uniquely reconstructed by the
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Fig. 1 (a) The magnitude and (b) real part of the discrete-time signal.
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discrete LCT phase θM½m� and M samples of x½n�, where M
is dTΩM∕ð2πbÞe.

It should be pointed that the obtained reconstruction proc-
ess can also be completed when the initial sample is not con-
fined to the first sample of x½n� and even if the known
samples are not successive. In fact, the needed known sam-
ples for completing the reconstruction is related with the total
samples, which is determined by the sampling rate fs. When
the sampling rate satisfies fs ¼ ΩM∕ðπbÞ, the ratio M∕N is
approximately equal to 0.5. In other words, the number of
known samples is approximately equal to N∕2. Therefore,
these loosen restrictions extend the scope of application of
the reconstruction method greatly.

4 Simulation Results and Discussion
In many practical cases, it is much easier to obtain the dis-
crete LCT magnitude of a sequence than its discrete LCT
phase. In addition, the sampling rate is often higher than
the Nyquist rate. Therefore, it is necessary to verify the val-
idity of the reconstruction algorithm by using the discrete
LCT magnitude and some samples of a sequence. In this sec-
tion, an example of the reconstruction algorithm described in
our work is demonstrated.

The original continuous-time signal is a squared sinc
function multiplied by a phase factor exp½−jða∕2bÞt2�,

xðtÞ ¼ Ω0

2π
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its LCT with parameter M ¼ ½ a b; c d � is a triangular
function. Then according to the properties of the LCT,
the LCT of xðtÞ is also a triangular function and its band-
width in the linear canonical domain is 2Ω0∕b. So the
Nyquist rate of sampling theorem associated with the
LCT is ΩM ¼ 2Ω0∕ðπbÞ.

The discrete-time signal x½n� is sampled from the continu-
ous-time signal xðtÞwith sampling intervalΔt ¼ 0.01, that is
x½n� ¼ xðnΔtÞ. Here, we select the parameter M ¼
½ 3 1; 0.5 0.5 �. Note that the sampling rate fs ¼
1∕Δt is higher than the Nyquist rate 2Ω0∕ðπbÞ. Since the
most energy of the original signal is concentrated in the nar-
row time range T, the discrete-time signal x½n� is approxi-
mated as a finite sequence in the interval [0, 2], and thus
can be numerically simulated in a computer. Besides, the
number of samples is N ¼ 200 in the time domain.

The magnitude and real part of discrete-time signal
x½n� which need to be reconstructed are shown in Figs. 1(a)
and 1(b), respectively. We suppose that the discrete LCT
magnitude of x½n� and M samples of x½n� are known, which
are used to the reconstruction of the uniformly sampled
sequence. Here, the value of M is dTΩM∕ð2πbÞ − 1e ¼ 49.
This known partial information is plotted in Fig. 2. Based on
Eq. (14), we can reconstruct the whole sequence x½n� by the
discrete LCT magnitude of x½n� and 49 samples of x½n�. The
discrete-time signal reconstructed by the proposed algorithm
is shown in Fig. 3, where the magnitude and real part of the
reconstructed discrete-time signal are plotted in Figs. 3(a)

and 3(b), respectively. In order to compare the reconstructed
discrete-time signal with the original discrete-time signal
shown in Fig. 1 more explicitly, the reconstructed sequence
and the original sequence are plotted in the same figure and
can be distinguished by two commonly used types of sym-
bols in Fig. 3. It is clear from Fig. 3 that the discrete-time
signal reconstructed by the proposed algorithm is exactly
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Fig. 2 (a) The discrete LCT magnitude of x ½n� with parameter
M ¼ ½3 1; 0.5 0.5 �. (b) The magnitude and (c) real part of
some known samples.
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equal to the original discrete-time signal shown in Fig. 1.
Note that the number of known samples is less than N∕2
and the initial known sample is not confined to be the
first sample of x½n�. Therefore, the reconstruction of signals
from the partial information associated with the LCT works
fairly well in the case of the nonstationary input under some
loosen restrictions.

5 Conclusion
In this paper, the reconstruction of a finite discrete-time sig-
nal from its discrete LCT magnitude or phase and some
known samples under some restrictions has been proposed.
It has been shown that the number of known samples is
related to the sampling frequency and can be less than half
of the total number of the finite discrete-time signal when the
sampling rate is larger than the Nyquist rate. Besides, sim-
ulation results have shown the better performance of the
reconstruction algorithm for nonstationary signals even
when the initial known sample is not the first sample of
the discrete-time signal. The proposed algorithm will pro-
mote the applications of the reconstruction of nonstationary
discrete-time signals in the linear canonical domain.
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Fig. 3 (a) The magnitude and (b) real part of the reconstructed dis-
crete-time signal.
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