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Abstract. Optical coherence tomography (OCT) acquires cross-
sectional images of tissue by measuring back-reflected light. Images
from in vivo OCT systems typically have a resolution of 10 to 15 mm,
and are thus best suited for visualizing structures in the range of tens
to hundreds of microns, such as tissue layers or glands. Many normal
and abnormal tissues lack visible structures in this size range, so it
may appear that OCT is unsuitable for identification of these tissues.
However, examination of structure-poor OCT images reveals that they
frequently display a characteristic texture that is due to speckle. We
evaluated the application of statistical and spectral texture analysis
techniques for differentiating tissue types based on the structural and
speckle content in OCT images. Excellent correct classification rates
were obtained when images had slight visual differences (mouse skin
and fat, correct classification rates of 98.5 and 97.3%, respectively),
and reasonable rates were obtained with nearly identical-appearing
images (normal versus abnormal mouse lung, correct classification
rates of 64.0 and 88.6%, respectively). This study shows that texture
analysis of OCT images may be capable of differentiating tissue types
without reliance on visible structures. © 2003 Society of Photo-Optical Instru-
mentation Engineers. [DOI: 10.1117/1.1577575]
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1 Introduction
1.1 Optical Coherence Tomography
In optical coherence tomography~OCT!, cross-sectional im-
ages are created by measuring near-infrared light back
reflected from tissue.1,2 Typical in vivo OCT systems have a
resolution on the order of 10 to 15mm, and are therefore
unable to image subcellular structures. Even with ultrahigh
~better than 2mm! resolution systems, subcellular level imag-
ing of deep structures may be limited by phase distortions in
turbid tissues. Therefore, most identifications of tissue type
and pathology have relied on the presence or absence of stru
tures and layers. For instance, in the gastrointestinal tract,3–6

bladder,7 and prostate,8 several groups have reported that OCT
images of normal tissue show a well-organized composition
with layers such as mucosa, lamina propria, muscularis mu
cosae, and submucosa, and features such as colonic crypts a
gastric pits. However, in pathologies, including Barrett-related
and prostate adenocarcinoma, and bladder transitional ce
carcinoma, common findings include disorganization and ho
mogenization of the affected areas.

1.2 Speckle in OCT Images
OCT images of many normal tissues, for instance sclera o
aorta, have few structures or none, and may appear to simp
show an apparent exponential decrease in intensity wit
depth, assuming the signal is in the single-scattering regime
Therefore, it may appear that OCT would not be useful in
classifying uniform-appearing tissues or pathologies in thes
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tissues. However, examination of apparently homogene
OCT images reveals that they display a characteristic tex
that is due to speckle.

Speckles appear everywhere in space whenever an
cally rough surface is illuminated with coherent light. W
have observed that the random field distribution of speckl
stationary in time~for stationary objects! and is a function of
spatial coordinates. The greater the size range of the sur
elements, the greater will be the angular range of scatte
produced. The structural size of individual speckles, howe
is determined by the size of the illuminated area of the obj
in free-space propagation, or the aperture angle in an op
imaging system. The speckle pattern may be regarded as
ing produced by the coherent superposition of the interfere
fringes of the waves falling onto a plane of observation. T
2-D speckle theory for surface roughness can be extended
3-D model for OCT imaging.

The origin of speckle in OCT images was previously ou
lined by Schmitt.9 In his paper, it is proposed that two types
speckles appear in OCT images. The first is due to inter
ence from multiply scattered photons. This type of speckle
generally small, typically a single pixel wide. The second ty
of speckle results from interference of the wavefronts fro
multiple scatterers within the OCT focal volume and is typ
cally much larger.

The occurrence of speckle has been noted in similar fie
such as optical metrology with the use of coherent illumin
tion. Numerous applications of speckle can be suggested
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Texture analysis of optical coherence tomography . . .
cluding measurement roughness and shape, determination
strain and displacement, and monitoring movement.10–13 We
hypothesize that variations in the quantity and size distribu
tions of scatters could create uniquely different speckle pat
terns. Therefore it may be possible to use texture analysis t
differentiate between uniform-appearing tissue types, base
on features of their speckle.

1.3 Texture Analysis
Texture is a result of local variations in brightness within one
small region of an image. If the intensity values of an image
are thought of as elevations, then texture is a measure o
surface roughness.14 Texture analysis techniques can be clas-
sified into three groups15:

• Statistical technologies: based on region histograms an
their moments, they measure features such as coarsene
and contrast.

• Spectral technologies: based on the autocorrelation func
tion or power spectrum of a region, they detect texture
periodicity, orientation, etc.

• Structural technologies: based on pattern primitives, they
use placement rules to describe the texture.

To the authors’ knowledge, texture analysis has not previ
ously been performed on OCT images. However, a large bod
of literature exists for texture analysis of ultrasound, magnetic
resonance imaging~MRI!, computed tomography~CT!, fluo-
rescence microscopy, light microscopy, and other digital im-
ages. For example, in the eye, texture analysis of ultrasoun
images has been used to differentiate histological types o
intraocular melanoma.16 In another study, posterior capsule
opacification was assessed from digital camera images usin
the texture analysis techniques of variance measurement a
co-occurrence.17 Texture analysis has also been used to evalu
ate ultrasound images of the prostate.18 Other optical imaging
modalities have utilized texture analysis, such as fluorescenc
microscopy images of colonic tissue sections19 and light mi-
croscopy images of the chromatin structure in advanced pros
tate cancer.20

Details of texture analysis procedures can be found in
many signal-processing references. For example, see Refs. 1
21, and 22. In this paper we describe a preliminary study to
determine if two specific types of statistical texture analysis
spatial gray-level dependence matrices~SGLDM! and Fourier
spatial frequency domain techniques, can be used to correct
classify OCT images of various tissues.

2 Methods

2.1 OCT System
The OCT system used in this study is similar to one describe
previously.23 The source was a superluminescent diode with a
center wavelength of 1300 nm and a bandwidth of 49 nm. The
light was carried to the sample arm by an optical fiber~SMF-
28, Corning! with a 9-mm core. The light was collimated into
a 8.1-mm diameter beam and focused onto the sample by
50-mm focal length lens with a 19-mm clear aperture. This
gives the system an NA of 0.081. The axial and lateral reso
lutions of the system were 16 and 14mm in air, respectively.
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The detector signal was coherently demodulated and the m
nitude sampled by a data acquisition board. Images consis
of 1024 a-scans~columns! with 256 pixels/a-scan were ob
tained form an area 1 mm in lateral dimension and 0.25 m
deep. The images were taken from just under the air/tis
interface, so that they contained only the bulk tissue. T
images of each tissue type were taken from various locati
on the tissue specimens. Care was taken to ensure tha
instrument settings, except detector gain, remained the s
from image to image.

The original images had a pixel size of approximately1
31 mm. Modified images were created by averaging434
blocks of pixels. Thus the new image type consisted
64 rows3256 columns.The pixel size(;434 mm) in the
modified images was still far less than the resolution of
system. Studies using unaveraged image data yielded les
producible results than averaged images, perhaps becau
the random nature of the noise and speckle from multip
scattered photons.

2.2 Tissue Imaging
The specimens imaged in this study were freshly excised
sues from a single 15-week-old p53 double knockout mou
The specimens included two portions of normal lung tiss
two portions of abnormal lung tissue~hyperplasia with exten-
sive inflammation!, a 131 cmsection of dorsal skin, and two
portions of testicular fat. Under a protocol approved by t
University of Arizona’s Institutional Animal Care and Us
Committee, a technician surgically removed the tissue sp
mens. After removal, the specimens were covered with ga
moistened with saline solution, placed in sealed contain
and refrigerated until imaged.

2.3 Image Enhancement and Grouping
The raw OCT image files contained floating-point numbe
that corresponded to data acquisition board voltage lev
Three operations were performed on each OCT image file
improve contrast and achieve a uniform distribution of inte
sities over a restricted gray-scale range. First, the logarithm
each number was taken. Next, the brightness value of e
pixel was scaled to fill integer gray levels between 0 and 2
To do this, the minimum and maximum values were record
during the image data retrieval. The scaling was performed

g5F g02gmin

gmax2gmin
3255G , ~1!

whereg is the integer-modified gray level of a given pixel,g0
is the original float value of the given pixel,gmin andgmax are
the minimum and maximum floating-point values present
the raw image data, andb c represents the floor operator~the
greatest integer not exceeding the operand!. Third, histogram
equalization was performed. The cumulative distributi
function ~CDF!, F(g), was computed as follows:

F~g!5(
i 50

g

h~g!, ~2!

whereh(g) is the gray-level histogram of the image. Then
new gray level(g8) was computed by
Journal of Biomedical Optics d July 2003 d Vol. 8 No. 3 571
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g85 bF~g!2F~gmin!

12F~gmin!
3255c. ~3!

Two sets of texture features were extracted from the OCT
tissue images. The first set of features was the SGLDMs, o
co-occurrence matrices.24–26 The spatial gray-level depen-
dence method is based on the estimation of the second-ord
joint conditional probability density functions,f ( i , j ud,u), for
u50, 45, 90, and 135 deg.24 Each f ( i , j ud,u) is the probabil-
ity of a pixel with a gray-level valuei being d pixels away
from a pixel of gray-level valuej in the u direction. If the
image containsL gray levels, then anL3L matrix,su( i , j ud),
0< i ,L, 0< j ,L, can be created fromf ( i , j ud,u), for each
directionu and for a given distanced. To help classify tissues
using these SGLDMs, certain textural information can be cal
culated, including energy, entropy, correlation, local homoge
neity, and inertia. These texture features give us twenty dif
ferent parameters to discriminate tissue types since w
calculate these five features for four different directions with
d51. The SGLDM features are calculated as follows24:

energy5 (
i 50

L21

(
j 50

L21

@su~ i , j ud!#2, ~4!

entropy5 (
i 50

L21

(
j 50

L21

Su~ i , j ud!log@su~ i , j ud!#, ~5!

correlation5
( i 50

L21( j 50
L21~ i 2mx!~ j 2my!su~ i , j ud!

sxsy
, ~6!

local homogeneity5 (
i 50

L21

(
j 50

L21
1

11~ i 2 j !2 su~ i , j ud!,

~7!

inertia5 (
i 50

L21

(
j 50

L21

~ i 2 j !2su~ i , j ud!, ~8!

where su( i , j ud) is the ( i , j )th element of the SGLDM for
distanced, L is the number of gray levels in the image, and
where

mx5 (
i 50

L21

i (
j 50

L21

su~ i , j ud!, ~9!

my5 (
i 50

L21

j (
j 50

L21

su~ i , j ud!, ~10!

sx5 (
i 50

L21

~ i 2mx!
2(

j 50

L21

su~ i , j ud!, and ~11!

sy5 (
i 50

L21

~ j 2my!2(
j 50

L21

su~ i , j ud!. ~12!

The second set of features was derived from the two
dimensional discrete Fourier transform~DFT! of the images.
As seen in Fig. 1, the 2-D DFT can be divided into regions
572 Journal of Biomedical Optics d July 2003 d Vol. 8 No. 3
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based on frequency content. In this case, four regions w
chosen, giving four texture parameters, where the innerm
region represents the lowest spatial frequency range and
outermost region represents the highest spatial freque
range. Square regions were used instead of circular ones
computational efficiency. The magnitudes of all the spa
frequencies in each region were summed up and divided
the total frequency magnitude content in the complex 2
FFT. This gives the percentage contribution of each region
the frequency content of the 2-D FFT.

2.4 Distance Measures
The scales of the twenty-four different features varied grea
so they were normalized. A feature vector was calculated
each of the selected regions within the images. From this
of data, a single combined mean feature vector(m̃) and a
single combined standard deviation vector(s̃) were calcu-
lated using the combined data from all of the classes~tissue
types! in the training set. The data were averaged over al
the regions for each feature, leaving a single 24-feature ve
(m̃). Each feature vector of a given region in a known cla
c, was then normalized as follows:

x5
x̃2m̃

s̃
, ~13!

wherex̃ is the raw feature vector for a given region. For ea
class,c, the mean,mc, was computed by averaging the no
malized feature vectors in that class. The covariance ma
used in the Mahalanobis distance was calculated for e
class using the following equation:

Fig. 1 This diagram shows how the N3N 2-D discrete Fourier trans-
form of the OCT images was divided into four regions based on fre-
quency content.
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Fig. 2 Brodatz images used for algorithm verification: (a) D16, (b)
D19, (c) D24, (d) D4, (e) D29, (f) D53, (g) D68, (h) D77, and (i) D79.
Image size: 2563256 pixels. The horizontal stripe through each im-
age shows the selected region that was analyzed. The striped area has
undergone histogram equalization preprocessing.
p
.

n
i
e
s
h

t

ars
he

ious
ith

an-
for

ty
ns.
las-

is

m
ex-

top
ni-
bly
was

mal
ler
ver-
res
in
by
the
(
c

@ i #@ j #5~x@ i #2mc@ i # !~x@ j #2mc@ j # !, ~14!

wherei and j both range from 1 to the number of features, in
this case twenty-four~twenty SGLDM features plus four FFT
features!. The Mahalanobis distance,dc , between an un-
known region’s normalized feature vector,x, to a specific
class,c, was calculated using the following equation:

dc5~x2mc!
T(

c

21

~x2mc!. ~15!

2.5 Image Classification Program
An image classification program was developed to differenti-
ate tissue types based on texture analysis. This program a
plies a minimum-error-rate Bayesian classification model
Given several sets of training images, the program extracts th
best combination of three features, out of the twenty-four
available, to distinguish the selected tissue types. Then, give
an unknown region, the program measures the Mahalanob
distance between the 3-feature vector of that region and all th
known classes in the training set. The program determine
tissue type based on the shortest Mahalanobis distance to t
classes in the training set.

To validate our texture analysis code, nine different Bro-
datz textures were used and are shown in Fig. 2. The Broda
textures are a set of images commonly used as a standard
texture analysis algorithms. The2563256 pixel gray-scale
images used in this study were D4, D16, D19, D24, D29,
D53, D68, D77, and D79. A643256 region of each Brodatz
-

e

s

e

z
in

image was digitally processed in the same manner as the O
images, with the exception of the log operation because t
were already gray scaled~0 to 255 range! and did not have the
large dynamic range of raw OCT images. This region appe
as the horizontal stripe in the images shown in Fig. 2. T
remaining parts of the images were not preprocessed.

Ten images of each tissue class were obtained from var
locations in the tissue specimens, except abnormal lung w
nine images. Six of the images from each class were r
domly selected and used for training, and the remainder
classification. In each image, the program extracted ten64
364 pixel regions randomly. Since the images were64
3256 pixels, there was significant overlap among the six
training regions and among the forty classification regio
However, there was no overlap between the training and c
sification regions.

3 Results
Two types of speckle were noticed in OCT images, which
consistent with the observations of Schmitt.9 The appearance
of the large~30 to 100mm! speckles remained constant fro
image to image taken at the same tissue location. This is
pected since our object is stationary in time. The small~pixel-
sized! speckles did not remain constant. Since only the
250 mm of tissue was imaged, and this region was fairly u
formly reflective, the average signal level was considera
higher than the system noise floor. Therefore this noise
ignored in our analysis.

Representative images of mouse skin, testicular fat, nor
lung, and abnormal lung are given in Fig. 3. The smal
speckle, on the order of a single pixel, was reduced by a
aging, but the larger speckle was unaffected. A few structu
were noticed~for instance, the horizontal linear structures
the fat image!, but in general the images were dominated
speckle. To the unaided eye, very subtle differences in
shape of the speckle were seen between tissue types.

Fig. 3 Example OCT images (after 434 local average filtering) of
mouse (a) skin, (b) fat, (c) normal lung, and (d) abnormal lung. Image
size: 130.25 mm.
Journal of Biomedical Optics d July 2003 d Vol. 8 No. 3 573
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Gossage et al.
Table 1 shows the classification performance of the system
when four separate experiments were conducted. In each e
periment, twenty different runs of the program were per-
formed to determine statistical repeatability. The differences
between runs were due to the random selection of region
within the images.

The results of experiment 1 show that the nine Brodatz
textures could be correctly classified 97 to 100% of the time
with a standard deviation of 0.0 to 6.7%. The results from
experiment 2 show the program could correctly differentiate
skin and testicular fat 98.5 and 97.3% of the time, with stan-
dard deviations of 1.3 and 3.4%, respectively. Experiment 3
results show that the program was able to correctly differen
tiate regions of normal and abnormal lung tissue into their
true class 89 and 64% of the time, with a standard deviation
of 11.2 and 17.7% respectively. Finally, the results of experi-
ment 4 show that when all of the normal tissue types are
analyzed together, the program can achieve correct classific
tion rates for skin, testicular fat, and normal lung tissue of
37.6, 94.8, and 65.3%, with standard deviations of 17.7, 5.1
and 15.2%, respectively.

4 Discussion
Brodatz textures are a standard test case for texture analys
code. The Brodatz classification problem was much more dif
ficult than the binary comparisons because nine differen

Table 1 Correct classification rates for the texture analysis experi-
ments (twenty runs per experiment). BT, Abn, and Nrm stand for Bro-
datz texture, abnormal, and normal, respectively.

Experiment
1

BT1 BT2 BT3 BT4 BT5

Mean 98.0% 99.0% 100.0% 99.0% 99.0%

SD 4.2% 3.2% 0.0% 3.2% 3.2%

BT6 BT7 BT8 BT9

Mean 98.0% 97.0% 100.0% 97.0%

SD 4.2% 6.7% 0.0% 4.8%

Experiment
2

Skin Fat

Mean 98.5% 97.3%

SD 1.3% 3.4%

Experiment
3

Abn
Lung

Nrm
Lung

Mean 64.0% 88.6%

SD 17.7% 11.2%

Experiment
4

Skin Fat Nrm
Lung

Mean 37.6% 94.8% 65.3%

SD 17.7% 5.1% 15.2%
574 Journal of Biomedical Optics d July 2003 d Vol. 8 No. 3
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classes were being compared simultaneously, but the Bro
textures represent an ideal case in texture analysis: an
tremely regular, nearly noise-free image. The Brodatz textu
also appear more differentiated from each other than the tis
images are when viewed with the unaided eye. The excel
results~97 to 100% correct classification rate! gave us confi-
dence that our program was performing correctly.

The program then performed a binary comparison
mouse skin and testicular fat images. There are some s
tural differences that can be seen between the two classes
the unaided eye—predominantly horizontal striping in the
images. The excellent classification results may be due to
presence of these features.

The program also performed a binary comparison betw
normal and abnormal mouse lung tissue. There are no st
tural differences that can be seen between the two classes
the unaided eye, but the normal lung tissue appears to ha
slightly larger speckle size than the abnormal lung tissue.
program was able to correctly classify the abnormal lung
sue 64% of the time and normal lung tissue 88.6% of the tim
The normal and abnormal lung tissue images were very s
lar, so it was expected that the program would yield poo
results than the Brodatz texture or the skin and fat resu
This experiment suggests that an identifiable structure, s
as in testicular fat, helps the program differentiate the tis
types, but that speckle alone can still yield reasonable cla
fication rates. Basset et al.18 used SGLDM texture analysis o
ultrasound images to differentiate normal versus cancer
prostate cancer and obtained sensitivities ranging from 4
83% and specificities ranging from 55 to 71%. Our corre
classification results are comparable to those achieved in
study. Optical coherence tomography has a resolution
proximately 10 times higher than ultrasound, making OC
better suited for visualizing the texture and structure of tiss
volumes smaller than a millimeter.

The program was finally tested with all three of the norm
tissue classes collected from the mouse, including skin,
ticular fat, and normal lung. The purpose of this experime
was to see how the program’s performance decreased
more tissue types. To the unaided eye, the skin and nor
lung images look very similar, lacking any apparent stru
tures. Not surprisingly, the texture analysis code was able
differentiate the testicular fat~94.8%! much better than the
other two classes. The program still did quite well with no
mal lung ~65.2%!, but skin results~37.6%! were just slightly
better than chance~33.3%!.

The relatively shallow depth of the images was chosen
minimize light attenuation and multiple scattering effects, a
to maximize image contrast. The reduced scattering coe
cient of human skin was found to be approximately 10 cm21

at 1300 nm.27 The optical scattering properties of mouse t
sues at 1300 nm were not available, but assuming they
similar, and based on the work presented by G. Yao and L
Wang,28 our OCT signal should be dominated by singl
scattered photons. Future studies are needed to determin
accuracy and repeatability of this method with deeper ima
and with images from varied depths.

There are other texture analysis approaches that were
investigated in this study. These include gray-level run-len
matrices~GLRLM!, gray-level difference matrices~GLDM!,
power spectral methods~PSM!, filtering methods, and the
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Texture analysis of optical coherence tomography . . .
wavelet transform. The relative merit of three statistical ap-
proaches~GLRLM, SGLDM, and GLDM! and PSM was ex-
amined in Ref. 24. That study found that for all possible finite
groupings of the distance between sampling pixels, SGLDM
gives better results than either GLRLM or GLDM. Therefore,
in this feasibility study we chose to focus on the SGLDM
approach. Other groups have applied various feature extra
tion techniques, such as karyometry, to histology samples o
various types of abnormal tissue, but these methods lack th
ability to perform noninvasive discrimination techniques.29

In future work, our Bayesian classifier will be extended to
handle real-world applications, such as cancer detection. W
will attempt to take into account a priori probabilities of the
possible classes and the magnitude of risk involved for vari
ous misclassifications. For example, a Bayesian classifie
might be more likely to classify normal tissue as cancerous
instead of classifying cancerous tissue as normal because t
consequence of missing a cancerous lesion is severe. In th
current study, all of the classes had an equal probability o
occurrence, and there were no additional penalties for variou
misclassifications, so the Bayesian classifier was reduced to
minimum-error classifier.

To the authors’ knowledge, this is the first attempt to per-
form automated classification techniques on structureles
OCT images. This study has shown that texture analysis, com
bined with OCT imaging, has the potential to provide an au-
tomated means of diagnostic differentiation of tissue.
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