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Reconstruction of optical properties of low-scattering
tissue using derivative estimated through
perturbation Monte-Carlo method
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Y. Phaneendra Kumar Abstract. An iterative method for the reconstruction of optical prop-
R. M. Vasu erties of a low-scattering object, which uses a Monte-Carlo-based for-
Indian Institute of Science ward model, is developed. A quick way to construct and update the
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Jacobian needed to reconstruct a discretized object, based on the
perturbation Monte-Carlo (PMC) approach, is demonstrated. The pro-
jection data is handled either one view at a time, using a propagation-
backpropagation (PBP) strategy where the dimension of the inverse
problem and consequently the computation time are smaller, or, when
this approach failed, using all the views simultaneously with a full
dataset. The main observations and results are as follows. 1. Whereas
the PMC gives an accurate and quick method for constructing the
Jacobian the same, when adapted to update the computed projection
data, the data are not accurate enough for use in the iterative recon-
struction procedure leading to convergence. 2. The a priori assump-
tion of the location of inhomogeneities in the object reduces the di-
mension of the problem, leading to faster convergence in all the cases
considered, such as an object with multiple inhomogeneities and data
handled one view at a time (i.e., the PBP approach). 3. On the other
hand, without a priori knowledge of the location of inhomogeneities,
the problem was too ill posed for the PBP approach to converge to
meaningful reconstructions when both absorption and scattering co-
efficients are considered as unknowns. Finally, to bring out the effec-
tiveness of this method for reconstructing low-scattering objects, we
apply a diffusion equation-based algorithm on a dataset from one of
the low-scattering objects and show that it fails to reconstruct object

inhomogeneities. © 2004 Society of Photo-Optical Instrumentation Engineers.
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1 Introduction the boundary within distances that are comparable to transport

To tackle the principal problem of optical tomographic imag- Mé2an free path, and in regions where the reduced scattering
ing of human tissue, which has the dominance of scattering, it Coefficient(x) is less than or comparable to the absorption
is essential to have an accurate model for light propagation. coefficient(s,).°

Grunbaum’s model was one of the earliest, wherein photon ~ On the other hand, the Boltzmann transport equation holds
propagation is considered as a one- or two-step Markov good even in the previously described situations where the
process. This comes under one of the two main types of diffusion equation fails. The transport equati6fE) distin-
forward models, namely stochastic models, under which come guishes between the scattering and absorbing inhomogeneities
the other well-known models, such as Monte-Cadnd ran- inside the medium through use of the directional information
dom walk as well. The second main type is the analytic mod- ©f photons. Both the forward and inversion methods based on
els, based on partial differential equations, under which comesthe TE model of light propagation were tried by many
the Boltzmann transport modeind its approximation using ~ researcher$!®** Dorn* developed recently a TE-based
the diffusion equatioiDE).>® Diffusion approximation of the method for optical tomographic inversion, wherein the needed
light transport has been investigated thoroughfyand it is derivatives were calculated using the adjoint form of the TE.
found to be inaccurate to describe photon propagation nearOptical property estimation, based on solving the forward
problem and inversion using gradients calculated through ad-
*Current address: Dartmouth College, Thayer School of Engineering, 8000 joint differentiation, both based on TE, was attempted by

Cummings Hall, Hanover, New Hampshire 03755, USA. Hielscher et al®~*® Both the time-independent and time-
Address all correspondence to R. M. Vasu, Indian Institute of Science, Dept. of

Instrumentation, Bangalore, 560 012, Inda. Tel: 91 80 22932889; FAX: 91 80
23600135; E-mail: vasu@isu.iisc.ernet.in 1083-3668/2004/$15.00 © 2004 SPIE

1002 Journal of Biomedical Optics ¢ September/October 2004 < Vol. 9 No. 5



Reconstruction of optical properties . . .

Initial Estimate of p,, pg
(Background Values p,b, us")

A 4

—DI Forward MC simulation |

we

\4

| Find AW = W° — W |I Experimental
ind AW = W" — Measurements (W‘)1|

Solution
converged

A 4

No Stop
A 4
Run the MC simulation on an
Calculate or update the object with (u,%, p.) with large
Jacobian (J? using analytical no. of photons and store n & I
equation of PMC for each of the pixel-subregion.
Inner
A Iteration
Minimization of
1577 (Ap,, Ap)—IT AW |

!

Update (1, o)
uafi = ua'l +Ap,
W =+ A

1 For the PBP approach data from the next source is used after each update, otherwise use full data

Fig. 1 The flowchart used in the iterative reconstruction. The inner loop uses a gradient search algorithm to output update vectors for the optical
properties.

dependent cases were solved for isotropic and anisotropicexpensive to be a useful option. This problem has been re-
scattering background and inhomogeneities. The results fromcently addressédby using the perturbation Monte-Carlo
both the synthetic and experimental data are very promising, (PMC) method to extract Frechet derivative information,
which provide a means of tomographic imaging of objects which is the derivative of the forward model with respect to
where the DE fails to hold. One drawback that runs through the optical absorptiorfu,) and scattering coefficier(ius).
all these methods is the relatively large computational time for (1, 3 general case, the Frechet derivative is the derivative of
inversion, which needs repeated solution of the forward prob- ihe forward model used with respect to the optical properties
lem, on account of the need to take care of the new set of ¢ i medium. After discretizing the forward model and the
vanables. in the TE, .namely the angles of s.catterlng. .. properties in a finite dimensional space, the derivative can be
Inversion strategies based on stocr_\astm ”.‘Ode's of light represented by a Jacobian matrix, representing the rate of
transport have also been attempted with varying degrees of h f data with respect to the optical properties in the
success in the past. Methods based on Monte-CiG) change ol data P P prop .
simulation?* which also takes into account the directional pixels) In Ref. 9, an analytical expression for the perturbation
information of photons, have yielded reconstruction results in the dete(.:ted.photon We'ght consequent to changes in opti-
that should pave the way for developing robust algorithms for €@l Properties in a subregion, borrowed from the neutron-
reconstructing absorption and scattering coefficients. There-{ransport theory, was used to update both Jacobian and the
fore, these methods should have larger applicability like the computed forward data. After discretization, such a procedure
ones using the TE model. Here again we have the drawbackWill require only a single Monte-Carl@MC) simulation with
of a large computational time involved to take many millions the derivative as well as forward projection data extraction
of photons through the tissue to complete an MC simulation. handled by the PMC, which is rapidly done. In Ref. 9, this
An inversion method that makes use of repeated applicationwas used to solve a simple two region inverse problem of
of the forward model and updating of the derivative needed photon migration in a heterogeneous slab of thickness com-
for guiding the solution to convergence would become too parable to the transport mean free path, an object that falls
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or given in Sec. 4. We consider objects with both absorption and
scattering inhomogeneities, and two slightly different strate-
gies for reconstruction. 1. The propagation-backpropagation
(PBP method® is considered when data from a single source
(and many detectoysre reconstructed to arrive at an updated
object, which is used as the initial estimate for reconstructing
data from the next source. 2. Data from all the sources are
assembled and solved as one problem. Since the number of
equations in the first case is smaller, the reconstruction prob-
lem is too ill posed to converge to a solution when both scat-
tering and absorption inhomogeneities are considered simul-
taneously without priori knowledge on location. When they
are considered separately, the PBP method converges to a
solution faster than when all the data are considered together.
The convergence to a solution was obtained for both inhomo-
geneities simultaneously in the second case, when the data
from all the sources are considered in a single problére-

tails are given in Sec. #Further discussion of the results and
conclusions are given in Sec. 5.
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Fig. 2 The data gathering geometry: the source S and detectors D1
through D11 are rotated in unison for data gathering at different
views.

2 Iterative Reconstruction Algorithm

Given that the forward modef is acceptable as accurate, the
methods in optical tomographic reconstruction seek for a so-
lution set (u,,ms) that minimizes an objective functional
&(ma,ms). The objective functional is usually the mean-
squared norm of the difference between experimental\d&ta
andW¢, the computed data obtained by applying the forward
model F on the current estimatgu}, ,xy). In this work, data
(W) used in the reconstruction @f, and/or i is integrated
intensity. A Newton type of algorithm to solve this minimiza-
tion problem leads to an iterative st¥pgiven by

under the transport regime, where DE fails to hold.

In this work, using the basic MC simulation as a forward
model, we extend the PMC approach to construct a Jacobian
matrix for use in a perturbation-based method to reconstruct
transport-regime low-scattering objects with discretized ab-
sorption and scattering coefficient distributions. The object
was discretized to 6767 pixels(or grid point3, and for a
single view with one source and 11 detectors, we construct a
Jacobian matrix of dimension either (2489 or 118978, _
depending on whether we reconstruct one of the optical prop- [Apta, Ap]=[ITI+NTITAW, @
erties or both. Similarly, for 11 such views, to reconstruct leading to an update vectdn u,,Aus] for optical proper-
from the full dataset, we construct Jacobian matrices of di- ties. Herel is the Jacobian of the forward operatBrand A
mension 12K4489 or 121x8978. The details of arriving at is a regularization parameter. The matrixkJ"J+\I]
the Jacobian matrix are given in Sec. 3. For this reconstruc- can be inverted, for example through SVDpor Eq. (1)

tion problem, we did not tailor the perturbation equatié.

(1) of Ref. 9] to extract changes in the computed forward
projection data to update it without recourse to a full MC. The
forward projection data modified this way were found to be
inaccurate(compared with data obtained by running a full
MC simulatior), and application of such computed projection
data in the iterative reconstruction algorithm led to solutions
that were erroneous. Therefore, we chose to repeat the MC
with a relatively smaller number of photons in each of the
iterations(compared to the original MC done on the homoge-
neous phantom to extract the information needed to construct
and update the JacobjanVe show that the inversion algo-
rithm using the Jacobian matrix obtained from this MC-based
method is able to give superior reconstructions for low-
scattering objectgéconsidering both the value of the inhomo-
geneity, its location, and shapeompared to methods that use
the diffusion equation as the propagation model.

The work presented here is as follows. In Sec. 2, the basic
iterative reconstruction scheme is introduced that uses the
Jacobian to calculate the update vectors. The Jacobian matri
is calculated using the PMC in Sec. 3. Then, in Sec. 4, the

can be set up as an optimization probfmminimizing
I[ITI+NI]-[Aus,Aus]—ITAW||. We have used a conju-
gate gradients squard@GS method to solve this minimiza-
tion problem.

The steps involved in the iterative reconstruction proce-
dure are shown in the flow chart of Fi@L). It has two itera-
tions, one main partthe outer iterationand another subsid-
iary part (the inner iteration®® The i'th solution vector
(my,ms) given to the forward modedthe Monte-Carlo proce-
dure is repeated with 1 million photons to model the forward
propagation predicts the computed da(@V®). The experi-
mental data(W*®) when plugged in helps us findW(=W¢
—WF°), which is used to set up the update equafigqg. (1)].
The inner iteration outputs the update vecfdru,,Aus),
which is used to arrive at the new solutipr) ™= ul+ A,
andul"t=ul+ Aus. In the next section, we elaborate on the

. construction of the Jacobian matrix used in Eb.

Jacobian Calculation Through Perturbation
Monte-Carlo Method

details of the numerical experiments conducted are described.Light transport through tissue can be studied through stochas-
The test objects and the geometry of data collection are alsotically following the absorption and scattering of photons in
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Fig. 3 Reconstruction obtained from the PBP approach with Jacobian calculated through PMC with a priori information on the spatial location of
inhomogeneity. (a) Original object distribution: background w? and w” are 0.04 and 0.5 mm™, respectively, and the inclusion has u"
=0.14mm™" and p"=0.5mm™'. (b) Reconstruction of (a). The reconstructed inhomogeneity optical properties at its center are u'"
=0.143 mm~" and ©/"=0.483 mm~". (c) Horizontal cross sections at y=34 mm through the center of images (a) and (b). The solid line shows the
original, and the dashed line shows the reconstructed object profile.

turbid media. A large number of photons are launched into the overcome this limitation, a hybrid Monte-Carlo procedure
tissue and traced through the probabilistically defined absorp-was developed that makes use of only one full MC
tion and scattering until they either exit the tissue or are ab- simulation!* This was done for a homogeneous background
sorbed. A large number, usually 6 to 10 million, of photons with Mg and Mg as the absorption and scattering coefficients,
are required to extract statistically meaningful average quan- respectively, and the coordinates of the interaction points of
tities such as photon arrival times and arrival histograms, all the detected photons are stored. Thereafter, perturbation in
pathlength distribution, and a temporal point spread function 2 and u! are introduced in specified locations, and the new
(TPSR. The distance traveled between two successive scat-photon weight due to these perturbations is evaluated using
tering and/or absorbing evengsthe angle of scattering, one  the already stored coordinates and path lengths, and two scal-
azimuthal(#) and one polaté) are assigned values following ing laws connecting the modified photon weights to optical
three uniformly distributed random numbers, x,, andx; property changes in specified regidfiAnalytic expressions
(for examplg. The following equations are used: for changes introduced in detected photon weights owing to
optical property perturbation in a subregion in the object are

_ In(x) used to calculate both the rate of change of photon weights
- we 2 with respect to optical properties and the new photon
weights?2%2! Specifically, if u, and us are perturbed in cer-
Y=21Xs, (3) tain locations and becomeu,=u,+ du, and ,LTs_z s
+ Sus, then the detected photon weightchanges tav as
6=1"1(xa), 4 S
. . . — sl ) [ —
where u=u,+ ug is the total attenuation coefficient and WZW(T)(—) exd — (ui— mo)l ], (5)
f(4) is the cumulative probability scattering phase funcfion. Ksl K\ e
At any interaction event, the photon losgs,/w,) of its in- wheren is the number of collisions the photon undergoes in

cident weight and scatters with a new weight, which is the old the perturbed region,is the path length traversed therein, and
one time(us/u;). Total path length traversed by the photon uy=u,+ us. Equation(5) provides a way to estimate the
is estimated by summing all the individual path lengths. In changes in measured photon dengity weigh) owing to
this work, we have used the Henyey-Greenstien phasechanges in, andugin a specified location. In Ref. 9, E¢p)
functiont® when describing scattering. The time of traverse is was used to find the terms of the Jacobian matiw/ddu,
obtained by dividing the length by velocity of light in the and dw/ddus) for a two-layered medium, specified by two
tissue. sets of u, and us values and also the changes in photon
The basic MC simulation has the drawback of a very large weight introduced by changes jin, andus. In the case being
computation time to arrive at time histograms of photons. To considered here, the object is discretized into<67 pixels
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Fig. 4 Simultaneous reconstruction of u, and u, inclusions using the PBP approach with a priori information on the spatial location of inhomo-
geneities. (a) Original object showing w, inhomogeneity with background w?=0.04mm™", w’=0.30mm~", and inclusion has wu!"
=0.14mm™". (b) Original object showing s, distribution: background is same as (a) and the inclusion x/"=0.70 mm~". Reconstruction of (c) u,
inhomogeneity and (d) x, inhomogeneity. The reconstructed optical properties at the centers of the inhomogeneities are ©/"=0.132 mm~" and
1"=0.72mm~". (e) Horizontal cross sections at y=44 mm through the center of images (a) and (c). The solid line shows the original, and the
dashed line shows the reconstructed object profile. (f) Horizontal cross sections at y= 24 mm through the center of images (b) and (d). The solid line
shows the original, and the dashed line shows the reconstructed object profile.

with freedom foru, and u values in these pixels to move To arrive at a particular element of the Jacobian matrix, which
toward their values at convergence. If we have data from anis the rate of change of data at a detector with respect to the
M number of detectors witls source positions, the Jacobian optical properties at a certain pixel, the storednd| values
matrix connecting the change in measurements at the bound-corresponding to the subregion for the pixel are used to de-
ary to perturbations int, and us has dimensions eitheiS termine dw/ddu, and dw/ déu using Eq.(5).

XM)X{(67X67) X2} or MX(67X67)% 2}, depending on We have also tried to use the PMC to compute the per-
whether we are handling data from all sources together or oneturbed photon weighfW¢) owing to changes in optical prop-
source(using the PBP strategyat a time. For constructing  erties (brought about by updates during the iterationsing
such a Jacobian using E(p), there are X(67X67) regions the scaling laws of E(q5). The procedure used is given next.
of possibly differentu, and us values centered around each Subregions of pixels along typical detected photon trajectories
pixel. We introduce approximately circular subregions con- (selected at randomare identified, and the corresponding
taining 12 pixels surrounding each pixel in the original object and| values are used in Eg5) to find the modified photon
domain(for the boundary pixels, we do this by extending the weight at the detector caused by changeg jrand u values
boundary, with the object assigned homogeneous back- in all the pixels along the trajectories. Since the subregions of
ground values,ug and /ﬂs’ We take 9.6 million photons  adjacent pixels overlap, and also because the area covered by
through the object and determine the average number of col-the subregion is more than the area covered by a pixel, the
lisions n and the length traversddn each of the subregions change in photon weight calculat& is scaled down by a
centered around each of the pixels for the detected photonsfactor equal to the ratio between the area of a pixel to the
The set ofn and| values determined are frozen and used to subregion. The modifiedV is used to compute changes in
update the Jacobian matrix during the course of the iterations.photon weights at other detectors by scaling MWigropor-
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Fig. 5 Reconstruction without a priori knowledge of inhomogeneity location using the PBP approach. (a) Original object distribution: background
P and u” are 0.04 and 0.5 mm™, respectively, and the inclusion is an absorbing inhomogeneity with /"=0.14 mm~". (b) Reconstruction of (a).

The reconstructed inhomogeneity optical property at its center is u/"=0.148 mm~". (c) Horizontal cross sections at y= 34 mm through the center
of images (a) and (b). The solid line shows the original, and the dashed line the reconstructed object profile.
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Fig. 6 Comparison of the PBP approach with the procedure using full data. In both the approaches, location information was not assumed. (a)
Original object distribution: background u? and u? are 0.04 and 0.5 mm™, respectively, and the inclusion was an absorption inhomogeneity of
#"=0.14mm™". (b) Reconstruction of (a) from full data considered together. The reconstructed inhomogeneity optical properties at its center,
#"=0.153 mm~". (c) Reconstruction of (a) with the PBP approach. The reconstructed inhomogeneity optical properties at its center, u'"
=0.156 mm™'. (d) Horizontal cross sections at y=24 mm through the center of images (a), (b), and (c). The solid line shows the original, the dotted
line shows the reconstructed object profile as shown in (b), and the dashed line shows the cross section across (c).
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Fig. 7 Same as the result of Fig. 6. Comparison of the PBP approach with the procedure using full data with no a priori assumption on location of
inhomogeneity. The result is for an object with only w, inhomogeneity. (a) Original object with x"=0.70 mm~" and background u? and u” are

0.04 and 0.30 mm™, respectively. (b) Reconstruction of (a) from full data considered together. The reconstructed inhomogeneity optical property
at its center is u/"=0.74 mm~'. (c) Reconstruction of (a) with the PBP approach. The reconstructed inhomogeneity optical property at its center is
u"=0.72mm~". (d) Reconstruction of (a) with the PBP approach with re-estimation of n and I after each view. The reconstructed inhomogeneity
optical property at its center is u'"=0.73 mm~". (e) Horizontal cross sections at y=34 mm through the center of images (a), (b), (c), and (d). The
solid line shows the original, the dotted line shows the reconstructed object profile as shown in (b), the dashed line is for that shown in (c), and the
dash-dot line is for that shown in (d).

tional to the previous photon weights at these detectors. Thejects where the DE fails. The object was divided into<&7
updated weights at the detectors had an overall error, whenpixels of uniform size and the optical properties were consid-
compared to the modified weights obtained by running a full ered constant in each of these pixétgid elements The

MC simulation with a smaller number of photons, equal to the anisotropy factog is kept at 0.90 and the refractive index of
detected photons. This error is unacceptably large, for the the tissue at 1.33, for all the cases discussed here. The number
iterative reconstruction algorithm did not converge, in this of detectors we have considered for each of the sources are
case, to optical property distributions close enough to the 11, and the detector diameter is 4 mm. The source-detector
original distributions. assembly is shown in Fig2). For collecting data for different
views, this source-detector assembly is rotated in unison by
. . . 32.73 deg, such that with 11 source positions, the entire object
4 Numerical Simulations is covered all around. The data for reconstruct{®®) is

We have considered a 2-D cross section of a Cylindrical obtained by running MC simulations through the inhomoge_
tissue-mimicking phantom of diameter 66 mm. The center of neous object distribution we want to reconstruct. One million
the cylinder is chosen to be &4,34. The background ab-  photons are launched from the source, and the arrival times at

sorption and scattering coefficients are representedspgnd the parallel detectors are found from the distances traversed
w2 (in mm™Y), respectively. The circular inclusions of diam- by the photons. The temporal point spread functiFRSF3
eter 12 mm with optical properties denotedy anduy' (in are obtained in this way, which are integrated to give us the

mm %) took different values for the different objects consid- measurement, the integrated intensity. This procedure is re-
ered. The background as well as the inclusions has low- peated for all the source locations. To the overall set of mea-
scattering coefficients, which make them transport-regime ob- surements, a 2% Gaussian noise was added, which gave us the
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Fig. 8 Reconstruction of an object with both u, and u, inhomogeneities with no a priori knowledge on location of the inhomogeneities using the
data from all views simultaneously. Original object background u2=0.04 mm~" and u?=0.30 mm~" with inclusion: (a) x/"=0.14 mm~" and (b)
1"=0.60 mm~". (c) Reconstruction of (a). The reconstructed inhomogeneity optical properties at its center are "=0.138 mm~". (d) Reconstruc-
tion of (b). The reconstructed inhomogeneity optical property at its center is x"=0.58 mm~"'. (e) Horizontal cross sections at y=34 mm through
the center of images (a) and (c). The solid line shows the original, and the dashed line the reconstructed object profile. (f) Horizontal cross sections
at y=34 mm through the center of images (b) and (d). The solid line shows the original, and the dashed line the reconstructed object profile.

experimental projection datasé®®). In all the numerical cyclically. With u,- and ug inhomogeneities simultaneously
simulations, we have considered two types of objects: 1. ob- present, without assumption of locations, the PBP-based prob-
jects with only one inhomogeneity either jr, or ug, and 2. lem was too ill posed to result in a solution. For dealing with
objects with two inhomogeneities, either two absorption such an object, we combined the data from all the views,
changes at two spatial locations or an absorption and a scatwhich are solved as one problem. For such objects, the itera-
tering inhomogeneity at different locations. For all these tion with full data converged is discussed later in this section.
cases, we used the homogeneous background optical properThe Jacobian matrix needed in the iterations, for the PBP case
ties (,u‘; and Mg) as the initial estimate to start the iteration.  or for the full-data case, is computed using the method in Sec.
We first run an initial Monte Carlo with 9.6 million pho- 3. The convergence criterion used was that the norm of the
tons with extended boundary and homogeneous backgrounddifference between computed data and the experimental data
values of,ug andp}s’ and storen and|, the average number of ~ should be below a small preset value. Since we used Monte-
collisions and length of traverse of photons, in the 12-pixel Carlo simulation, a stochastic forward model, the recon-
subregions surrounding each of the pixels. This dataset isstructed images required postprocessing. We used a local me-
needed for calculation of the Jacobian, as given in Sése@  dian filter of dimension %5 pixels to smooth the images.
Fig. 1). For forward projection data, 1 million photons are To show the effectiveness of this algorithm, we have con-
taken across the object. For objects that have either only onesidered six different objects, which are discussed separately in
type of inhomogeneity(either u, or ug) without a priori the following sections. All the simulations are carried out on a
information on location, or that have both inhomogeneities at Pentium 1V 2.40 GHz processor.
a priori known locations, the PBP strategy gives good recon-
structions. Here data from one view is considered sufficient to 4-1  Case 1
solve the iteration that resulted in an updated object for use We assume that priori information about the spatial location
with data from the next view. All the views are considered of the inhomogeneity is available. The unknowns are the
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Fig. 9 Reconstruction of an object with two u, inhomogeneities done with the PBP approach. The location of the inhomogeneities is not assumed.
(a) Original object distribution: background u? and u” are 0.14 and 0.5 mm™, respectively, and the inclusions have absorption coefficients of 0.45
and 0.30 mm™". (b) Reconstruction of (a). The reconstructed inclusions have values ©"=0.41 mm~" and x"=0.29 mm~" at the center. (c)
Horizontal cross sections at y= 34 through the center of images (a) and (b). The solid line shows the original, and the dashed line the reconstructed
object profile.

value of u, andu at these spatial locations. What is assumed 17 min. Figures &) and 4f) are horizontal cross sections at
a priori is that the inhomogeneity is somewhere inside a re- y=44 mmandy=24 mmthrough the reconstruction shown
gion of 30X 30 pixels centered &62,34. Here, we have used in Figs. 4c) and 4d), respectively.

the PBP approach for reconstruction with 9@ unknowns,

and the Jacobian for this problem has a dimension of 11 4.3 Case 3

X 1800. The original object shown in Fig(e88 has au, inho-
mogeneity. The reconstructed, distribution is shown in Fig.
3(b), and horizontal cross sectionsyat 34 mmof Figs. 3a)

and 3b) are shown in Fig. @). The solution converged in
eleven iterations when we finished a complete dataset from all
the sources. Each iteration took 17 min. The original object
Wa-inhomogeneity value is 0.14 mm The scattering coeffi-
cient in the homogeneous region wag and the background
value was 0.50 mft. Reconstructingus is also kept as an
unknown in the known locations of inhomogeneity, and the
reconstructequy’ and sy at the center are 0.143 and 0.483
mm™?, respectively.

This is a case where we do not assume armpyiori informa-
tion about the spatial location of the inhomogeneity. We as-
sume that the inhomogeneity is jo, only. Using the PBP
strategy with 667 unknownu, values, the Jacobian di-
mension is 1X4489. For forward calculationg,? andu.” are
kept at 0.04 and 0.50 mm, respectively. The originak,
distribution is shown in Fig. @), and the reconstructed,
distribution is in Fig. %b). The solution converged in 15 it-
erations, each iteration taking 20 min. The original objegt
inhomogeneity value is 0.14 mmand the reconstructed ob-
ject u, inhomogeneity value at its center is 0.148 mm
Cross sectional plots =34 mmacross the original and the
reconstruction are shown in Fig(c.

4.2 Case 2 4.4 Case 4

Here we have both.,- and us inhomogeneities located at  Here we consider another case where the inhomogeneity lo-
differenta priori known locationgas before, the locations are  cation is not known. We have considered both the PBP ap-

specified to be within 3830 pixel regions Here u is as- proach using data from one view at a time, and then recon-
sumed to be 0.04 mit and #J=0.30mnT . We have used  struction using the full dataset. The? and u2 for this case
the PBP approach for reconstruction. There are>@D@n- are 0.04 and 0.50 mm, respectively. Thet, inhomogeneity
knowns, and the Jacobian size isXIlIB00. The original s as shown in Fig. @). The reconstructions are as shown in

wa(=0.14mmt) anduy'(=0.70 mnT ') images are shown  Fig. 6(b) (using the full datasgtand Fig. c) (using the PBP

in Figs. 48 and 4b), respectively. The reconstructions are approach The values ofu, at the center of reconstructed
shown in Figs. 4) and 4d), with the central value ofuy'- inhomogeneity in the prior two casé®.153 and 0.156 mitt)
and u reconstructions 0.132 and 0.72 mrespectively. are higher compared to the original object inhomogeneity
The solution converged in 11 iterations, each iteration taking (0.14 mm%), but are not quite different from one another.
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However, the time taken by the approach using one view at a
time (3.67 h for 11 iterationsis much smaller-compared to
that for the full dataset15.6 h for four iterations Cross
sectional plots aty=24 mm across the reconstructions in
Figs. 8b) and Gc) are shown in Fig. @l).

Figure 7 shows the results for a similar effort done on data
from an object with onlywg inhomogeneity with location un-
known. Figures ) and 7c) give the results from the full
dataset and the PBP-based algorithm, respectively. /I§1e
and 2 are kept at 0.04 and 0.30 mr respectively. An
original 5 inhomogeneity of 0.70 mit [Fig. 7(a)] was re-
constructed as 0.74 and 0.72 mhat the center of the inho-
mogeneity for the two cas¢Bigs. 1b) and 7c)]. We repeated Fig. 10 Reconstruction of the object of Fig. 5(a) using a DE-based
the PBP-based algorithm after re-estimating the setarid| reconstruction algorithm, which failed to locate the inhomogeneity.
values at the end of each iteration by quick MC simulations
using 0.57 million photons to update the Jacobian. The com-
putational times involved are for Figs(bf, 7(c), and 7d): 21
h (converged in five iterations6.97 h(converged in 19 itera-
tions), and 7.5 h(converged in 15 iterationsrespectively.
The value ofug inhomogeneity in Fig. @) at its center is
0.73 mmL. Cross sectional plots gt=34 mmacross the re-
constructed images in Figs(bf, 7(c), and 7d) are shown in

optical absorption and scattering tomograpliyOAST)
algorithm?? The reconstruction obtained is shown in Fig. 10,
which is unable to distinguish the inhomogeneity.

Fig. 7(e). 5 Discussion and Conclusions
We confirm by numerical simulation the usefulness of a
4.5 Case 5 Monte-Carlo-based method to reconstruct low-scattering ob-

. . . jects, where the diffusion equation fails to hold. The method
Here we consider the example of an object with bathand is tested with objects with up to two inhomogeneities, either

1s iInhomogeneities, where the location of these inhomogene- in w, and/or and the reconstructions obtained are reason-
ities are left as unknowns. The number of unknowns is ' 2 Hs,

2X4489, and the PBP-based algorithm is too ill posed to con- at:e.Wl?titZI?:/eier\:\?snd:ﬁ({oeIt:ti;?ri]r?c\)liw ?ct)lillggeT%r;:);heev?:yval
verge and is abandoned. The full-data problem, however, did at g time method Eas tr?e advanta epof redut':ed computation
converge in 13 iterations, each iteration taking 6.7 h. The 9 P

background valueg.2 and 12 in this case are 0.04 and 0.30 time, but cannot handle, because of ill posedness, wo inho-
iy . L mogeneities(x, and ug) in unknown locations, for in this
mm -, respectively. The results are shown in Fi¢c)8recon- . ;

k . - ~ case, all theu, and us values at all pixels should be consid-
structing u, inhomogeneity at the center as 0.138 nim d K P ion in_th ous|
(original value 0.14 mn), and Fig. &) reconstructing ered as unknowns. Reconstruction in the previously men-
. L ’ : - S S tioned case is obtained by considering all the views simulta-
inhomogeneity at the center as 0.58 mi(original value neously.

0.60 mm%). Figure 8e) gives the cross sectional plots yat ' : :
— 34 mmthrough images in Figs.(8 and 8¢), and Fig. &) When handling the PBP-based reconstruction, the number

) th — 34 mm the | in Figs(t of iterations for convergence is dependent on which view we
glr\mlc?s& d)e same = across the images in Fgs started the iterations from. For example, if we started with a

view for which the sum of integrated intensities in all the
detectors is a minimum, the convergence is the fastest. The
4.6 Case 6 variation in the sum of the integrated intensities as the source-
Here the aim is to demonstrate the capability of these recon-detector combination is moved around the object because of
struction algorithms to handle multiple inhomogeneities of the the inhomogeneity location in the object. If, for a view, either
same type(either u, or ug). The test object has twe, the source or some of the diametrically opposite detectors is
inhomogeneities of 0.45 mm in the left and 0.30 mm' in close to the inhomogeneitior one of the inhomogeneitigs
the right, with,ug1 and,ug as 0.14 and 0.70 mm, respectively the sum of the integrated intensities becomes a minimum.
[Fig. 9@)]. The location is left as unknown. The number of Starting off with such a view will be favorable to the PBP
unknowns to be reconstructed are 4489 values. We used  algorithm for convergence. For example, for the object of case
the PBP-based algorithm, which converged in 23 iterations, 3 in Sec. 4.3, the algorithm converged in 15 iterations when
each iteration taking 20 min. The reconstructed object is we started with this favorable view. On the other hand, when
shown in Fig. $b) with the value of inhomogeneities at the we started from a view at right angles to the earlier mentioned
center being 0.41 and 0.29 mm respectively. Cross sec- one, the convergence was obtained in 19 iterations. An up-
tional plots aty=34 mmacross Figs. @ and 9b) are shown dated optical property vector, which resulted from solving the
in Fig. 9c). data from a particular view, always reduced the error norm
Finally, to show that a diffusion equation-based algorithm |AW]| if we started with the correct view. If we did ngtAW|
does not converge to meaningful results for these objects thatdid not always show a decrease, and at times the decrease was
fall under the transport regime, we have reconstructed the datavery sluggish. For an object with a centrally, symmetrically
for simulation used in case [Beconstruction using the MC-  placed inhomogeneity, the errtkW| always decreased irre-
based method is shown in Fig(th] using the time-received  spective of which view we started our iterations with.
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In the present work, we use only one of the two advantages
offered by the PMC approach in the iterative reconstruction &

procedure. That is constructing and then updating the Jaco-
bian right through the iterations. It should be possible to use
the other advantage, namely getting the updated integrated
intensity without running an MC procedure each time. But our

experience so far has been that the perturbation approacht®:

modified to this reconstruction problem results in photon-
weight updates that are not accurate enofaghevidenced by

comparison with updates obtained through direct MC simula-
tion) for use in the iterative reconstruction procedure. In this
work, we use the MC simulation for updating the photon
weights with a reduced number of photons. This is similar to
the hybrid Monte-Carlo procedure without the need for stor-

ing the detected photon paths. Meaningful average quantities,13,

such as expected photon weights in our case, can still be
ascertained with reasonable accuracy, because we are dealin
with objects with highly forward scattering anisotropy and
low-scattering coefficients.
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