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Reconstruction of optical properties of low-scattering
tissue using derivative estimated through
perturbation Monte-Carlo method

Y. Phaneendra Kumar*

R. M. Vasu
Indian Institute of Science
Department of Instrumentation
Bangalore, 560 012, India
E-mail: vasu@isu.iisc.ernet.in

Abstract. An iterative method for the reconstruction of optical prop-
erties of a low-scattering object, which uses a Monte-Carlo-based for-
ward model, is developed. A quick way to construct and update the
Jacobian needed to reconstruct a discretized object, based on the
perturbation Monte-Carlo (PMC) approach, is demonstrated. The pro-
jection data is handled either one view at a time, using a propagation-
backpropagation (PBP) strategy where the dimension of the inverse
problem and consequently the computation time are smaller, or, when
this approach failed, using all the views simultaneously with a full
dataset. The main observations and results are as follows. 1. Whereas
the PMC gives an accurate and quick method for constructing the
Jacobian the same, when adapted to update the computed projection
data, the data are not accurate enough for use in the iterative recon-
struction procedure leading to convergence. 2. The a priori assump-
tion of the location of inhomogeneities in the object reduces the di-
mension of the problem, leading to faster convergence in all the cases
considered, such as an object with multiple inhomogeneities and data
handled one view at a time (i.e., the PBP approach). 3. On the other
hand, without a priori knowledge of the location of inhomogeneities,
the problem was too ill posed for the PBP approach to converge to
meaningful reconstructions when both absorption and scattering co-
efficients are considered as unknowns. Finally, to bring out the effec-
tiveness of this method for reconstructing low-scattering objects, we
apply a diffusion equation-based algorithm on a dataset from one of
the low-scattering objects and show that it fails to reconstruct object
inhomogeneities. © 2004 Society of Photo-Optical Instrumentation Engineers.
[DOI: 10.1117/1.1778733]
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1 Introduction
To tackle the principal problem of optical tomographic imag-
ing of human tissue, which has the dominance of scattering,
is essential to have an accurate model for light propagation
Grunbaum’s model was one of the earliest, wherein photon
propagation is considered as a one- or two-step Marko
process.1 This comes under one of the two main types of
forward models, namely stochastic models, under which com
the other well-known models, such as Monte-Carlo2 and ran-
dom walk3 as well. The second main type is the analytic mod-
els, based on partial differential equations, under which come
the Boltzmann transport model4 and its approximation using
the diffusion equation~DE!.5,6 Diffusion approximation of the
light transport has been investigated thoroughly,6–8 and it is
found to be inaccurate to describe photon propagation nea
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the boundary within distances that are comparable to trans
mean free path, and in regions where the reduced scatte
coefficient(ms8) is less than or comparable to the absorpti
coefficient(ma).9

On the other hand, the Boltzmann transport equation ho
good even in the previously described situations where
diffusion equation fails. The transport equation~TE! distin-
guishes between the scattering and absorbing inhomogene
inside the medium through use of the directional informati
of photons. Both the forward and inversion methods based
the TE model of light propagation were tried by man
researchers.4,10–13 Dorn4 developed recently a TE-base
method for optical tomographic inversion, wherein the need
derivatives were calculated using the adjoint form of the T
Optical property estimation, based on solving the forwa
problem and inversion using gradients calculated through
joint differentiation, both based on TE, was attempted
Hielscher et al.10–13 Both the time-independent and time
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Reconstruction of optical properties . . .
Fig. 1 The flowchart used in the iterative reconstruction. The inner loop uses a gradient search algorithm to output update vectors for the optical
properties.
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dependent cases were solved for isotropic and anisotrop
scattering background and inhomogeneities. The results from
both the synthetic and experimental data are very promising
which provide a means of tomographic imaging of objects
where the DE fails to hold. One drawback that runs through
all these methods is the relatively large computational time fo
inversion, which needs repeated solution of the forward prob
lem, on account of the need to take care of the new set o
variables in the TE, namely the angles of scattering.

Inversion strategies based on stochastic models of ligh
transport have also been attempted with varying degrees o
success in the past. Methods based on Monte-Carlo~MC!
simulation,9,14 which also takes into account the directional
information of photons, have yielded reconstruction results
that should pave the way for developing robust algorithms fo
reconstructing absorption and scattering coefficients. There
fore, these methods should have larger applicability like the
ones using the TE model. Here again we have the drawbac
of a large computational time involved to take many millions
of photons through the tissue to complete an MC simulation
An inversion method that makes use of repeated applicatio
of the forward model and updating of the derivative needed
for guiding the solution to convergence would become too
Journal of B
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expensive to be a useful option. This problem has been
cently addressed9 by using the perturbation Monte-Carl
~PMC! method to extract Frechet derivative informatio
which is the derivative of the forward model with respect
the optical absorption(ma) and scattering coefficient(ms).
~In a general case, the Frechet derivative is the derivative
the forward model used with respect to the optical proper
of the medium. After discretizing the forward model and t
properties in a finite dimensional space, the derivative can
represented by a Jacobian matrix, representing the rat
change of data with respect to the optical properties in
pixels.! In Ref. 9, an analytical expression for the perturbati
in the detected photon weight consequent to changes in o
cal properties in a subregion, borrowed from the neutr
transport theory, was used to update both Jacobian and
computed forward data. After discretization, such a proced
will require only a single Monte-Carlo~MC! simulation with
the derivative as well as forward projection data extract
handled by the PMC, which is rapidly done. In Ref. 9, th
was used to solve a simple two region inverse problem
photon migration in a heterogeneous slab of thickness c
parable to the transport mean free path, an object that
iomedical Optics d September/October 2004 d Vol. 9 No. 5 1003
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Kumar and Vasu
Fig. 2 The data gathering geometry: the source S and detectors D1
through D11 are rotated in unison for data gathering at different
views.
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under the transport regime, where DE fails to hold.
In this work, using the basic MC simulation as a forward

model, we extend the PMC approach to construct a Jacobia
matrix for use in a perturbation-based method to reconstruc
transport-regime low-scattering objects with discretized ab
sorption and scattering coefficient distributions. The objec
was discretized to 67367 pixels ~or grid points!, and for a
single view with one source and 11 detectors, we construct
Jacobian matrix of dimension either 1134489 or 1138978,
depending on whether we reconstruct one of the optical prop
erties or both. Similarly, for 11 such views, to reconstruct
from the full dataset, we construct Jacobian matrices of di
mension 12134489 or 12138978. The details of arriving at
the Jacobian matrix are given in Sec. 3. For this reconstruc
tion problem, we did not tailor the perturbation equation@Eq.
~1! of Ref. 9# to extract changes in the computed forward
projection data to update it without recourse to a full MC. The
forward projection data modified this way were found to be
inaccurate~compared with data obtained by running a full
MC simulation!, and application of such computed projection
data in the iterative reconstruction algorithm led to solutions
that were erroneous. Therefore, we chose to repeat the M
with a relatively smaller number of photons in each of the
iterations~compared to the original MC done on the homoge-
neous phantom to extract the information needed to constru
and update the Jacobian!. We show that the inversion algo-
rithm using the Jacobian matrix obtained from this MC-based
method is able to give superior reconstructions for low-
scattering objects~considering both the value of the inhomo-
geneity, its location, and shape! compared to methods that use
the diffusion equation as the propagation model.

The work presented here is as follows. In Sec. 2, the basi
iterative reconstruction scheme is introduced that uses th
Jacobian to calculate the update vectors. The Jacobian matr
is calculated using the PMC in Sec. 3. Then, in Sec. 4, the
details of the numerical experiments conducted are describe
The test objects and the geometry of data collection are als
1004 Journal of Biomedical Optics d September/October 2004 d Vol. 9
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given in Sec. 4. We consider objects with both absorption a
scattering inhomogeneities, and two slightly different stra
gies for reconstruction. 1. The propagation-backpropaga
~PBP! method15 is considered when data from a single sour
~and many detectors! are reconstructed to arrive at an updat
object, which is used as the initial estimate for reconstruct
data from the next source. 2. Data from all the sources
assembled and solved as one problem. Since the numb
equations in the first case is smaller, the reconstruction p
lem is too ill posed to converge to a solution when both sc
tering and absorption inhomogeneities are considered sim
taneously withouta priori knowledge on location. When the
are considered separately, the PBP method converges
solution faster than when all the data are considered toge
The convergence to a solution was obtained for both inhom
geneities simultaneously in the second case, when the
from all the sources are considered in a single problem.~De-
tails are given in Sec. 4.! Further discussion of the results an
conclusions are given in Sec. 5.

2 Iterative Reconstruction Algorithm
Given that the forward modelF is acceptable as accurate, th
methods in optical tomographic reconstruction seek for a
lution set (ma ,ms) that minimizes an objective functiona
f(ma ,ms). The objective functional is usually the mean
squared norm of the difference between experimental dataWe

andWc, the computed data obtained by applying the forwa
modelF on the current estimate(ma

i ,ms
i ). In this work, data

~W! used in the reconstruction ofma and/orms is integrated
intensity. A Newton type of algorithm to solve this minimiza
tion problem leads to an iterative step,16 given by

@Dma ,Dms#5@JTJ1lI #21JTDW, ~1!

leading to an update vector@Dma ,Dms# for optical proper-
ties. HereJ is the Jacobian of the forward operatorF andl
is a regularization parameter. The matrix@JTJ1lI #
can be inverted, for example through SVD,17 or Eq. ~1!
can be set up as an optimization problem18 minimizing
i@JTJ1lI #•@Dma ,Dms#2JTDWi . We have used a conju
gate gradients squared~CGS! method to solve this minimiza-
tion problem.

The steps involved in the iterative reconstruction proc
dure are shown in the flow chart of Fig.~1!. It has two itera-
tions, one main part~the outer iteration! and another subsid
iary part ~the inner iteration!.16 The i’th solution vector
(ma

i ,ms
i ) given to the forward model~the Monte-Carlo proce-

dure is repeated with 1 million photons to model the forwa
propagation! predicts the computed data(Wc). The experi-
mental data(We) when plugged in helps us findDW(5We

2Wc), which is used to set up the update equation@Eq. ~1!#.
The inner iteration outputs the update vector(Dma ,Dms),
which is used to arrive at the new solutionma

i 115ma
i 1Dma

andms
i 115ms

i 1Dms . In the next section, we elaborate on th
construction of the Jacobian matrix used in Eq.~1!.

3 Jacobian Calculation Through Perturbation
Monte-Carlo Method
Light transport through tissue can be studied through stoch
tically following the absorption and scattering of photons
No. 5



Reconstruction of optical properties . . .
Fig. 3 Reconstruction obtained from the PBP approach with Jacobian calculated through PMC with a priori information on the spatial location of
inhomogeneity. (a) Original object distribution: background ma

b and ms
b are 0.04 and 0.5 mm−1, respectively, and the inclusion has ma

in

50.14 mm21 and ms
in50.5 mm21. (b) Reconstruction of (a). The reconstructed inhomogeneity optical properties at its center are ma

in

50.143 mm21 and ms
in50.483 mm21. (c) Horizontal cross sections at y534 mm through the center of images (a) and (b). The solid line shows the

original, and the dashed line shows the reconstructed object profile.
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turbid media. A large number of photons are launched into the
tissue and traced through the probabilistically defined absorp
tion and scattering until they either exit the tissue or are ab
sorbed. A large number, usually 6 to 10 million, of photons
are required to extract statistically meaningful average quan
tities such as photon arrival times and arrival histograms
pathlength distribution, and a temporal point spread function
~TPSF!. The distance traveled between two successive sca
tering and/or absorbing eventss, the angle of scattering, one
azimuthal~c! and one polar~u! are assigned values following
three uniformly distributed random numbersx1 , x2 , and x3
~for example!. The following equations are used:

s52
ln~x1!

m t
, ~2!

c52px2 , ~3!

u5 f 21~x3!, ~4!

where m t5ma1ms is the total attenuation coefficient and
f (c) is the cumulative probability scattering phase function.19

At any interaction event, the photon loses(ma /m t) of its in-
cident weight and scatters with a new weight, which is the old
one times(ms /m t). Total path length traversed by the photon
is estimated by summing all the individual path lengths. In
this work, we have used the Henyey-Greenstien phas
function19 when describing scattering. The time of traverse is
obtained by dividing the length by velocity of light in the
tissue.

The basic MC simulation has the drawback of a very large
computation time to arrive at time histograms of photons. To
Journal of B
-

-

overcome this limitation, a hybrid Monte-Carlo procedu
was developed that makes use of only one full M
simulation.14 This was done for a homogeneous backgrou
with ma

b andms
b as the absorption and scattering coefficien

respectively, and the coordinates of the interaction points
all the detected photons are stored. Thereafter, perturbatio
ma

b andms
b are introduced in specified locations, and the n

photon weight due to these perturbations is evaluated u
the already stored coordinates and path lengths, and two
ing laws connecting the modified photon weights to optic
property changes in specified regions.14 Analytic expressions
for changes introduced in detected photon weights owing
optical property perturbation in a subregion in the object
used to calculate both the rate of change of photon weig
with respect to optical properties and the new phot
weights.9,20,21Specifically, ifma andms are perturbed in cer-
tain locations and becomem̄a5ma1dma and m̄s5ms

1dms , then the detected photon weightw changes tow̄ as

w̄5wS m̄s /m̄ t

ms /m t
D S m̄ t

m t
D n

exp@2~m̄ t2m t!l #, ~5!

wheren is the number of collisions the photon undergoes
the perturbed region,l is the path length traversed therein, a
m t5ma1ms . Equation ~5! provides a way to estimate th
changes in measured photon density~or weight! owing to
changes inma andms in a specified location. In Ref. 9, Eq.~5!
was used to find the terms of the Jacobian matrix(]w̄/]dma

and ]w̄/]dms) for a two-layered medium, specified by tw
sets of ma and ms values and also the changes in phot
weight introduced by changes inma andms . In the case being
considered here, the object is discretized into 67367 pixels
iomedical Optics d September/October 2004 d Vol. 9 No. 5 1005



Kumar and Vasu
Fig. 4 Simultaneous reconstruction of ma and ms inclusions using the PBP approach with a priori information on the spatial location of inhomo-
geneities. (a) Original object showing ma inhomogeneity with background ma

b50.04 mm21, ms
b50.30 mm21, and inclusion has ma

in

50.14 mm21. (b) Original object showing ms distribution: background is same as (a) and the inclusion ms
in50.70 mm21. Reconstruction of (c) ma

inhomogeneity and (d) ms inhomogeneity. The reconstructed optical properties at the centers of the inhomogeneities are ma
in50.132 mm21 and

ms
in50.72 mm21. (e) Horizontal cross sections at y544 mm through the center of images (a) and (c). The solid line shows the original, and the

dashed line shows the reconstructed object profile. (f) Horizontal cross sections at y524 mm through the center of images (b) and (d). The solid line
shows the original, and the dashed line shows the reconstructed object profile.
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with freedom forma and ms values in these pixels to move
toward their values at convergence. If we have data from a
M number of detectors withS source positions, the Jacobian
matrix connecting the change in measurements at the boun
ary to perturbations inma and ms has dimensions either(S
3M )3$(67367)32% or M3(67367)32%, depending on
whether we are handling data from all sources together or on
source~using the PBP strategy! at a time. For constructing
such a Jacobian using Eq.~5!, there are 23~67367! regions
of possibly differentma andms values centered around each
pixel. We introduce approximately circular subregions con-
taining 12 pixels surrounding each pixel in the original object
domain~for the boundary pixels, we do this by extending the
boundary!, with the object assigned homogeneous back-
ground valuesma

b and ms
b . We take 9.6 million photons

through the object and determine the average number of co
lisions n and the length traversedl in each of the subregions
centered around each of the pixels for the detected photon
The set ofn and l values determined are frozen and used to
update the Jacobian matrix during the course of the iterations
1006 Journal of Biomedical Optics d September/October 2004 d Vol. 9
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To arrive at a particular element of the Jacobian matrix, wh
is the rate of change of data at a detector with respect to
optical properties at a certain pixel, the storedn and l values
corresponding to the subregion for the pixel are used to
termine]w̄/]dma and]w̄/]dms using Eq.~5!.

We have also tried to use the PMC to compute the p
turbed photon weight(Wc) owing to changes in optical prop
erties ~brought about by updates during the iterations! using
the scaling laws of Eq.~5!. The procedure used is given nex
Subregions of pixels along typical detected photon trajecto
~selected at random! are identified, and the correspondingn
and l values are used in Eq.~5! to find the modified photon
weight at the detector caused by changes inma andms values
in all the pixels along the trajectories. Since the subregion
adjacent pixels overlap, and also because the area covere
the subregion is more than the area covered by a pixel,
change in photon weight calculatedW is scaled down by a
factor equal to the ratio between the area of a pixel to
subregion. The modifiedW is used to compute changes
photon weights at other detectors by scaling thisW propor-
No. 5



Reconstruction of optical properties . . .
Fig. 5 Reconstruction without a priori knowledge of inhomogeneity location using the PBP approach. (a) Original object distribution: background
ma

b and ms
b are 0.04 and 0.5 mm−1, respectively, and the inclusion is an absorbing inhomogeneity with ma

in50.14 mm21. (b) Reconstruction of (a).
The reconstructed inhomogeneity optical property at its center is ma

in50.148 mm21. (c) Horizontal cross sections at y534 mm through the center
of images (a) and (b). The solid line shows the original, and the dashed line the reconstructed object profile.

Fig. 6 Comparison of the PBP approach with the procedure using full data. In both the approaches, location information was not assumed. (a)
Original object distribution: background ma

b and ms
b are 0.04 and 0.5 mm−1, respectively, and the inclusion was an absorption inhomogeneity of

ma
in50.14 mm21. (b) Reconstruction of (a) from full data considered together. The reconstructed inhomogeneity optical properties at its center,

ma
in50.153 mm21. (c) Reconstruction of (a) with the PBP approach. The reconstructed inhomogeneity optical properties at its center, ma

in

50.156 mm21. (d) Horizontal cross sections at y524 mm through the center of images (a), (b), and (c). The solid line shows the original, the dotted
line shows the reconstructed object profile as shown in (b), and the dashed line shows the cross section across (c).
Journal of Biomedical Optics d September/October 2004 d Vol. 9 No. 5 1007



Kumar and Vasu
Fig. 7 Same as the result of Fig. 6. Comparison of the PBP approach with the procedure using full data with no a priori assumption on location of
inhomogeneity. The result is for an object with only ms inhomogeneity. (a) Original object with ms

in50.70 mm21 and background ma
b and ms

b are
0.04 and 0.30 mm−1, respectively. (b) Reconstruction of (a) from full data considered together. The reconstructed inhomogeneity optical property
at its center is ms

in50.74 mm21. (c) Reconstruction of (a) with the PBP approach. The reconstructed inhomogeneity optical property at its center is
ms

in50.72 mm21. (d) Reconstruction of (a) with the PBP approach with re-estimation of n and l after each view. The reconstructed inhomogeneity
optical property at its center is ms

in50.73 mm21. (e) Horizontal cross sections at y534 mm through the center of images (a), (b), (c), and (d). The
solid line shows the original, the dotted line shows the reconstructed object profile as shown in (b), the dashed line is for that shown in (c), and the
dash-dot line is for that shown in (d).
e
n
l

e

l
f

-
-

id-

f
mber

are
ctor

by
ject

e-
on
s at

rsed

the
re-

ea-
s the
tional to the previous photon weights at these detectors. Th
updated weights at the detectors had an overall error, whe
compared to the modified weights obtained by running a ful
MC simulation with a smaller number of photons, equal to the
detected photons. This error is unacceptably large, for th
iterative reconstruction algorithm did not converge, in this
case, to optical property distributions close enough to the
original distributions.

4 Numerical Simulations
We have considered a 2-D cross section of a cylindrica
tissue-mimicking phantom of diameter 66 mm. The center o
the cylinder is chosen to be at~34,34!. The background ab-
sorption and scattering coefficients are represented byma

b and
ms

b ~in mm21!, respectively. The circular inclusions of diam-
eter 12 mm with optical properties denoted byma

in andms
in ~in

mm21! took different values for the different objects consid-
ered. The background as well as the inclusions has low
scattering coefficients, which make them transport-regime ob
1008 Journal of Biomedical Optics d September/October 2004 d Vol. 9
jects where the DE fails. The object was divided into 67367
pixels of uniform size and the optical properties were cons
ered constant in each of these pixels~grid elements!. The
anisotropy factorg is kept at 0.90 and the refractive index o
the tissue at 1.33, for all the cases discussed here. The nu
of detectors we have considered for each of the sources
11, and the detector diameter is 4 mm. The source-dete
assembly is shown in Fig.~2!. For collecting data for different
views, this source-detector assembly is rotated in unison
32.73 deg, such that with 11 source positions, the entire ob
is covered all around. The data for reconstruction(We) is
obtained by running MC simulations through the inhomog
neous object distribution we want to reconstruct. One milli
photons are launched from the source, and the arrival time
the parallel detectors are found from the distances trave
by the photons. The temporal point spread functions~TPSFs!
are obtained in this way, which are integrated to give us
measurement, the integrated intensity. This procedure is
peated for all the source locations. To the overall set of m
surements, a 2% Gaussian noise was added, which gave u
No. 5



Reconstruction of optical properties . . .
Fig. 8 Reconstruction of an object with both ma and ms inhomogeneities with no a priori knowledge on location of the inhomogeneities using the
data from all views simultaneously. Original object background ma

b50.04 mm21 and ms
b50.30 mm21 with inclusion: (a) ma

in50.14 mm21 and (b)
ms

in50.60 mm21. (c) Reconstruction of (a). The reconstructed inhomogeneity optical properties at its center are ma
in50.138 mm21. (d) Reconstruc-

tion of (b). The reconstructed inhomogeneity optical property at its center is ms
in50.58 mm21. (e) Horizontal cross sections at y534 mm through

the center of images (a) and (c). The solid line shows the original, and the dashed line the reconstructed object profile. (f) Horizontal cross sections
at y534 mm through the center of images (b) and (d). The solid line shows the original, and the dashed line the reconstructed object profile.
-

e

s

t
-

e

y
rob-
ith

s,
era-
on.
ase
ec.
the
data
nte-
n-
me-

n-
ly in

a

n
the
experimental projection dataset(We). In all the numerical
simulations, we have considered two types of objects: 1. ob
jects with only one inhomogeneity either inma or ms , and 2.
objects with two inhomogeneities, either two absorption
changes at two spatial locations or an absorption and a sca
tering inhomogeneity at different locations. For all these
cases, we used the homogeneous background optical prop
ties (ma

b andms
b) as the initial estimate to start the iteration.

We first run an initial Monte Carlo with 9.6 million pho-
tons with extended boundary and homogeneous backgroun
values ofma

b andms
b and storen andl, the average number of

collisions and length of traverse of photons, in the 12-pixel
subregions surrounding each of the pixels. This dataset i
needed for calculation of the Jacobian, as given in Sec. 3~see
Fig. 1!. For forward projection data, 1 million photons are
taken across the object. For objects that have either only on
type of inhomogeneity~either ma or ms) without a priori
information on location, or that have both inhomogeneities a
a priori known locations, the PBP strategy gives good recon
structions. Here data from one view is considered sufficient to
solve the iteration that resulted in an updated object for us
with data from the next view. All the views are considered
Journal of B
t-

r-

d

e

cyclically. With ma- and ms inhomogeneities simultaneousl
present, without assumption of locations, the PBP-based p
lem was too ill posed to result in a solution. For dealing w
such an object, we combined the data from all the view
which are solved as one problem. For such objects, the it
tion with full data converged is discussed later in this secti
The Jacobian matrix needed in the iterations, for the PBP c
or for the full-data case, is computed using the method in S
3. The convergence criterion used was that the norm of
difference between computed data and the experimental
should be below a small preset value. Since we used Mo
Carlo simulation, a stochastic forward model, the reco
structed images required postprocessing. We used a local
dian filter of dimension 535 pixels to smooth the images.

To show the effectiveness of this algorithm, we have co
sidered six different objects, which are discussed separate
the following sections. All the simulations are carried out on
Pentium IV 2.40 GHz processor.

4.1 Case 1
We assume thata priori information about the spatial locatio
of the inhomogeneity is available. The unknowns are
iomedical Optics d September/October 2004 d Vol. 9 No. 5 1009



Kumar and Vasu
Fig. 9 Reconstruction of an object with two ma inhomogeneities done with the PBP approach. The location of the inhomogeneities is not assumed.
(a) Original object distribution: background ma

b and ms
b are 0.14 and 0.5 mm−1, respectively, and the inclusions have absorption coefficients of 0.45

and 0.30 mm−1. (b) Reconstruction of (a). The reconstructed inclusions have values ma
in50.41 mm21 and ma

in50.29 mm21 at the center. (c)
Horizontal cross sections at y534 through the center of images (a) and (b). The solid line shows the original, and the dashed line the reconstructed
object profile.
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value ofma andms at these spatial locations. What is assumed
a priori is that the inhomogeneity is somewhere inside a re
gion of 30330 pixels centered at~52,34!. Here, we have used
the PBP approach for reconstruction with 90032 unknowns,
and the Jacobian for this problem has a dimension of 11
31800. The original object shown in Fig. 3~a! has ama inho-
mogeneity. The reconstructedma distribution is shown in Fig.
3~b!, and horizontal cross sections aty534 mmof Figs. 3~a!
and 3~b! are shown in Fig. 3~c!. The solution converged in
eleven iterations when we finished a complete dataset from a
the sources. Each iteration took 17 min. The original objec
ma-inhomogeneity value is 0.14 mm21. The scattering coeffi-
cient in the homogeneous region wasms

b , and the background
value was 0.50 mm21. Reconstructingms is also kept as an
unknown in the known locations of inhomogeneity, and the
reconstructedma

in and ms
in at the center are 0.143 and 0.483

mm21, respectively.

4.2 Case 2
Here we have bothma- and ms inhomogeneities located at
differenta priori known locations~as before, the locations are
specified to be within 30330 pixel regions!. Herema

b is as-
sumed to be 0.04 mm21 andms

b50.30 mm21. We have used
the PBP approach for reconstruction. There are 90032 un-
knowns, and the Jacobian size is 1131800. The original
ma

in(50.14 mm21) andms
in(50.70 mm21) images are shown

in Figs. 4~a! and 4~b!, respectively. The reconstructions are
shown in Figs. 4~c! and 4~d!, with the central value ofma

in-
and ms

in reconstructions 0.132 and 0.72 mm21, respectively.
The solution converged in 11 iterations, each iteration taking
1010 Journal of Biomedical Optics d September/October 2004 d Vol. 9
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17 min. Figures 4~e! and 4~f! are horizontal cross sections a
y544 mm and y524 mm through the reconstruction show
in Figs. 4~c! and 4~d!, respectively.

4.3 Case 3
This is a case where we do not assume anya priori informa-
tion about the spatial location of the inhomogeneity. We
sume that the inhomogeneity is inma only. Using the PBP
strategy with 67367 unknownma values, the Jacobian di
mension is 1134489. For forward calculations,ma

b andms
b are

kept at 0.04 and 0.50 mm21, respectively. The originalma

distribution is shown in Fig. 5~a!, and the reconstructedma
distribution is in Fig. 5~b!. The solution converged in 15 it
erations, each iteration taking 20 min. The original objectma
inhomogeneity value is 0.14 mm21 and the reconstructed ob
ject ma inhomogeneity value at its center is 0.148 mm21.
Cross sectional plots aty534 mmacross the original and the
reconstruction are shown in Fig. 5~c!.

4.4 Case 4
Here we consider another case where the inhomogeneity
cation is not known. We have considered both the PBP
proach using data from one view at a time, and then rec
struction using the full dataset. Thema

b and ms
b for this case

are 0.04 and 0.50 mm21, respectively. Thema inhomogeneity
is as shown in Fig. 6~a!. The reconstructions are as shown
Fig. 6~b! ~using the full dataset! and Fig. 6~c! ~using the PBP
approach!. The values ofma at the center of reconstructe
inhomogeneity in the prior two cases~0.153 and 0.156 mm21!
are higher compared to the original object inhomogene
~0.14 mm21!, but are not quite different from one anothe
No. 5
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Reconstruction of optical properties . . .
However, the time taken by the approach using one view at
time ~3.67 h for 11 iterations! is much smaller-compared to
that for the full dataset~15.6 h for four iterations!. Cross
sectional plots aty524 mm across the reconstructions in
Figs. 6~b! and 6~c! are shown in Fig. 6~d!.

Figure 7 shows the results for a similar effort done on data
from an object with onlyms inhomogeneity with location un-
known. Figures 7~b! and 7~c! give the results from the full
dataset and the PBP-based algorithm, respectively. Thema

b

and ms
b are kept at 0.04 and 0.30 mm21, respectively. An

original ms inhomogeneity of 0.70 mm21 @Fig. 7~a!# was re-
constructed as 0.74 and 0.72 mm21 at the center of the inho-
mogeneity for the two cases@Figs. 7~b! and 7~c!#. We repeated
the PBP-based algorithm after re-estimating the set ofn and l
values at the end of each iteration by quick MC simulations
using 0.57 million photons to update the Jacobian. The com
putational times involved are for Figs. 7~b!, 7~c!, and 7~d!: 21
h ~converged in five iterations!, 6.97 h~converged in 19 itera-
tions!, and 7.5 h~converged in 15 iterations!, respectively.
The value ofms inhomogeneity in Fig. 7~d! at its center is
0.73 mm21. Cross sectional plots aty534 mmacross the re-
constructed images in Figs. 7~b!, 7~c!, and 7~d! are shown in
Fig. 7~e!.

4.5 Case 5
Here we consider the example of an object with bothma and
ms inhomogeneities, where the location of these inhomogene
ities are left as unknowns. The number of unknowns is
234489, and the PBP-based algorithm is too ill posed to con
verge and is abandoned. The full-data problem, however, di
converge in 13 iterations, each iteration taking 6.7 h. The
background valuesma

b andms
b in this case are 0.04 and 0.30

mm21, respectively. The results are shown in Fig. 8~c!, recon-
structing ma inhomogeneity at the center as 0.138 mm21

~original value 0.14 mm21!, and Fig. 8~d! reconstructingms
inhomogeneity at the center as 0.58 mm21 ~original value
0.60 mm21!. Figure 8~e! gives the cross sectional plots aty
534 mmthrough images in Figs. 8~a! and 8~c!, and Fig. 8~f!
gives the same aty534 mmacross the images in Figs. 8~b!
and 8~d!.

4.6 Case 6
Here the aim is to demonstrate the capability of these recon
struction algorithms to handle multiple inhomogeneities of the
same type~either ma or ms). The test object has twoma
inhomogeneities of 0.45 mm21 in the left and 0.30 mm21 in
the right, withma

b andms
b as 0.14 and 0.70 mm21, respectively

@Fig. 9~a!#. The location is left as unknown. The number of
unknowns to be reconstructed are 4489ma values. We used
the PBP-based algorithm, which converged in 23 iterations
each iteration taking 20 min. The reconstructed object is
shown in Fig. 9~b! with the value of inhomogeneities at the
center being 0.41 and 0.29 mm21, respectively. Cross sec-
tional plots aty534 mmacross Figs. 9~a! and 9~b! are shown
in Fig. 9~c!.

Finally, to show that a diffusion equation-based algorithm
does not converge to meaningful results for these objects th
fall under the transport regime, we have reconstructed the da
for simulation used in case 3@reconstruction using the MC-
based method is shown in Fig. 5~b!# using the time-received
Journal of B
-

-

t
a

optical absorption and scattering tomography~TOAST!
algorithm.22 The reconstruction obtained is shown in Fig. 1
which is unable to distinguish the inhomogeneity.

5 Discussion and Conclusions
We confirm by numerical simulation the usefulness of
Monte-Carlo-based method to reconstruct low-scattering
jects, where the diffusion equation fails to hold. The meth
is tested with objects with up to two inhomogeneities, eith
in ma and/orms , and the reconstructions obtained are reas
able. Data are handled either one view at a time or in the u
way with all views put together in one problem. The one vie
at a time method has the advantage of reduced computa
time, but cannot handle, because of ill posedness, two in
mogeneities(ma and ms) in unknown locations, for in this
case, all thema andms values at all pixels should be consid
ered as unknowns. Reconstruction in the previously m
tioned case is obtained by considering all the views simu
neously.

When handling the PBP-based reconstruction, the num
of iterations for convergence is dependent on which view
started the iterations from. For example, if we started with
view for which the sum of integrated intensities in all th
detectors is a minimum, the convergence is the fastest.
variation in the sum of the integrated intensities as the sou
detector combination is moved around the object becaus
the inhomogeneity location in the object. If, for a view, eith
the source or some of the diametrically opposite detector
close to the inhomogeneity~or one of the inhomogeneities!,
the sum of the integrated intensities becomes a minim
Starting off with such a view will be favorable to the PB
algorithm for convergence. For example, for the object of c
3 in Sec. 4.3, the algorithm converged in 15 iterations wh
we started with this favorable view. On the other hand, wh
we started from a view at right angles to the earlier mention
one, the convergence was obtained in 19 iterations. An
dated optical property vector, which resulted from solving t
data from a particular view, always reduced the error no
uDWu if we started with the correct view. If we did not,uDWu
did not always show a decrease, and at times the decrease
very sluggish. For an object with a centrally, symmetrica
placed inhomogeneity, the erroruDWu always decreased irre
spective of which view we started our iterations with.

Fig. 10 Reconstruction of the object of Fig. 5(a) using a DE-based
reconstruction algorithm, which failed to locate the inhomogeneity.
iomedical Optics d September/October 2004 d Vol. 9 No. 5 1011
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Kumar and Vasu
In the present work, we use only one of the two advantage
offered by the PMC approach in the iterative reconstruction
procedure. That is constructing and then updating the Jaco
bian right through the iterations. It should be possible to use
the other advantage, namely getting the updated integrate
intensity without running an MC procedure each time. But our
experience so far has been that the perturbation approac
modified to this reconstruction problem results in photon-
weight updates that are not accurate enough~as evidenced by
comparison with updates obtained through direct MC simula
tion! for use in the iterative reconstruction procedure. In this
work, we use the MC simulation for updating the photon
weights with a reduced number of photons. This is similar to
the hybrid Monte-Carlo procedure without the need for stor-
ing the detected photon paths. Meaningful average quantitie
such as expected photon weights in our case, can still b
ascertained with reasonable accuracy, because we are deal
with objects with highly forward scattering anisotropy and
low-scattering coefficients.
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