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From quantitative microscopy to automated image
understanding
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widely used. We describe a systematic approach for interpreting pro-
tein subcellular distributions using various sets of subcellular location
features (SLF), in combination with supervised classification and un-
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patterns in digital microscope images, and the features can be applied
for other purposes such as objectively choosing a representative im-
age from a collection and performing statistical comparisons of image
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1 Introduction subcellular localization pattern to a known protein, there ex-
ists a high chance that they form a functional complex pro-
tein. The dynamic properties of protein subcellular distribu-
tion under different environmental conditions can also provide
important information about protein function. If a protein

Biomedical research has been revolutionized by the new types
of information generated from various “omics” projects, be-

ginning with the genome sequencing projects. The genome
drafts completed so far have enabled us, for the first time, to . .
discover and compare all possible genes in a number of or-changes its subcellular location from cytoplasm to cell
ganisms. To uncover proteome differences in a given Organ_nucleus after treating the cell with a certain drug, it suggests

ism, expression arrays and protein chips have been used tc%hatt.the prgteln “?;)?ht plalzl an 'Tportam tr.olefm flgr:ja}l tr?lns-
study the transcription and expression characteristics of all U(':I'Ir?n an p(t)ss! dy wor das a l_rarl_scrlp :‘og_ ac %r_ ||rec ty
possible proteins in different tissues, at different developmen- € current widespread application of blomedical oplics

tal stages, and under various disease tygasigh-throughput was made possible by th.e invention of guantitative optical
pipelines in structural proteomics have automated protein instruments. When the microscope was invented more than

L . . e 300 years ago, the analog signal reflected from the specimen
structure determination by integrating target purification, crys- . )
o L . X . had to be recorded with a hand-drawing. The development of
tallization, data acquisition, and final assignmémbcation

proteomics, one of the latest subfields of proteomics, has theameras permitted creation of still microscope images, but

S - . “visual inspection was still the only way to interpret results
goal of providing an exact description of the subcellular dis- : . . .
tribution for each protein in a given cell tyfe’ All of these generated from a microscope at that time. After the invention

- . . - of the digital camera and other optical detectors, the analog
methods provide valuable information for determining how a _. . ; o
rotein functions and how its functioning is requlated signal from a microscope could be recorded at high density in
P Knowledge of a protein’s subcellular%istribgtion ca{n con digital media. With the application of digital signal processing
. 9 P . . S technigues, automated analysis of microscope images, which
tribute to a complete understanding of its function in a num-

. S could only be imagined before, became possible. For ex-
ber of dlﬁergnt ways. The nor'mal sub.cellular Q|strlbutlon of a ample, pioneering work on numerical description of micro-
protein provides a scope for its function. For instance, a pro-

tein localized in the mitochondrial b be inferred scope image patterns was done for chromosome
ein localized In the mitochondrial meémbran€ can be INTerrea. 4, 1tionsd2 The goal of the work reviewed here has been
to function in energy metabolism. If a protein has a close

to develop automated methods applicable to all major subcel-
lular patterns.
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2 Quantitative Fluorescence Microscopy and ging, imaging, and automated image interpretation to enable a
Location Proteomics proteome-wide study of subcellular locatidn.

The necessity of having an automated analysis system
stems from need for an objective approach that generates re-
peatable analysis results, a high-throughput method that can
analyze tens of thousands of images per day, and lastly, for a
more accurate approach than visual examination. In the fol-
lowing sections, we first describe numerical features that can
be used to capture the subcellular patterns in digital fluores-
cence microscope images. Summaries of feature reduction
and classification methods are discussed r@ktese sections
S - . . o &an be skipped by readers primarily interested in learning the
fappllcatlon. Obvu_)usly,_ the S|gn§I-tq-n0|se ratio is the _most types of automated analyses that can be carried out on micro-
important factor in using quantitative fluorescence micros- scope imagesWe then evaluate the image features for the

copy. The noise in fluorescence microscopy mostly comes yaqys of supervised classification and unsupervised clustering
from out-of-focus fluorescence and quantization errors in the by using various image datasets collected in our group and

cameral.o Although the second source can be reduced dra- from our colleagues. Lastly, we describe a few other uses of
matically by using expensive charge-coupled devicE€D) image features in practical biomedical research.
cameras, out-of-focus fluorescence is handled differently by
different fluorescence microscope systéfs. Inexpensive
wide-field microscope systems collect fluorescence emitted
from the entire 3-D specimen in the field of view, requiring 3.1 Image Features
computational removal of out-of-focus fluoresceridecon-  Given a combination of a protein expression level, a tagging
volution) after image collection. Deconvolution can be com- approach, and a microscope system that yields a sufficiently
putationally costly and requires an accurate model of the high signal-to-noise ratio, we can obtain a precise digital rep-
point-spread function for a particular microscope. Confocal resentation of the subcellular location pattern of that protein.
laser scanning microscopes collect fluorescence from indi- The next step, automated interpretation of that pattern, re-
vidual small regions of the specimen, illuminated by a laser quires extracting informative features from the images that
scanning beam. Out-of-focus fluorescence is removed by em-represent subcellular location patterns better than the values
ploying a pinhole on the light collection path. Compared to of the individual pixels. We have therefore designed and
wide-field microscopes, confocal laser scanning microscopesimplemented a number of feature extraction methods for
have a much lower acquisition rate, but no deconvolution is single cell images®2° To be useful for analyzing cells
normally needed. A variation of the confocal laser scanning grown on a slide, cover slip, or dish, we require that these
microscope, the spinning disk confocal microscope, circum- features be invariant to translation and rotation of the cell in
vents the speed limit by using a rotating pinhole array, which the plane of the microscope stage, and robust across different
enables fast focusing and image collection. For thin speci- microscopy methods and cell types.
mens, wide-field microscopes perform best; while for thick One approach to developing features for this purpose is to
specimens, it is recommended to use a confocal laser scanningomputationally capture the aspects of image patterns that hu-
microscopé? Fully automated microscopes also have tremen- man experts describe. We have used a number of features of
dous promise for acquiring the large numbers of images re- this type, especially those derived from morphological image
quired for systematic analysis of subcellular pattéfns. processing. An alternative, however, is to use less intuitive
To collect fluorescence microscope images of a target pro- features that seek a more detailed mathematical representation
tein, two methods are typically used to add a fluorescence tagof the frequencies present in an image and its gray-level dis-
to a protein of interest. Immunofluorescence employs antibod- tribution. These features capture information that a human
ies that specifically bind to a target protein. It is not suitable observer may neglect, and may allow an automated classifier
for live cell imaging, because cells need to be fixed and per- to perform better than a human one. We have therefore used
meabilized before antibodies can enter. Fluorescence dyes caifeatures of this type, such as texture measures, as well.
be bound directly to antibodies, or to secondary antibodies  The feature extraction methods we have used are described
directed against the primary antibodies. The other method is briefly for 2-D and/or 3-D single cell images.
gene tagging, of which there are many variant
approache&*~"A particularly useful approach is CD-tagging, 3-1.1 2-D features
which introduces a DNA sequence encoding a fluorescent pro-Zernike moment featurea filter bank of Zernike polynomials
tein such as green fluorescent protéB+P into an intron of can be used to describe the gray-level pixel distribution in
a target gene. Gene tagging can also be applied randomlyeach fluorescence microscope imaban image to be ana-
throughout a genome without targeting a specific protein, with lyzed is first transformed to the unit circle by subtracting the
the assumption that the probabilities of inserting the DNA tag coordinates of the center of fluorescence from those of each
into all genes are roughly equal. For a given cell type, random pixel, and dividing all coordinates by a user-specified cell
gene tagging coupled with high-throughput fluorescence mi- radiusr. A Zernike moment is calculated as the correlation
croscopy can generate images depicting the subcellular loca-between the transformed imadéx,y) (x?+y?<1), and a
tion patterns of all or most expressed proteins. We coined the specific Zernike polynomial. The magnitude of the Zernike
termlocation proteomicsto describe the combination of tag- moment is used as a feature describing the similarity of the

Compared to other approaches for determining protein subcel-
lular location such as electron microscopy and subcellular
fractionation, fluorescence microscopy permits rapid collec-
tion of images with excellent resolution between cell compart-
ments. These properties, along with high specificity methods
for targeting fluorescent probes to specific proteins, make
fluorescence microscopy the optimal choice for studying the
subcellular distribution of a proteome. The choice of different
fluorescence microscopy methods, however, depends on th

3 Automated Interpretation of Images
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gray-level pixel distribution of an image to that Zernike poly- the original image, respectively. The last one contains low-
nomial. We calculate 49 Zernike moment features by using frequency information and can be regarded as a smoothed
the Zernike polynomials up to order $223Since an image is  version of the original image. Further decomposition on the
first normalized to the unit circle and only the magnitude of smoothed image will give us finer information on lower fre-
Zernike moments is used, this group of features satisfies thequency bands. We used Daubechies four-wavelet transform to
requirements of rotation and translation invariance. decompose an image up to level 10, and the average energies
Haralick texture featuresHaralick texture features provide  of the three high-frequency images at each level were used as
statistical summaries of the spatial frequency information in features. In total, 30 wavelet features can be obtained that
an imagé’’ First, a gray-level co-occurrence matrix is gener- represent the frequency information in the original image best
ated by calculating the probability that a pixel of each gray caniured by Daubechies four-wavelet transform.
level is found adjacent to a pixel of all other gray levels. Gabor wavelet feature§he Gabor function has been used
Given a total nump;r ongra)I/:Ievzergg'm an |mﬁge, the ?0' as an important filtering technique in computer vision, since it
occurrence matrix 18y X Ng ~or -1 Images, there are 1our \yas found to be able to model receptive field profiles of cor-
possible co-occurrence matnxes.that measure _the p'xel.adja'tical simple cell$’ The information captured by the nonor-
cency statistics in horlzon_tal, vertical, gnd two dlagona_l direc- thogonal Gabor wavelet is mostly the derivative information
tions, respectively. To satisfy the requirements of rotation and of an image such as edg@A Gabor filter bank can be gen-
transation nvariance, t_he_four _mgtrlx_es are averaged anderated using Gabor filters. with different orientations and
used to calculate 13 intrinsic statistics, including angular sec- les. Th d standard deviati f the pixel int
o_nd moment, contrast, correlation, sum qf squares, inversezica ?:.a cc?n?oelsg dairr;aS:r.']argrofteenszlggsag feaetupr)flexse \/I\?hiecT]-
difference moment, sum average, sum variance, sum entropy, ty 9 o D O ES
represent the frequency information in the original image best

entropy, difference variance, difference entropy, information
measure of correlation 1, and information measure of corre- @ptured by the Gabor wavelet transform. We have used 60

lation 223 One restriction of Haralick features is that they are Gabor wavelet features from a filter bank composed of six
not invariant to the total gray level used as well as the pixel different orientations and five different scales.
size in an image. To address this, a series of experiments were Morphological featuresimage morphology describes vari-
conducted to find optimal gray levels and coarsest pixel size 0us characteristics of objects, edges, and the entire image,
for use in HeLa cells under all microscopy conditidh&he such as the average size of each object, the edge intensity
most discriminative Haralick features were obtained when im- homogeneity, and the convex hull of the entire image. Unlike
ages were resampled to 1.15 microns/pixel and quantized us-some natural scene images, fluorescence microscope images
ing 256 gray levels. Resampling to these settings for HeLa can be well characterized by their mathematical
cells can be used to calculate Haralick features on a commonmorphology*®*° Morphological information of an image rep-
frame of reference for varying microscope objectives and resents group statistics, intrinsically invariant to cell rotation
cameras? Whether this resolution is optimal for other cell and translation. The morphological features we have used in-
types remains to be determined. clude 14 features derived from finding objedtonnected
Wavelet featureswWavelet transform features can also be components after automated thresholdiriiye features from
used to capture frequency information in an image. To extract edges, and three features from the convex hull of the entire
features from the wavelet transform of an image, a multireso- image!®'° Since multichannel imaging has become routine in
lution scheme is often uséd.An image can be convolved  fiyorescence microscopy, additional channels can be added to
with wavelets of different scales, and statistics of the pixel jprove the recognition of the subcellular location pattern of
intensity in the resulting imagesuch as mean, standard de- 5 {arget protein. A commonly used reference in our experi-
viation, and average energgre often used as features. Here  \qniq s the distribution of a DNA-binding probe that labels

we gefscrlb(tehtwg sk()ets of recle?ttly apfplled Wzvfrl]et fDeatléreShqe'the cell nucleug? The DNA channel image introduces an ex-
rived from the abor wavelet transiorm and the Daubechies ;. pivot in images for studying protein subcellular location.

four-wavelet transform. Since wavelet transforms are not in- "\ 6o sed six additional object features to de-

variant to cell translation and rotation, each 'Mage IS plyoted scribe the relative location of the protein channel to the DNA
at its center of fluorescence and rotated to align its primary channel

axis with they axis in the image plane before feature extrac- .
y ge p Subcellular location feature nomenclatufd/e have cre-

tion. Alignment of the secondary axis can be achieved by ted ; i lature f ferring to the i f
conducting an extra 180-deg rotation if necessary to make thedted @ systematic nomenclature for retérring 1o the image fea-
tures used to describe subcellular location patterns, which we

third central moment ok positive. ) 619
Daubechies four-wavelet feature Daubechies wavelet €M subcellular location featuréSLF) sets.™™ Each set

family is one of the most frequently used wavelet transforms found to be useful for classification or comparison is assigned
in image analysi€® Each wavelet transform consists of a @n SLF set number. Each feature in that set has the prefix SLF,
scale function and a wavelet function, which can be regarded followed by the set index and the index of the feature in that
as a low-pass and high-pass filter, respectit@l@iven the set. For instance, SLF1.7, which is the variance of object dis-
Daubechies four-wavelet transform with its scale and wavelet tances from the center of fluorescence, is the seventh feature
functions, an image is sequentially convolved column- and in feature set SLF1. Table 1 gives a summary of all current
row-wise by these two filters, respectively. The four con- 2-D features grouped by various feature sets. The features
volved images carry different frequency information extracted derived from a parallel DNA channel for a target protein are
from the original image. Three of them contain high- included in the feature sets SLF2, SLF4, SLF5, and
frequency information in the, y, and diagonal directions of =~ SLF131819
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Table 1 Feature sets defined for 2-D fluorescence microscope images.

Set SLF number Feature description
SLF1 SLF1.1 The number of fluorescence objects in the image
SLF1.2 The Euler number of the image (no. of holes minus no. of objects)
SLF1.3 The average number of above-threshold pixels per object
SLF1.4 The variance of the number of above-threshold pixels per object
SLF1.5 The ratio of the size of the largest object to the smallest
SLF1.6 The average object distance to the cellular center of fluorescence (COF)
SLF1.7 The variance of object distances from the COF
SLF1.8 The ratio of the largest to the smallest object to COF distance
SLF1.9 The fraction of the nonzero pixels that are along an edge
SLF1.10 Measure of edge gradient intensity homogeneity
SLF1.11 Measure of edge direction homogeneity 1
SLF1.12 Measure of edge direction homogeneity 2
SLF1.13 Measure of edge direction difference
SLF1.14 The fraction of the convex hull area occupied by protein fluorescence
SLF1.15 The roundness of the convex hll
SLF1.16 The eccentricity of the convex hull
SLF2 SLF2.1t0 2.16 SLF1.1 to SLF1.16
SLF2.17 The average object distance from the COF of the DNA image
SLF2.18 The variance of object distances from the DNA COF
SLF2.19 The ratio of the largest to the smallest object to DNA COF distance
SLF2.20 The distance between the protein COF and the DNA COF
SLF2.21 The ratio of the area occupied by protein to that occupied by DNA
SLF2.22 The fraction of the protein fluorescence that co-localizes with DNA
SLF3 SLF3.1t0 3.16 SLF1.1 to SLF1.16
SLF3.17 10 3.65 Zernike moment features
SLF3.66 to 3.78 Haralick texture features
SLF4 SLF4.1 to 4.22 SLF2.1 to 2.22
SLF4.23 to 4.84 SLF3.17 t0 3.78
SLF5 SLF5.1 to SLF5.37 37 features selected from SLF4 using stepwise discriminant analysis
SLF6 SLF6.1 to 6.65 SLF3.1 to SLF3.65
SLF7 SLF7.1t0 7.9 SLF3.1 to 3.9
SIF7.10to 7.13 Minor corrections to SLF3.10 to SLF3.13
SLF7.14 to 7.65 SLF3.14 to SLF3.65
SLF7.66 to 7.78 Haralick texture features calculated on fixed size and intensity scales
SLF7.79 The fraction of cellular fluorescence not included in objects
SLF7.80 The average length of the morphological skeleton of objects
SLF7.81 The average ratio of object skeleton length to the area of the convex hull of the skeleton
SLF7.82 The average fraction of object pixels contained within its skeleton
SLF7.83 The average fraction of object fluorescence contained within its skeleton
SLF7.84 The average ratio of the number of branch points in skeleton to length of skeleton
SLF8 SLF8.1 to 8.32 32 features selected from SLF7 using stepwise discriminant analysis
SLF12 SLF12.1t0 12.8 SLF8.1 to 8.8, the smallest feature set able to achieve 80% accuracy
SLF13 SLF13.1 to 13.31 31 features selected from SLF7 and SLF2.17-2.22 using stepwise discriminant analysis
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3.1.2 3-D features
3-D morphological feature#As an initial approach to describ-

From quantitative microscopy . . .

ture recombination methods generate a linearly or nonlinearly
transformed feature set from the original features, and feature

ing the 3-D distribution of proteins in cells, we used a direct Selection methods generate a feature subset from the original

extension of some of the 2-D features to 3DConverting

features by explicit selection. Four methods of each type are

2-D features that depend on area to 3-D counterparts usingdescribed next.

volume is straightforward. However, because of the asymme-
try between the slide plane and the microscope axis, directly
converting features measuring 2-D to 3-D distances would

lose important information present in 3-D image collection. 3.2.1

While protein distribution in the plane of the slide can be
considered to be rotationally equivalent, the distribution for
adherent cells along the microscope axis is (siice some
proteins are distributed preferentially near the bottom or top
of the cel). The distance computation in 3-D images was
therefore separated into two components, one in the slide
plane and the other along the microscope axis. While 2-D
edge features can be extended to 3-D directly, for computa-
tional convenience, two new features were designed from 2-D
edges found in each 2-D slice of a 3-D imagkable 2 shows

all current 3-D features.

Haralick texture featuresAlthough Haralick texture fea-
tures were originally designed for 2-D images, the idea of
extracting pixel adjacency statistics can be easily extended to
voxel adjacency in 3-D imagéslnstead of four directional
adjacencies for 2-D pixels, there are 13 directional adjacen-
cies for 3-D voxels. The same 13 statistics used as 2-D Haral-
ick texture features can be computed from each of the 13 3-D
co-occurrence matrixes, and the average and range of the 13
statistics can be used as 3-D Haralick texture feattifésa-
ture set SLF11 combines these with the 3-D morphological
and edge features.

3.1.3 Feature normalization

Since each feature has its own scale, any calculations involv-
ing more than one feature will be dominated by features with
larger ranges, unless steps are taken to avoid it. There are
many possible means for mapping diverse features into a
more homogeneous space, and we have chosen to use the
simplest approach in which each feature in the training data is
normalized to have zero mean and unit variance before train-
ing a classifier. The test data is normalized accordingly by
using the mean and variance of each feature from the training
data. Note that since this is done merely to establish a scaling
transform using factors that are fixed prior to training, it does
not assume that each feature follows a Gaussian distribution
(the distribution of a feature across all classes is not in fact
Gaussian but rather typically a mixture of Gaussjans

3.2 Feature Reduction

While the different kinds of SLF features are intended to cap-
ture different types of information from an image, they might,
however, still contain redundancy. In addition, some of the
features might not contain any useful information for a given
set of subcellular patterns. More often than not, it has been
observed that reducing the size of a feature set by eliminating
uninformative and redundant features can speed up the train-
ing and testing of a classifier and improve its classification
accuracy. We have extensively studied two types of feature
reduction methods, namely feature recombination and feature
selection, in the context of subcellular pattern anal§siea-

Feature recombination

1. Principal component analysi®CA) applies a linear

transformation on the original feature space, creating a
lower dimensional space in which most of the data vari-
ance is retainet? An mxk linear transformation ma-
trix, wherem is the number of original features akds

the number of transformed features, is generated by re-
trieving the eigenvectors of the data covariance matrix
corresponding to thé& largest eigenvaluegk must be
chosen by some criteripn

. Nonlinear principal component analysiLPCA) ap-

plies a nonlinear transformation on the original feature
space, generating a lower dimensional space to repre-
sent the original data. One common way of conducting
NLPCA is to employ a five-layer neural netwotkjn
which both the input and output nodes represent the
original features. The middle layer represents a linear
function that takes the outputs from the nonlinear sec-
ond layer and generates the input for the nonlinear
fourth layer in the network. The training of this neural
network resembles an autoencotfefhe bottom three
layers, including the linear one, are used as a nonlinear
principal components extractor after training the five-
layer neural network.

. A second method to extract nonlinear relationships

from the original feature space is kernel principal com-
ponent analysiSKPCA). KPCA is composed of two
stepsk: the first step is to map the original feature space
to a very high dimensional feature space using a kernel
function; the second step is to apply PCA in the high
dimensional space. The maximum dimensionality of the
transformed space is the number of data points in the
original space. Therefore, we can extract as many non-
linearly combined features as the number of points,
which means that KPCA can be used as a feature ex-
pansion method as well as a feature reduction method.

. A higher requirement for the transformed features than

their nonlinearity is independence. Independent dis-
criminative features are the basis for an ideal feature
space where different data classes can be spread out as
much as possible. Modeling the independence in the
feature space can be achieved through independent
component analysi$ICA).2° Similar to blind source
separation, ICA assumes that a source matrix whose
columns are statistically independent generates the ob-
served dataset. We can define a cost function, such as
nonGaussianity? to be maximized when all columns in
the source matrix are statistically independent. The
source matrix features can then be used to represent the
original data.
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Table 2 Feature sets defined for 3-D fluorescence microscope images.

Feature set name SLF number

Feature description

SLF9 SLF9.1 The number of fluorescent objects in the image
SLF9.2 The Euler number of the image
SLF9.3 The average object volume
SLF9.4 The standard deviation of object volumes
SLF9.5 The ratio of the max object volume to min object volume
SLF9.6 The average object distance to the protein center of fluorescence (COF)
SLF9.7 The standard deviation of object distances from the protein COF
SLF9.8 The ratio of the largest to the smallest object to protein COF distance
SLF9.9 The average object distance to the COF of the DNA image
SLF9.10 The standard deviation of object distances from the COF of the DNA image
SLF9.11 The ratio of the largest to the smallest object to DNA COF distance
SLF9.12 The distance between the protein COF and the DNA COF
SLF9.13 The ratio of the volume occupied by protein to that occupied by DNA
SLF9.14 The fraction of the protein fluorescence that colocalizes with DNA
SLF9.15 The average horizontal distance of objects to the protein COF
SLF9.16 The standard deviation of object horizontal distances from the protein COF
SLF9.17 The ratio of the largest to the smallest object to protein COF horizontal distance
SLF9.18 The average vertical distance of objects to the protein COF
SLF9.19 The standard deviation of object vertical distances from the protein COF
SLF9.20 The ratio of the largest to the smallest object to protein COF vertical distance
SLF9.21 The average object horizontal distance from the DNA COF
SLF9.22 The standard deviation of object horizontal distances from the DNA COF
SLF9.23 The ratio of the largest to the smallest object to DNA COF horizontal distance
SLF9.24 The average obiject vertical distance from the DNA COF
SLF9.25 The standard deviation of object vertical distances from the DNA COF
SLF9.26 The ratio of the largest to the smallest object to DNA COF vertical distance
SLF9.27 The horizontal distance between the protein COF and the DNA COF
SLF9.28 The signed vertical distance between the protein COF and the DNA COF
SLF10 SLF10.1 to 10.9 Nine features selected from SLF9 using stepwise discriminant analysis
SLF11 SLF11.1t0 11.14 SLF9.1 to 9.8, SLF9.15 to 9.20
SLF11.15 The fraction of above threshold pixels that are along an edge
SLF11.16 The fraction of fluorescence in above threshold pixels that are along an edge
SLF11.17/30 Average/range of angular second moment
SLF11.18/31 Average/range of contrast
SLF11.19/32 Average/range of correlation
SLF11.20/33 Average/range of sum of squares of variance
SLF11.21/34 Average/range of inverse difference moment
SLF11.22/35 Average/range of sum average
SLF11.23/36 Average/range of sum variance
SLF11.24/37 Average/range of sum entropy
SLF11.25/38 Average/range of entropy
SLF11.26/39 Average/range of difference variance
SLF11.27/40 Average/range of difference entropy
SLF11.28/41 Average/range of info measure of correlation 1
SLF11.29/42 Average/range of info measure of correlation 2
SLF14 SLF14.1 t0 14.14 SLF9.1 to 9.8, SLF9.15 10 9.20
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genetic
starting manipulation fitness selected optimal
population {crossover, [~ function [ individuals features
mutation, ey

Fig. 1 Feature selection using genetic algorithms (from Ref. 29).

3.2.2 Feature selection

1. Classical decision tree theory uses the information gain

ratio to select the optimal feature for each split node in
a decision tree hierarchy. This ratio measures the
goodness of each feature in terms of the amount of
information gained after splitting the dataset on this fea-
ture. The more information can be learned at the split-
ting, the better the feature is. This feature evaluation
criterion can be straightforwardly applied to chodse
features with top information gain ratig® must again

be chosen by some criteripn

. The intrinsic dimensionality of a self-similar dataset

can be thought of as the number of parameters in the
data generation model that the entire dataset is gener-
ated from. The observed features can be evaluated by

we can apply a randomized approach in a much larger
feature subspace using a genetic algoritfirRigure 1
shows the flow chart of genetic algorithm. It starts from
some random feature seeds, and performs a randomized
search in the feature space using various genetic opera-
tors such as mutation and crossover. This generates a
group of candidate feature sets. An evaluation function,
which is often a classifier, is employed to evaluate the
sets of features and selects from both the top and bot-
tom sets under a predefined probability distribution. A
new starting pool is then created for a new iteration of
locally randomized search. The algorithm stops when
no more improvements can be achieved or a maximum
iteration number is reached. This approach has the po-
tential to find better feature combinatiofsnce it may
search a much larger set of combinatiprmit it is very

their contribution to the intrinsic dimensionality of the computationally expensive.
dataset. Only those features that significantly contribute

to the intrinsic dimensionality should be kept. Fractal 3.3 State-of-the-Art Classifiers
dimensionality, which is also called correlation fractal

dimensionality** is often used as an approximation of 3.3.1 Neural networks

the intrinsic dimensionality. A backward elimination  Neural networks model a feed-forward system in which all
procedure is implemented in the fractal dimensionality |ayers except for the input layer serve as an activator that
reduction(FDR) algorithm, which starts from the full  takes the outputs from the previous layer, combines them lin-
feature set and drops the feature whose removal early, and emits its activation via a nonlinear mappisig-
changes the fractal dimensionality the leésthe fea-  moid) function3 The training of a neural network is the same
ture selection will stop when no feature whose removal a5 fitting optimal parameters for a cost function that measures
can change the fractal dimensionality over a prespeci- the correspondence between the actual and desired network
fied threshold can be found. Unlike other feature selec- oytputs. We can define a cost function, such as the classifica-
tion methods, FDR does not require labeled data. The tjon error rate, and train a neural network using various algo-
fractal dimensionality of a dataset can be regarded as rithms such as gradient descent back-propagation, conjugate
roughly the final number of features we should keep.  gradient, and Newton's methd@.Different training algo-

3. If we project a labeled dataset into its feature space, the rithms generate different locally optimal solutions. There have
ratio of the variance within each data cluster to the vari- been many techniques invented to alleviate overtraining of a
ance between different clusters determines how difficult neural network such as momentum and learning ¥ate.
it is for a classifier to distinguish different data classes
given this feature set. This instinctive idea can be trans- 3.3.2  Support vector machines

formed into a statistic, Wilk’s\, which is defined to be  gimjlar to neural networks, support vector machif®¥Ms)
the ratio of the within-group covariance matrix to the gy g set of classifiers that employ linear classifiers as building
among-group covariance ma}t?&.The stepwise dis-  pjocks. Instead of organizing linear classifiers in a network
criminant analysisSDA) algorithm converts Wilk’sA hierarchy, SVMs generalize linear classifiers using kernel
to F statistics, and employs a forward-backward scheme fynctions and the maximum-margin criteridh.The light-
that starts from the full feature set to select the best \yeight linear classifier is often a good choice in a simple
features ranked according to their ability to separate proplem setting, while the linear decision boundary hypoth-
different data clusters, while at the same time keeping esjs is challenged in more complex problems. In addition,
each cluster as compact as possible. choosing from a group of equally good linear classifiers is
4. The search space for choosing a set of best features issometimes error prone. As described in KPCA, a nonlinear
very limited in the previous three feature selection kernel function can be employed to transform the original
methods, in that they all employ deterministic strategies feature space to a very high, sometimes unbounded, dimen-
of selecting features including forward, backward, and sional space. SVMs train linear classifiers in this very high
forward-backward methods, respectively. Alternatively, dimensional space, in that the nonlinear decision boundary
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can be regarded as linear after the kernel mapping. To addres$.3.5 Mixtures of experts

the difficulty of making a decision among equally behaved gjmilar to AdaBoost's idea of focusing a classifier on hard
linear classifiers, SVMs choose the maximum-margin hyper- {aining examples, “mixtures of experts” goes one step fur-
plane as the decision boundary, which in theory minimizes the yner py training individual classifiers, also called local experts,
structural risk of a classifier, the upper bound on the expected 5; yifferent data partitions and combining the results from
test error® High dimensional space is not a problem for rep- nyrtiple classifiers in a trainable WAy In “mixtures of
resenting the decision boundary, in that only those training experts,” a gating network is employed to assign local experts
data points lying on the maximum-margin hyperplane, which 14 gitferent data partitions, and the local experts, which can be
are called support vectors, are needed. various classifiers, take the input data and make predictions.
SVMs were originally characterized for two-class prob- g gating network then combines the outputs from the local
lems. There have E’Ee” a few methods to expand them foreyperts to form the final prediction. Both the gating network
K-class problems?~**The max-win method employs a one-  anq |ocal experts are trainable. Increasing the number of local

versus-others strategy, in whighbinary SVMs are trained to gyperts in mixtures of experts will increase the complexity of
separate each class from all other classes. Given a test datgne classifier in modeling the entire training data.

point, the class with the highest output score is selected as the
prediction. The pair-wise method employs a one-versus-one
strategy, in whicikK (K —1)/2 binary SVMs are created for all
possible class pairs. Each classifier gives a vote to one clas
given a test data point, and the class with the most votes is
selected as the output. Alternatively, tKgK—1)/2 binary
SVMs can be put in a rooted binary directed acyclic grap
(DAG), where a data point is classified as natt each node
wheni is the loser class. The only class left when a leaf node
is reached will be selected as the prediction. Multiclass SVMs
can employ different kernel functions to differentiate protein
location patterns nonlinearly.

3.3.6 Majority-voting classifier ensemble

glhere are a large number of classifiers available in the ma-
chine learning community, each of which has its own theoret-
ical justification. More often than not, the best performing
h classifier on one dataset will not be the best on another
dataset. Given limited training data, all classifiers also suffer
from overfitting. One way to alleviate these problems is to
form a classifier ensemble in which different classifiers can
combine their strengths and overcome their weaknesses, as-
suming the error sources of their prediction are not fully
correlated*” The most straightforward way of fusing classifi-
ers is the simple majority-voting model. Compared to other
3.3.3 AdaBoost trainable voting models, it is the fastest and performs as well
as other trainable methods.

In summary, the classification methods vary in the com-
plexity of the decision boundaries they can generate, the
amount of training data needed, and their sensitivity to unin-
formative features. Differences in their performance can
Itherefore be expected.

The training of a classifier may result in a decision boundary
that performs well for a majority cluster of training data
points but poorly for others. AdaBoost addresses this problem
by focusing classifier training on hard examples in an iterative
schemé'! A base classifier generator keeps generating simple
classifiers such as a decision tree or one-hidden-layer neura
networks. At each iteration, a simple classifier is trained with
a different distribution of the entire training data with more )
weight associated with those points incorrectly classified from Microscope Images
the previous iteration. By balancing the performance between
correctly and incorrectly classified data, we obtain a series of 3-4.1 Image datasets
classifiers, each of which remedies some errors from its pre- The goal of designing good image features and classifiers is to
decessor while possibly introducing some new errors. The fi- achieve accurate and fast automated interpretation of images.
nal classifier is generated by linearly combining all trained The goodness of the image features, various feature reduction
simple classifiers inversely weighted by their error rates. Ada- methods, and classifiers must be evaluated using diverse im-
Boost was originally characterized for two-class problems, age datasets. We therefore created several image sets in our
and a few expansion methods have been proposed to apply ifab and also obtained images from our colleagues. These sets
to K-class problem&3 contain both 2-D and 3-D fluorescence microscope images
taken from different cell types, as well as different micros-

) copy methods. Table 3 summarizes the four image sets we
3.3.4 Bagging used for the learning tasks described in this review.
Instead of weighting the entire training data iteratively, the The 2-D CHO dataset was collected for five location pat-
bagging approach samples the training data randomly usingterns in Chinese hamster ovary céflsThe proteins were
bootstrap replacemefit Each random sample contains on av- NOP4 in the nucleus, giantin in the Golgi complex, tubulin in
erage 63.2% of the entire training data. A preselected classi-the cytoskeleton, and LAMP2 in lysosomes, each of which
fier is trained repeatedly using different samples and the final was labeled by a specific antibody. Nuclear DNA was also
classifier is an unweighted average of all trained classifiers. labeled in parallel to each protein. The four protein classes as
The motivation for bagging is the observation that many clas- well as the DNA class contain different numbers of images
sifiers, such as neural networks and decision trees, are signifi-anging from 33 to 97. An approximate correction for out of
cantly affected by slightly skewed training data. Bagging sta- focus fluorescence was made by nearest-neighbor deconvolu-
bilizes the selected classifier by smoothing out all possible tion using images taken 0.28n above and below the chosen
variances, and makes the expected prediction robust. plane of focug® Since most images were taken from a field

3.4 Automated Interpretation of Fluorescence
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Table 3 Image sets used to develop and test methods for subcellular pattern analysis (data from Ref. 50).

Pixel size in original

Image Microscopy field Number of colors  Number of

set method Obijective (microns) per image classes

2-D CHO Widefield with 100x 0.23 1 5
deconvolution

2-D Hela  Widefield with 100x 0.23 2 10
deconvolution

3-D Hela  Confocal scanning 100% 0.049 3 11

3-D 3T3  Spinning disk 60x 0.11 1 46
confocal

with only one cell, manual cropping was done on these im- tained for each class. Following the same cropping and back-
ages to remove any partial cells on the image boundary. Theground subtraction steps, each image was further filtered us-
resulting images were then background subtracted using theing an automatically selected thresH8ldalculated from the
most common nonzero pixel intensity and thresholded at a image. Figure 3 shows typical images from each class of the
value three times higher than the background intensity. The 2-D HelLa dataset after preprocessing.
DNA channel in this image set was not used for calculating 2-D images represent a single slice from the subcellular
features, but for forming a fifth location class. Figure 2 shows distribution of a protein, which may ignore differences in lo-
typical images from different cells from each class of the 2-D cation pattern at other positions in a cell. For unpolarized
CHO dataset after preprocessing. cells, 2-D images are usually sufficient to capture the subcel-
The other collection of 2-D images we have used is the lular distribution of a protein because of the flatness of the
2-D Hel a datase’ It contains ten location patterns from nine  cells. For polarized cells, however, 3-D images are preferred
sets of images taken from the human HelLa cell line by using to describe what may be different location patterns of a pro-
the same wide-field, deconvolution approach used for the tein at the “top” (apica) and “bottom” (basolateraldomains
CHO set. More antibodies are available for the well-studied of a cell. Even for unpolarized cells, additional information
HelLa cell line, and better 2-D images can be obtained from may be present in a complete 3-D image. We therefore col-
the larger, flatter HeLa cells. This image set covers all major lected a 3-D HelLa image set using probes for the same nine
subcellular structures using antibodies against giantin and proteins used for the 2-D Hela S8tA three-laser confocal
gpp130 in the Golgi apparatus, actin and tubulin from the scanning microscope was used. Two parallel channels, to de-
cytoskeleton, a protein from the endoplasmic reticulum mem- tect total DNA and total protein, were added for each protein,
brane, LAMP2 in lysosomes, a transferrin receptor in endo- resulting in a total of 11 classes, each of which had from 50 to
somes, nucleolin in the nucleus, and a protein from mitochon-
dria outer membran€. The goal of including two similar
proteins, giantin and gpp130, in this set was to test the ability .
of our system to distinguish similar location patterns. A sec- Giantin 130
ondary DNA channel was used both as an additional class and
for feature calculation. Between 78 and 98 images were ob-
Lysosomal Mitoch. Nucleolar

Actin Endosomal Tubulin
Fig. 2 Typical images from the five-class 2-D CHO cell image collec- Fig. 3 Typical images from the ten-class 2-D Hela cell image collec-
tion after preprocessing. Five major subcellular location patterns are: tion after preprocessing. Each image is displayed with two false col-
giantin(a), LAMP2(b), NOP4(c), tubulin(d), and DNA(e).* ors: red (DNA) and green (target protein).
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Nuclear Giantin gpp130 Lysosomal

Mitoch. Nucleolar Actin Endosomal Tubulin

Fig. 4 Typical images from the 11-class 3-D Hela cell image collection after preprocessing. Each 3-D image is displayed with three false colors: red
(DNA), blue (total protein), and green (target protein). The target proteins used are the same as those of Fig. 2. Two projections on the X-Y and X-Z
planes are shown together.

58 images. Each 3-D image contained a stack of 14 to 24 2-D fier for various feature sets on both 2-D CHO and 2D HelLa
slices, and the resolution of each voxel wa949x 0.049 datasets. The training of the neural network classifier was
X 0.2um (this represents oversampling relative to the Ny- conducted on a training dataset, and the training was stopped
quist requirement by about a factor of 2 in each diregtion when the error of the classifier on a separate stop set no longer
The total protein channel was not only used as an additional decreased. We evaluated the performance of the classifier us-
class representing a predominantly “cytoplasmic” location ing eight-fold cross validation on the 2-D CHO set using both
pattern, it was also used for automated cell segmentation by athe Zernike and Haralick feature sét$3 (n-fold cross vali-
seeded watershed algorithm using filtering of the DNA chan- dation involves randomly dividing the available images into
nel to create “seeds” for each nucléfigthe cells on each  groups, using the first— 1 of these as training data and the
slide are reasonably well separated from each other, and thisast group as test data, repeating this with each group as the
seeding method was therefore observed to perform very.well test data, and averaging classifier performance over bt
Finally, background subtraction and automated thresholding groups) The performance using these two feature sets was
were conducted on the segmented images. Figure 4 showssimilar and much higher than a random classifjemich
typical images from each class of the 3-D Hela dataset after would have been expected to give 20% average performance
preprocessing. on this five-class datagefThe same classifier was then evalu-
The last image set used in our analysis was collected asated using ten-fold cross-validation on the 2-D Hela set using
part of a project to demonstrate the feasibility and utility of various 2-D feature set&!® The morphological and DNA
using CD-tagging’ to tag large numbers of proteins in a cul-  features in SLF2 gave an average accuracy of 76% on the ten
tured cell line. A set of mouse NIH 3T3 cell clones eXpreSSing location patterns_ By addmg both Zernike and Haralick fea-
different GFP-tagged proteins was generated using a retroviraltyres to SLF2 to create feature set SLF4, a 5% improvement
vector and the identity of the tagged gene found using reversejn this performance was achievé 81%9. Removing the six
transcription polymerase chain reaction amplification and pNA features to create set SLF3 resulted in a 2% decrease,
BLAST searches? A number of 3-D images of live cells from  suggesting that having information on the location of the
each clone were collected using a spinning-disk laser scan-pycleus provides only a modest increase in the overall ability
ning microscop€. The 3-D 3T3 dataset we used contained tq classify the major organelle patterns, although performance
images for 46 clones, with 16 to 33 images for each cloine  for specific classes improves more than fiata not shown
size of each voxel wa§.11x0.11x0.5um). Each image Adding the six new features defined in SLFSLF7.79 to
was further processed by manual cropping to isolate single 7 84 we observed a 5% decrease in accuracy compared to
cells, background subtraction, and automatic thresholding. 5| F3 alone'® Since all of the information present in SLF3
Figure 5 shows typical images from some of the classes in theghoyld be present in SLF7, the results suggested that the

3-D 3T3 dataset after preprocessing. larger number of features interfered with the ability of the
) o classifier to learn appropriate decision boundafigsace it

3.4.2 Supe(wsed classification of fluorescence required it to learn more network weighthis can be over-

microscope images come by eliminating uninformative or redundant features us-

Classifying 2-D imagesThe first task in building our auto-  ing any of a variety of feature reduction methods. Our pre-
mated image interpretation system was to classify 2-D fluo- liminary results for feature selection using stepwise
rescence microscope images. The initial classifier we useddiscriminant analysi$SDA) showed anywhere from 2% im-
was a neural network with one hidden layer and 20 hidden provement(SLF5 versus SLPAto 12% improvemen{SLF8
nodes. We evaluated this classifier using various feature setsversus SLFY. Comparing the performances of SLFQghich
and image sets. Table 4 shows the performance of this classi-includes DNA featurgsand SLF8(which does notconfirms
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Hmgal-1 Canx Nfix—1

Fig. 5 Selected images from the 3-D 3T3 cell image collection after preprocessing. Each image represents a major cluster from the subcellular
location tree created by cluster analysis.® Projections on the X-Y and X’-Z planes are shown together.

the prior conclusion that including the DNA features provides fier has its own constraints and suffers from overfitting given
an improvement of approximately 2%. limited data, instead of choosing the optimal single classifier

Since feature selection improved classification accuracy in for each feature subset, we constructed an optimal majority-
the previous experiments, we conducted a comparison ofvoting classifier ensemble by considering all possible combi-
eight different feature reduction methoddescribed in Sec.  nations of the eight evaluated classifiers. The average perfor-
3.2 on the feature set SLF7 using the 2-D Hela imageé$et. mance of this majority-voting classifier was 3% higher than
To facilitate feature subset evaluation, a faster classifier, athe neural network classifier for both SLF8 and SLFI&ble
multiclass support vector machine with a Gaussian kernel, g

was used to evaluate each of the resulting feature subsets The features used to obtain the results described so far are
using ten-fold cross-validatiofl. Table 5 shows the results of of a variety of types that were chosen to capture different

the eight feature reduction methods. First, about 11% accu-agnects of the protein patterns. To determine whether the per-
racy improvement was achieved by simply changing the neu- formance could be improved further, we explored adding a
ral network classifier to the support vector machine classifier large set of new features that might duplicate those already
using _the same feature set SLF7. Although the four feature used, and employing SDA to find the best discriminative fea-
selection methods performed better than the four feature re-

L . . . tures. We therefore added 60 Gabor texture features and 30
combination methods in general, only the genetic algorithm Daubechies four-wavelet features, as described iMtaeelet
and SDA gave statistically better results over SLF7 alone. featuresparaaranh of Sec. 3.1.1 ’to feature set SLE7. SDA
Considering the overall accuracy and the running time re- as perlfoormgd En the cor.nbi.n(.ad, set with and Without' DNA

quired, the best performance among the eight methods was b)r’ dth ked f | di I
SDA. In subsequent work, we therefore used SDA as our eatures, and the ranked features were evaluated incrementally

feature selection method. SDA returns a set of features thatPy USing the optimal majority-voting classifiers for SLF13 and

are considered to discriminate between the classes at someLF8, respectively. This resulted in two new feature sets,
specified confidence level, ranked in decreasing order of the FSLF16, which contains the best 47 features selected from the

statistic. To determine how many of these to use for a specific entire feature set, including DNA features, and SLF15, which
classification task, we routinely train classifiers with sets of contains the best 44 features selected from the entire feature

features where thé'th set consists of the first features re-  Set, excluding DNA features. The same strategy of construct-
turned by SDA, and then choose the set giving the best per-ing the optimal majority-voting classifier was conducted on
formance. these two new feature subsets. As seen in Table 4, the result

To further improve the classification accuracy on the 2-D was a small improvement in classification accuréoy92%,
Hela image set, we evaluated eight different classifiers, asand the same accuracy was obtained with and without the
described in Sec. 3.3, using the feature subsets SLF13 and®NA features(indicating that some of the new features cap-
SLF8 (which were the best feature subsets with and without tured approximately the same information
DNA features, respectivelyAll parameters were considered The results in Table 4 summarize extensive work to opti-
changeable in these eight classifiers, and the optimal onesmize the classification of protein patterns in 2-D images, but
were selected by ten-fold cross-validation. Since each classi-the overall accuracy does not fully capture the ability of the
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Table 4 Progression in classification accuracy for 2-D subcellular patterns as a result of improving feature sets and optimizing classifiers. NN:
one-hidden-layer neural network with 20 hidden nodes. MV: Majority voting classifier. N/A: not available.

Average classifier accuracy

(%)

Requires Number
Image DNA of On test set On training
dataset Feature set image? features Classifier set
2-D CHO Zernike no 49 NN 87 94
moment
2-D CHO Haralick no 13 NN 88 89
texture
2-D Hela SLF2 yes 22 NN 76 89
2-D Hela SLF4 yes 84 NN 81 95
2-D Hela SLF5 (SDA yes 37 NN 83 95
from SLF4)
2-D Hela SLF3 no 78 NN 79 94
2-D Hela SLF7 no 84 NN 74 N/A
2-D Hela SLF8 (SDA no 32 NN 86 N/A
from SLF7)
2-D Hela SLF13 (SDA from yes 31 NN 88 N/A
SLF7 + DNA)

2-D Hela SLF8 no 32 MV 89 N/A
2D Hela SLF13 yes 31 MV 91 N/A
2-D Hela SLF15 no 44 MV 92 N/A
2-D Hela SLF16 yes 47 MV 92 N/A

systems to distinguish similar patterns. This can be displayed . . .

- fusion matrix. which shows the percentages of Table 5 Feature reduction results of e_lght fe_ature redyctlon methods
using a con o per 9 on a multiclass support vector machine with Gaussian kernel and
images known to be in one class that are assigned by theen_fold cross-validation using the 2-D Hela image set. Feature reduc-
system to each of the classésnce all of the images were  tion started from the feature set SLF7, which contains 84 features.
acquired from coverslips, for which the antibody used was (Data from Ref. 29).
known, the “ground truth” is knowh Table 6 shows such a

matrix for the best system we have developed to date, the Minimum Number of
optimal majority-voting classifier using SLF16. Superimposed number of features

on that matrix are results for human classification of the same Feature selection  features for over  Highest required for
imagest® These results were obtained after computer- method 80% accuracy accuracy (%) highest accuracy
supervised training and testing. The subject was a biologist

who was well aware of cellular structure and organelle shape, None Not applicable 85.2 84

but without prior experience in analyzing fluorescence micro- PCA 17 83.4 41
scope images. The training program displayed a series of ran-

domly chosen images from each class, and informed the sub- NLPCA None found 75.3 64

ject of its class. During the testing phase, the human subject

was asked to classify randomly chosen unseen images from KPCA 17 86.0 17
each class, and the responses were recorded. The training and ICA 29 829 A1

testing were repeated until the performance of the human sub-

ject stopped improving. The final average performance across Information gain 1 86.6 72
the ten location patterns was 83%, much lower than the per- SDA 8 87 4 39
formance of the automated system. Except for small improve-

ments on a couple of classes such as mitochondria and endo- FDR 18 86.2 26
some, the human classifier performed worse than the ) ) )

automated system, especially for the two closely related e algorithm _Not available 87.5 43
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Table 6 Classification results for the optimal majority-voting classifier on the 2-D Hela image set using feature set SLF16, compared to those for
a human classifier on the same dataset. The values in each cell represent the percentage of images in the class shown on that row that are placed
by the classifier in the class shown for that column (the values in parentheses are for human classification if different). The overall accuracy is 92%
(versus 83% for human classification). (Data from Refs. 18 and 55.)

Output of the classifier

Ilrgfs DNA ER Gia Gpp Lam Mit Nuc Act TR Tub
DNA  99(100) 1(0) 0 0 0 0 0 0 0 0

ER 0 97 (90) O 0 0(3) 2 (6) 0 0 0 1(0)
Gia 0 0 91 (56) 7 (36) 0 (3) 0 (3) 0 0 2 0

Gpp O 0 14(53) 82(43) O 0 2 (0) 0 1(3) 0

Lam 0 0 1(6) 0 88(73)  1(0) 0 0 10200 ©

Mit 0 3 0 0 0 92 (96) 0O 0 3 (0) 3 (0)
Nuc 0 0 0 0 0 0 99 (100) 0 1(0) 0

Act 0 0 0 0 0 0 0 100 (100) O 0

TR 0 1(13) 0 0 12 (3) 2 0 1(0) 81(83)  2(0)
Tub 1(0) 2 (3) 0 0 0 1(0) 0 0 (3) 1(0) 95 (93)

classes giantin and gpp130. The experiment indicates that aallel DNA image were removed from SLF9, and the remain-
human classifier is unable to differentiate between these twoing 14 features were defined as SLF14. The same neural net-
“visually indistinguishable” patterns, while our methods were work was trained using SLF14 on the 3-D HelLa image set,
able to provide over 80% differentiation. and the average accuracy achieved was 84%, 7% lower than
Classifying 3-D imagesGiven the encouraging results for for SLF9. The greater benefit from DNA features for 3-D
classifying 2-D fluorescence microscope images, we extendedimages than for 2-D images could be due to at least two
the evaluation to 3-D fluorescence microscope images. Thereasons. The first is that at least some of the nonmorphologi-
3-D Hela dataset we used contains 11 subcellular location cal features in the larger 2-D feature sets capture information
patterns, the ten patterns in the 2-D Hela dataset, plus a totalthat duplicates information available by reference to a DNA
protein (or “cytoplasmic”) pattern. For this dataset we first image, and since only morphological features were used for
evaluated the neural network classifier with one hidden layer the 3-D analysis, that information was not available without
and 20 hidden nodes using a new SLF9 feature set modeledthe DNA features. The second is that the DNA reference pro-
on the morphological features of SLE2As shown in Table vides more information in 3-D space than in a 2-D plane.
7, the average accuracy over 11 classes was 91% after 50 As before, we applied stepwise discriminant analysis on
cross-validation trials, which was close to the best 2-D result. SLF9 and selected the best nine features to form the subset
SLF9 contains morphological features derived from both the SLF10, for which 94% overall accuracy was achieved by em-
protein image and parallel DNA images. To determine the ploying the neural network classifier on the same imagé’set.
value of the DNA features, the 14 features that require a par- To further improve the classification accuracy, we employed

Table 7 Progression in performance for 3-D subcellular patterns as a result of improving feature sets and optimizing classifiers. NN: one-hidden-
layer neural network with 20 hidden nodes. MV: Majority voting classifier. N/A: not available.

Image Requires DNA Number of Average classifier accuracy
dataset Feature set image? features Classifier (%) on test set
3D SLF9 yes 28 NN 91
Hela
SLF14 no 14 NN 84
SLF10 (SDA yes 9 NN 94
from SLF9)
SLF14 no 14 MV 90
SLF10 yes 9 MV 96
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Table 8 Confusion matrix for the optimal majority-voting classifier Table 9 Execution times for classifying 2-D and 3-D fluorescence
on the 3-D Hela image set using feature set SLF10. The overall accu- microscope images. The number inside parentheses indicates the
racy is 96%. (Data from Ref. 55.) number of features in each feature set. Classification times shown are

for the training/testing of an SVM classifier. All times are for a 1.7 GHz

Cyt DNA ER Gia Gpp lam Mit Nuc Act TR Tub CPU running Matlab 6.5. (Data from Ref. 55.)

Cyt 100 0 0O 0 0 0O 0 0 0O 0 O Operation CPU time per image(s)
DNA 0O 98 O O O 0 0 2 0O 0 O Image 2-D 0.6
reprocessin reprocessin
ER 0 0 97 0 O 0 0O O 2 0 2 Prep 9 prep 9
3D 27.9
Ga O O O 98 0 2 0 0 0 0 O© preprocessing
Gepp 0O 0 O 4 9 0 0 O O 0 O Feature 2D DNA SLF13 (31) 10.2
lom 0 O 0 2 2 9% 0 0 0 0 0 calevlation SIF16 (47) 65.7
Mit O 0 0 3 O 0O 95 0 2 0 O 2D SLF8 (32) 12.6
Nuc O 0 0 0 O 0 O 1000 O O SLF15 (44) 67.7
Act 0 O 2 0 O o 1 O 95 2 O 3D DNA SLF10 (9) 4.1
M 0 O 0O 0 O 6 4 0 2 85 4 3.D SLF14 (14) 36
Tb 0 0 4 0 0 0 0 O 0 2 94 Classification  2-D DNA  SLF13 1.4x1072/5.9x1072
SLF16 2.1x1072/1.1x107!
the same strategy used for 2-D images by creating optimal 2D  SLF8 1.5%x1071/2.0x107"
majority-voting classifiers for both SLF10 and SLF14. About
6 and 2% performance improvements over the previously SLF15 1.2x107"/3.6x107!

configured neural network classifier were observed for SLF14
and SLF10, respectively. The confusion matrix of the optimal
majority-voting classifier for SLF10 on the 3-D HelLa image 3D SLF14 8.5x1072/4.8x 102
set is shown in Table 8. Compared to the confusion matrix in
Table 6, the recognition rates of most location patterns were
significantly improved. The two closely related patterns, gian-
tin and gpp130, now could be distinguished over 96% of the
time, 14% higher than the best 2-D results. It suggests that
3-D fluorescence microscope images do capture more infor-
mation about protein subcellular distribution than 2-D images,
even for unpolarized cells.

Implications and cost-performance analysis discussed
before, the three properties of a desirable automated imag
interpretation system are objectivity, accuracy, and speed. The
first two properties have been demonstrated extensively, and
we now turn to the computational time required for classify-
ing images using our system. The time spent on each analysis 10 = -
task can be divided into three parts: image preprocessing, fea- .
ture calculation, and final analysis. The preprocessing steps & g A
for both 2-D and 3-D images include segmentation, back-
ground subtraction, and thresholding. To calculate the cost of
each feature set, we consider both the setup @sgroup of
related features may share a common setup) eost the in-
cremental cost for each feature. Table 9 shows the times for
typical classification tasks using various feature sets. Prepro-
cessing of 2-D images needs fewer resources than the actual
feature calculation. In contrast, the preprocessing step occu-
pies the largest portion of the feature costs for 3-D images.
The cost of training and testing a classifier largely depends on CPU time (secs)
the implementation of the specific classifier. We therefore _. . -

. . . . _ Fig. 6 Best performance of six feature sets versus their time costs on
used a support VeCt(_)r_ machine with Gaussian k_emel fun(:tlonthe 2-D and 3-D Hela image collections. SLF8 (filled square), SLF10
as an example classifier for each feature set, which performed(open diamond), SLF13 (filled diamond), SLF14 (open square), SLF15
reasonably well and was ranked as one of the top classifiers(filled triangle), SLF16 (filled circle).

3-D DNA SLF10 4.3x1072/3.8x1072

for each feature set. Comparing all three cost components,
feature calculation dominates the classification task of 2-D

images and image preprocessing dominates that of 3-D im-

ages. Figure 6 displays the best performance of each feature
set as a function of its computational cost. Using the feature

set SLF13, we can expect to process about 8800images

gher minute over 24 h2-D fluorescence microscope images

Error Rate (%
[}

0 20 40 60 80
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Fig. 7 Average performance of six feature set in image set classifica-

tion with different set sizes. SLF8 (filled square), SLF10 (open dia-
mond), SLF13 (filled diamond), SLF14 (open square), SLF15 (filled tri-
angle), SLF16 (filled circle).

Fig. 8 Average performance of six feature sets using different numbers
of features in classifying ten-image sets. SLF8 (filled square), SLF10
(open diamond), SLF13 (filled diamond), SLF14 (open square), SLF15
(filled triangle), SLF16 (filled circle).

per day with approximately 92% average accuracy over ten
major subcellular location patterns. Of course, the calculation We can improve the overall classification accuracy of auto-
of many of the features we have used can potentially be mated systems in a similar manner by classifying sets of im-
speeded up dramatically by generating optimized, compiled ages drawn from the same class using plurality votthg.
code rather than using Matlab scripts. Theoretically, we should observe a much higher recognition
The approaches described here can be used as a roadmagte given a classifier performing reasonably well on indi-
for building automated systems to recognize essentially any vidual images. Two factors influence the accuracy of this ap-
combination of subcellular patterns in any cell type. We have proach: the number of images in each set and the number of
described over 170 2-D features and 42 3-D features that canfeatures used for classification. Increasing the set size should
be used in combination with various feature selection and enhance the accuracy, such that a smaller set of features
classification strategies. would be good enough for essentially perfect classification.
Classifying sets of image€ell biologists rarely draw con- ~ On the other hand, given a larger set of good features, a
clusions about protein subcellular location by inspecting an smaller set size would be sufficient for accurate recognition.
image of only a single cell. Instead, a conclusion is usually We have evaluated this tradeoff for the 2-D and 3-D Hela
drawn by examining multiple cells from one or more slides. datasetgFigs. 7 and & For each feature set, random sets of a
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Fig. 9 A subcellular location tree (SLT) created for the ten-class 2-D Hela cell collection.”®
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Fig. 10 Selecting the best feature subset from SLF11 to classify the 46-class 3-D 3T3 cell image collection. The average performance of a neural
network classifier with one hidden layer and 20 hidden nodes after 20 cross-validation trials is shown for sets comprising increasing numbers of
features from SDA.?

given size were drawn from the test image set for a given overly sensitive to cell size, shape, and orientation. The value
classifier (all images in the set were drawn from the same of these features for learning known patterns suggests that
clasg, and each image was classified using the optimal they can also be valuable for analyzing patterns for proteins
majority-voting classifier for that feature set. The class receiv- whose location is unknowfor not completely known In this
ing the most votes was assigned to that random set. This pro-section, we describe results for such unsupervised clustering
cess was repeated for 1000 trials for each class. of fluorescence microscope images according to their location
The results showed that the smallest image set size for ansimilarity. By definition, no ground truth is available for
overall 99% accuracy was seven 2-D images for SLF13 and evaluating results from unsupervised clustering, and the good-
five 3-D images for SLF10, respectivelffig. 7). The fewest ness of clustering results can only be evaluated empirically.
features to achieve an average 99% accuracy given a ten- One of the most popular clustering algorithms is hierarchi-
image set were the first nine features from SLF16 on 2-D cal clustering, which organizes the clusters in a tree structure.
images and the first six features from SLF10 on 3-D images, Hierarchical clustering is often conducted agglomeratively by
respectively(Fig. 8). The higher recognition rate for SLF10 starting with all instances as separate clusters and merging the
on 3-D HelLa images accounts for both the smaller set size closest two clusters at each iteration until only one cluster is
and the smaller number of features required for essentially left. The distance between each cluster pair can be calculated
perfect classification. This approach of using an imperfect using different measures, such as the Euclidean distance and
single cell classifier to achieve nearly perfect accuracy on the Mahalanobis distancévhich normalizes for variation
small sets of images is anticipated to be especially useful for within each feature and correlation between featurds
classifying patterns in single wells via high-throughput mi- average-link agglomerative hierarchical clustering algorithm

Croscopy. was first applied for SLF8 on the ten-class 2-D HelLa image
set>® Each class was represented by the mean feature vector

3.4.3 Unsupervised clustering of fluorescence calculated from all images in that class. Mahalanobis dis-

microscope images tances were computed between two classes using their feature

We have reviewed the prior work on supervised learning of covariance matrix. The resulting tre@ubcellular location
subcellular location patterns in a number of image sets takentree is shown in Fig. 9. This tree first groups giantin and
from different types of cells and microscopy methods. The gppl130, and then the endosome and lysosome patterns, the
results demonstrate not only the feasibility of training such two most difficult pattern pairs to distinguish in supervised
systems for new patterns and cell types, but also demonstratdearning.

that the numerical features used are sufficient to capture the Just as protein family trees have been created that group all
essential characteristics of protein patterns without being proteins by their sequence characteristiosg can also create
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Fig. 11 A SLT created by using the best ten features selected from SLF11 by SDA for the 46 proteins from the 3T3 image collection.®

a subcellular location tre€SLT) that groups all proteins ex-  tures(Fig. 10. The first 10 to 14 best features selected by
pressed in a certain cell type by their subcellular location. The SDA give an overall accuracy close to 70% on the 46 proteins
data required to create comprehensive SLTs can be obtainedsince some of the clones may have the same pattern, we do
from projects such as the CD-tagging project started a few not expect to achieve the same high accuracy that we obtained
years agd?'®the goal of which was to tag all possible genes earlier when the classes were known to be distintfe there-
in mouse 3T3 cells and collect fluorescence microscope im- fore applied the agglomerative hierarchical clustering algo-
ages of the tagged proteins. Preliminary results on clusteringrithm on the 3-D 3T3 image set using the first ten features
3-D images of the first 46 proteins to be tagged have beenselected from SLF11. The features were normalized to have
described. The approach used is parallel to that for classifi- zero mean and unit variande scorey and Euclidean dis-
cation: feature selection and then selection of a clustering tances between each clone were computed from their mean
method. feature vectors. The resulting SLT is shown in Fig. 11. Evalu-
To select the optimal features for clustering, SDA was con- ation of trees such as this can be difficult, since if the exact
ducted starting from feature set SLF{&hich contains 42 location of each protein was known, clustering would not be
3-D image featurgs For this purpose, each clone was consid- necessary. However, we can examine images from various
ered to be a separate class, even though some clones mighbranches from the tree to determine whether the results are at
show the same location pattern. The rationale was that anyleast consistent with visual interpretation. For example, two
feature that could distinguish any two clones would be ranked clusters of nuclear proteins can be seen in the tree: Hmgal-1,
highly by SDA. To decide how many of the features returned Hmgal-2, Unknown-9, Ewsh, Hmgn2-1 in one, and
by SDA to use, a neural network classifier with one hidden Unknown-11, SimilarToSiahbpl, and Unknown-7 in another.
layer and 20 hidden nodes was used to measure overall clasBy inspecting two example images selected from these two
sification accuracy for increasing numbers of the selected fea-clusters, as shown in Fig. 12, it is obvious that the former
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ranked by their distances to the centroid in the feature space,
and the most typical image would be the one on the top of the
list.>2 To obtain the most reliable centroid, we found that out-
lier rejection was very helpful and provided better results than
other methods. Various experiments on finding most typical
images from contaminated image sets have been conducted,
and the results showed that the Mahalanobis distance function
was better than the Euclidean distance function. Figure 13
shows results from one of the experiments. The most typical
Golgi images are characterized by compact structure, while
Fig. 12 Two example images selected from the two nuclear clusters the least typical ones are characterized by dispersed structure.
shown in Fig. 11: (a) Hmgal-1; and (b) Unknown-11.° The biological explanation for this observation is that a nor-
mal Golgi complex goes through fragmentation prior to cell
division, and therefore a minority of cells shows a dispersed
cluster represents proteins uniquely localized in the nucleus, pattern. The results illustrate the value of automated typicality
and the latter cluster represents proteins localized in both theanalysis.
nucleus and the cytoplasm near the nucleus. This type of em-  |mage set comparisorEach fluorescence microscope im-
pirical comparison can heighten confidence that the tree rep-age representing a certain subcellular location pattern is de-

resents an objective grouping of the location patterns. termined by two factors: the protein that is labeled and the
) o environment under which the image is taken. One factor can
3.4.4 Other important applications be easily employed to infer changes of the other. For instance,

The automated system described so far provides a validatedthe various protein subcellular location patterns can be com-
converter that transforms the information on a protein subcel- pared to each other given a fixed environment for all classes.
lular distribution in a digital image into a set of numbers On the other hand, we can compare the properties of various
(featureg that are informative enough to replace the image environments(such as the presence of druggven a fixed
itself. Many off-the-shelf statistical analysis tools can be di- protein as the reference. In both scenarios, two sets of images
rectly applied to this numerical image representation, and help taken from different conditions have to be compared. We have
us to draw statistically sound conclusions for protein patterns. described an objective method to compare two image®3ets,
Typical image selectiorAn example is to obtain the most  which can be used in many practical applications such as drug
typical image from a set of fluorescence microscope images.screening and target verification.
Typical image selection is often encountered in a situation  Given our informative features, the task of comparing two
when a very small number of images have to be selected fromimage sets can be transformed to a statistical analysis that
a large image collection. Traditionally, visual inspection is compares two feature matrices computed from the two sets.
used, which is both subjective and unrepeatable given differ- The HotellingT? test>® which is the multivariate version of
ent inspectors. We have described methods that provide anthe t test, can be used to compare two feature matrices. As an
objective and biologically meaningful way of ranking images illustration of the approach, we performed all pairwise com-
by their typicality from a collectiori? parisons of the ten-class 2D Hela set using feature set
The images in a collection can be represented as a group ofSLF6°2 Each comparison yielded an F value, which could be
multidimensional data points in the feature space. The cen-compared to a critical F value for a given significance level.
troid of this group can be calculated by taking the mean fea- All pair-wise F values were larger than the critical F value for
ture vector of all data points. Distances, such as Euclidean and95% confidence, and therefore all class pairs were considered
Mahalanobis distances, can be computed between each datatatistically differenf{which is consistent with the observation
point and the centroid. All images in the collection can be that classifiers can be trained to distinguish all of thehihe

Fig. 13 Most and least typical giantin images selected from a contaminated image set. (a) through (d): giantin images with high typicality; (e)
through (h): giantin images with low typicality.>?
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Table 10 Most discriminative features from SLF6 ranked by their
univariate t-test results for the giantin and gpp 130 image sets. (Data
from Ref. 53).

Confidence level
at which the feature

Feature differs
Eccentricity of the ellipse equivalent to 99.99999
the protein image convex hull

Convex hull roundness 99.9999
Measure edge direction homogeneity 1 99.9873
Average obiject size 99.9873
Average obiject distance fo the center of 99.9873
fluorescence

Ratio of largest to smallest object to 99.9873

image center of fluorescence distance

two pairs that gave the smallest F values were giantin with
gppl130, and LAMPZlysosomes with a transferrin receptor
(endosomes which are again consistent with the classifica-
tion and clustering results described earlier. To prove that the
statistical test was not overly sensitive, we conducted two
experiments. The first experiment was designed to compare

equal-sized sets randomly drawn from the same class 1000

times. Approximately 5% of the total trials were considered to
be statistically different, which is what is expected for a 95%
confidence level. The second experiment was designed to
compare two sets of giantin images by using different labeling

approaches, a rabbit antiserum and a mouse monoclonal anti-

body. The resulting F value was 1.04, less than the critical F
value 2.22 for 95% confidence. These two experiments con-
firmed that our methods were able to correctly identify two

sets from the same pattern, but able to distinguish sets drawn 6.

from patterns known to be different.

As a further step, we can perform univariate t tests to in-
spect the contribution of each feature to the discrimination of
two image sets. Table 10 shows the features found by univari-

ate t tests to be most different between the giantin and gpp130
image sets. The distinction between these two sets could be 8.

largely attributable to the morphological features that describe
the overall cell shape and object properties. Our objective

image set comparison method can be applied in drug screen-

ing, where the candidate drug would be the one that could
cause the most significant location change of a target protein.

On the other hand, the optimal target could be selected as the

one that displays the largest location change given a known
drug.

4 Summary
In this review, we describe an image understanding system

that features image processing, classification, clustering, and

statistical analysis of fluorescence microscope images. This
system is an example of applying advanced computer vision

and pattern recognition techniques to digital images generated

from quantitative microscopy. An objective, accurate, and

Journal of

From quantitative microscopy . . .

high-throughput system is necessary for reliable and robust
image interpretation in biomedical optics applications. Our

methods, along with high-throughput imaging hardware, can

be used to determine the subcellular location of every protein
expressed in a certain cell type, which results in a complete
location tree necessary for functional proteomics. The work

described here only scratches the surface of what is possible
for automated microscopy.
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