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Abstract. Quantitative microscopy has been extensively used in bio-
medical research and has provided significant insights into structure
and dynamics at the cell and tissue level. The entire procedure of
quantitative microscopy is comprised of specimen preparation, light
absorption/reflection/emission from the specimen, microscope optical
processing, optical/electrical conversion by a camera or detector, and
computational processing of digitized images. Although many of the
latest digital signal processing techniques have been successfully ap-
plied to compress, restore, and register digital microscope images,
automated approaches for recognition and understanding of complex
subcellular patterns in light microscope images have been far less
widely used. We describe a systematic approach for interpreting pro-
tein subcellular distributions using various sets of subcellular location
features (SLF), in combination with supervised classification and un-
supervised clustering methods. These methods can handle complex
patterns in digital microscope images, and the features can be applied
for other purposes such as objectively choosing a representative im-
age from a collection and performing statistical comparisons of image
sets. © 2004 Society of Photo-Optical Instrumentation Engineers.
[DOI: 10.1117/1.1779233]
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1 Introduction
Biomedical research has been revolutionized by the new type
of information generated from various ‘‘omics’’ projects, be-
ginning with the genome sequencing projects. The genom
drafts completed so far have enabled us, for the first time, t
discover and compare all possible genes in a number of o
ganisms. To uncover proteome differences in a given organ
ism, expression arrays and protein chips have been used
study the transcription and expression characteristics of a
possible proteins in different tissues, at different developmen
tal stages, and under various disease types.1,2 High-throughput
pipelines in structural proteomics have automated protein
structure determination by integrating target purification, crys-
tallization, data acquisition, and final assignment.3 Location
proteomics, one of the latest subfields of proteomics, has th
goal of providing an exact description of the subcellular dis-
tribution for each protein in a given cell type.4–7 All of these
methods provide valuable information for determining how a
protein functions and how its functioning is regulated.

Knowledge of a protein’s subcellular distribution can con-
tribute to a complete understanding of its function in a num-
ber of different ways. The normal subcellular distribution of a
protein provides a scope for its function. For instance, a pro
tein localized in the mitochondrial membrane can be inferred
to function in energy metabolism. If a protein has a close
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subcellular localization pattern to a known protein, there
ists a high chance that they form a functional complex p
tein. The dynamic properties of protein subcellular distrib
tion under different environmental conditions can also prov
important information about protein function. If a prote
changes its subcellular location from cytoplasm to c
nucleus after treating the cell with a certain drug, it sugge
that the protein might play an important role in signal tran
duction and possibly work as a transcription factor directly

The current widespread application of biomedical opt
was made possible by the invention of quantitative opti
instruments. When the microscope was invented more t
300 years ago, the analog signal reflected from the speci
had to be recorded with a hand-drawing. The developmen
cameras permitted creation of still microscope images,
visual inspection was still the only way to interpret resu
generated from a microscope at that time. After the invent
of the digital camera and other optical detectors, the ana
signal from a microscope could be recorded at high densit
digital media. With the application of digital signal processi
techniques, automated analysis of microscope images, w
could only be imagined before, became possible. For
ample, pioneering work on numerical description of micr
scope image patterns was done for chromoso
distributions.8,9 The goal of the work reviewed here has be
to develop automated methods applicable to all major sub
lular patterns.
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Huang and Murphy
2 Quantitative Fluorescence Microscopy and
Location Proteomics
Compared to other approaches for determining protein subce
lular location such as electron microscopy and subcellula
fractionation, fluorescence microscopy permits rapid collec
tion of images with excellent resolution between cell compart-
ments. These properties, along with high specificity method
for targeting fluorescent probes to specific proteins, make
fluorescence microscopy the optimal choice for studying the
subcellular distribution of a proteome. The choice of different
fluorescence microscopy methods, however, depends on th
application. Obviously, the signal-to-noise ratio is the most
important factor in using quantitative fluorescence micros-
copy. The noise in fluorescence microscopy mostly come
from out-of-focus fluorescence and quantization errors in the
camera.10 Although the second source can be reduced dra
matically by using expensive charge-coupled device~CCD!
cameras, out-of-focus fluorescence is handled differently b
different fluorescence microscope systems.10,11 Inexpensive
wide-field microscope systems collect fluorescence emitte
from the entire 3-D specimen in the field of view, requiring
computational removal of out-of-focus fluorescence~decon-
volution! after image collection. Deconvolution can be com-
putationally costly and requires an accurate model of the
point-spread function for a particular microscope. Confoca
laser scanning microscopes collect fluorescence from ind
vidual small regions of the specimen, illuminated by a laser
scanning beam. Out-of-focus fluorescence is removed by em
ploying a pinhole on the light collection path. Compared to
wide-field microscopes, confocal laser scanning microscope
have a much lower acquisition rate, but no deconvolution is
normally needed. A variation of the confocal laser scanning
microscope, the spinning disk confocal microscope, circum
vents the speed limit by using a rotating pinhole array, which
enables fast focusing and image collection. For thin speci
mens, wide-field microscopes perform best; while for thick
specimens, it is recommended to use a confocal laser scanni
microscope.10 Fully automated microscopes also have tremen
dous promise for acquiring the large numbers of images re
quired for systematic analysis of subcellular patterns.12

To collect fluorescence microscope images of a target pro
tein, two methods are typically used to add a fluorescence ta
to a protein of interest. Immunofluorescence employs antibod
ies that specifically bind to a target protein. It is not suitable
for live cell imaging, because cells need to be fixed and per
meabilized before antibodies can enter. Fluorescence dyes c
be bound directly to antibodies, or to secondary antibodie
directed against the primary antibodies. The other method i
gene tagging, of which there are many variant
approaches.13–17A particularly useful approach is CD-tagging,
which introduces a DNA sequence encoding a fluorescent pro
tein such as green fluorescent protein~GFP! into an intron of
a target gene. Gene tagging can also be applied random
throughout a genome without targeting a specific protein, with
the assumption that the probabilities of inserting the DNA tag
into all genes are roughly equal. For a given cell type, random
gene tagging coupled with high-throughput fluorescence mi
croscopy can generate images depicting the subcellular loc
tion patterns of all or most expressed proteins. We coined th
term location proteomicsto describe the combination of tag-
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ging, imaging, and automated image interpretation to enab
proteome-wide study of subcellular location.5

The necessity of having an automated analysis sys
stems from need for an objective approach that generate
peatable analysis results, a high-throughput method that
analyze tens of thousands of images per day, and lastly, f
more accurate approach than visual examination. In the
lowing sections, we first describe numerical features that
be used to capture the subcellular patterns in digital fluor
cence microscope images. Summaries of feature reduc
and classification methods are discussed next.~These sections
can be skipped by readers primarily interested in learning
types of automated analyses that can be carried out on m
scope images.! We then evaluate the image features for t
tasks of supervised classification and unsupervised cluste
by using various image datasets collected in our group
from our colleagues. Lastly, we describe a few other uses
image features in practical biomedical research.

3 Automated Interpretation of Images
3.1 Image Features
Given a combination of a protein expression level, a tagg
approach, and a microscope system that yields a sufficie
high signal-to-noise ratio, we can obtain a precise digital r
resentation of the subcellular location pattern of that prote
The next step, automated interpretation of that pattern,
quires extracting informative features from the images t
represent subcellular location patterns better than the va
of the individual pixels. We have therefore designed a
implemented a number of feature extraction methods
single cell images.5,18–20 To be useful for analyzing cells
grown on a slide, cover slip, or dish, we require that the
features be invariant to translation and rotation of the cel
the plane of the microscope stage, and robust across diffe
microscopy methods and cell types.

One approach to developing features for this purpose i
computationally capture the aspects of image patterns tha
man experts describe. We have used a number of feature
this type, especially those derived from morphological ima
processing. An alternative, however, is to use less intuit
features that seek a more detailed mathematical represent
of the frequencies present in an image and its gray-level
tribution. These features capture information that a hum
observer may neglect, and may allow an automated class
to perform better than a human one. We have therefore u
features of this type, such as texture measures, as well.

The feature extraction methods we have used are descr
briefly for 2-D and/or 3-D single cell images.

3.1.1 2-D features
Zernike moment features.A filter bank of Zernike polynomials
can be used to describe the gray-level pixel distribution
each fluorescence microscope image.21 An image to be ana-
lyzed is first transformed to the unit circle by subtracting t
coordinates of the center of fluorescence from those of e
pixel, and dividing all coordinates by a user-specified c
radius r . A Zernike moment is calculated as the correlati
between the transformed imagef (x,y) (x21y2<1), and a
specific Zernike polynomial. The magnitude of the Zerni
moment is used as a feature describing the similarity of
o. 5
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From quantitative microscopy . . .
gray-level pixel distribution of an image to that Zernike poly-
nomial. We calculate 49 Zernike moment features by using
the Zernike polynomials up to order 12.22,23Since an image is
first normalized to the unit circle and only the magnitude of
Zernike moments is used, this group of features satisfies th
requirements of rotation and translation invariance.

Haralick texture features.Haralick texture features provide
statistical summaries of the spatial frequency information in
an image.24 First, a gray-level co-occurrence matrix is gener-
ated by calculating the probability that a pixel of each gray
level is found adjacent to a pixel of all other gray levels.
Given a total number of gray levelsNg in an image, the co-
occurrence matrix isNg3Ng . For 2-D images, there are four
possible co-occurrence matrixes that measure the pixel adj
cency statistics in horizontal, vertical, and two diagonal direc-
tions, respectively. To satisfy the requirements of rotation and
translation invariance, the four matrixes are averaged an
used to calculate 13 intrinsic statistics, including angular sec
ond moment, contrast, correlation, sum of squares, invers
difference moment, sum average, sum variance, sum entrop
entropy, difference variance, difference entropy, information
measure of correlation 1, and information measure of corre
lation 2.23 One restriction of Haralick features is that they are
not invariant to the total gray level used as well as the pixe
size in an image. To address this, a series of experiments we
conducted to find optimal gray levels and coarsest pixel siz
for use in HeLa cells under all microscopy conditions.18 The
most discriminative Haralick features were obtained when im
ages were resampled to 1.15 microns/pixel and quantized u
ing 256 gray levels. Resampling to these settings for HeLa
cells can be used to calculate Haralick features on a commo
frame of reference for varying microscope objectives and
cameras.18 Whether this resolution is optimal for other cell
types remains to be determined.

Wavelet features.Wavelet transform features can also be
used to capture frequency information in an image. To extrac
features from the wavelet transform of an image, a multireso
lution scheme is often used.25 An image can be convolved
with wavelets of different scales, and statistics of the pixel
intensity in the resulting images~such as mean, standard de-
viation, and average energy! are often used as features. Here
we describe two sets of recently applied wavelet features de
rived from the Gabor wavelet transform and the Daubechie
four-wavelet transform. Since wavelet transforms are not in
variant to cell translation and rotation, each image is pivoted
at its center of fluorescence and rotated to align its primary
axis with they axis in the image plane before feature extrac-
tion. Alignment of the secondary axis can be achieved by
conducting an extra 180-deg rotation if necessary to make th
third central moment ofx positive.

Daubechies four-wavelet features.The Daubechies wavelet
family is one of the most frequently used wavelet transforms
in image analysis.26 Each wavelet transform consists of a
scale function and a wavelet function, which can be regarde
as a low-pass and high-pass filter, respectively.25 Given the
Daubechies four-wavelet transform with its scale and wavele
functions, an image is sequentially convolved column- and
row-wise by these two filters, respectively. The four con-
volved images carry different frequency information extracted
from the original image. Three of them contain high-
frequency information in thex, y, and diagonal directions of
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the original image, respectively. The last one contains lo
frequency information and can be regarded as a smoo
version of the original image. Further decomposition on
smoothed image will give us finer information on lower fr
quency bands. We used Daubechies four-wavelet transfor
decompose an image up to level 10, and the average ene
of the three high-frequency images at each level were use
features. In total, 30 wavelet features can be obtained
represent the frequency information in the original image b
captured by Daubechies four-wavelet transform.

Gabor wavelet features.The Gabor function has been use
as an important filtering technique in computer vision, sinc
was found to be able to model receptive field profiles of c
tical simple cells.27 The information captured by the nono
thogonal Gabor wavelet is mostly the derivative informati
of an image such as edges.28 A Gabor filter bank can be gen
erated using Gabor filters with different orientations a
scales. The mean and standard deviations of the pixel in
sity in a convolved image are often used as features, wh
represent the frequency information in the original image b
captured by the Gabor wavelet transform. We have used
Gabor wavelet features from a filter bank composed of
different orientations and five different scales.

Morphological features.Image morphology describes var
ous characteristics of objects, edges, and the entire im
such as the average size of each object, the edge inte
homogeneity, and the convex hull of the entire image. Unl
some natural scene images, fluorescence microscope im
can be well characterized by their mathematic
morphology.18,19 Morphological information of an image rep
resents group statistics, intrinsically invariant to cell rotati
and translation. The morphological features we have used
clude 14 features derived from finding objects~connected
components after automated thresholding!, five features from
edges, and three features from the convex hull of the en
image.18,19Since multichannel imaging has become routine
fluorescence microscopy, additional channels can be adde
improve the recognition of the subcellular location pattern
a target protein. A commonly used reference in our exp
ments is the distribution of a DNA-binding probe that labe
the cell nucleus.19 The DNA channel image introduces an e
tra pivot in images for studying protein subcellular locatio
We have therefore used six additional object features to
scribe the relative location of the protein channel to the DN
channel.

Subcellular location feature nomenclature.We have cre-
ated a systematic nomenclature for referring to the image
tures used to describe subcellular location patterns, which
term subcellular location feature~SLF! sets.18,19 Each set
found to be useful for classification or comparison is assign
an SLF set number. Each feature in that set has the prefix S
followed by the set index and the index of the feature in t
set. For instance, SLF1.7, which is the variance of object d
tances from the center of fluorescence, is the seventh fea
in feature set SLF1. Table 1 gives a summary of all curr
2-D features grouped by various feature sets. The feat
derived from a parallel DNA channel for a target protein a
included in the feature sets SLF2, SLF4, SLF5, a
SLF13.18,19
Biomedical Optics d September/October 2004 d Vol. 9 No. 5 895
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Table 1 Feature sets defined for 2-D fluorescence microscope images.

Set SLF number Feature description

SLF1 SLF1.1 The number of fluorescence objects in the image

SLF1.2 The Euler number of the image (no. of holes minus no. of objects)

SLF1.3 The average number of above-threshold pixels per object

SLF1.4 The variance of the number of above-threshold pixels per object

SLF1.5 The ratio of the size of the largest object to the smallest

SLF1.6 The average object distance to the cellular center of fluorescence (COF)

SLF1.7 The variance of object distances from the COF

SLF1.8 The ratio of the largest to the smallest object to COF distance

SLF1.9 The fraction of the nonzero pixels that are along an edge

SLF1.10 Measure of edge gradient intensity homogeneity

SLF1.11 Measure of edge direction homogeneity 1

SLF1.12 Measure of edge direction homogeneity 2

SLF1.13 Measure of edge direction difference

SLF1.14 The fraction of the convex hull area occupied by protein fluorescence

SLF1.15 The roundness of the convex hll

SLF1.16 The eccentricity of the convex hull

SLF2 SLF2.1 to 2.16 SLF1.1 to SLF1.16

SLF2.17 The average object distance from the COF of the DNA image

SLF2.18 The variance of object distances from the DNA COF

SLF2.19 The ratio of the largest to the smallest object to DNA COF distance

SLF2.20 The distance between the protein COF and the DNA COF

SLF2.21 The ratio of the area occupied by protein to that occupied by DNA

SLF2.22 The fraction of the protein fluorescence that co-localizes with DNA

SLF3 SLF3.1 to 3.16 SLF1.1 to SLF1.16

SLF3.17 to 3.65 Zernike moment features

SLF3.66 to 3.78 Haralick texture features

SLF4 SLF4.1 to 4.22 SLF2.1 to 2.22

SLF4.23 to 4.84 SLF3.17 to 3.78

SLF5 SLF5.1 to SLF5.37 37 features selected from SLF4 using stepwise discriminant analysis

SLF6 SLF6.1 to 6.65 SLF3.1 to SLF3.65

SLF7 SLF7.1 to 7.9 SLF3.1 to 3.9

SLF7.10 to 7.13 Minor corrections to SLF3.10 to SLF3.13

SLF7.14 to 7.65 SLF3.14 to SLF3.65

SLF7.66 to 7.78 Haralick texture features calculated on fixed size and intensity scales

SLF7.79 The fraction of cellular fluorescence not included in objects

SLF7.80 The average length of the morphological skeleton of objects

SLF7.81 The average ratio of object skeleton length to the area of the convex hull of the skeleton

SLF7.82 The average fraction of object pixels contained within its skeleton

SLF7.83 The average fraction of object fluorescence contained within its skeleton

SLF7.84 The average ratio of the number of branch points in skeleton to length of skeleton

SLF8 SLF8.1 to 8.32 32 features selected from SLF7 using stepwise discriminant analysis

SLF12 SLF12.1 to 12.8 SLF8.1 to 8.8, the smallest feature set able to achieve 80% accuracy

SLF13 SLF13.1 to 13.31 31 features selected from SLF7 and SLF2.17-2.22 using stepwise discriminant analysis
896 Journal of Biomedical Optics d September/October 2004 d Vol. 9 No. 5
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From quantitative microscopy . . .
3.1.2 3-D features
3-D morphological features.As an initial approach to describ-
ing the 3-D distribution of proteins in cells, we used a direct
extension of some of the 2-D features to 3-D.20 Converting
2-D features that depend on area to 3-D counterparts usin
volume is straightforward. However, because of the asymme
try between the slide plane and the microscope axis, directl
converting features measuring 2-D to 3-D distances would
lose important information present in 3-D image collection.
While protein distribution in the plane of the slide can be
considered to be rotationally equivalent, the distribution for
adherent cells along the microscope axis is not~since some
proteins are distributed preferentially near the bottom or top
of the cell!. The distance computation in 3-D images was
therefore separated into two components, one in the slid
plane and the other along the microscope axis. While 2-D
edge features can be extended to 3-D directly, for computa
tional convenience, two new features were designed from 2-D
edges found in each 2-D slice of a 3-D image.5 Table 2 shows
all current 3-D features.

Haralick texture features.Although Haralick texture fea-
tures were originally designed for 2-D images, the idea of
extracting pixel adjacency statistics can be easily extended t
voxel adjacency in 3-D images.5 Instead of four directional
adjacencies for 2-D pixels, there are 13 directional adjacen
cies for 3-D voxels. The same 13 statistics used as 2-D Hara
ick texture features can be computed from each of the 13 3-D
co-occurrence matrixes, and the average and range of the 1
statistics can be used as 3-D Haralick texture features.5 Fea-
ture set SLF11 combines these with the 3-D morphologica
and edge features.

3.1.3 Feature normalization
Since each feature has its own scale, any calculations involv
ing more than one feature will be dominated by features with
larger ranges, unless steps are taken to avoid it. There a
many possible means for mapping diverse features into
more homogeneous space, and we have chosen to use t
simplest approach in which each feature in the training data i
normalized to have zero mean and unit variance before train
ing a classifier. The test data is normalized accordingly by
using the mean and variance of each feature from the trainin
data. Note that since this is done merely to establish a scalin
transform using factors that are fixed prior to training, it does
not assume that each feature follows a Gaussian distributio
~the distribution of a feature across all classes is not in fac
Gaussian but rather typically a mixture of Gaussians!.

3.2 Feature Reduction
While the different kinds of SLF features are intended to cap
ture different types of information from an image, they might,
however, still contain redundancy. In addition, some of the
features might not contain any useful information for a given
set of subcellular patterns. More often than not, it has bee
observed that reducing the size of a feature set by eliminatin
uninformative and redundant features can speed up the trai
ing and testing of a classifier and improve its classification
accuracy. We have extensively studied two types of featur
reduction methods, namely feature recombination and featur
selection, in the context of subcellular pattern analysis.29 Fea-
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ture recombination methods generate a linearly or nonline
transformed feature set from the original features, and fea
selection methods generate a feature subset from the orig
features by explicit selection. Four methods of each type
described next.

3.2.1 Feature recombination

1. Principal component analysis~PCA! applies a linear
transformation on the original feature space, creatin
lower dimensional space in which most of the data va
ance is retained.30 An m3k linear transformation ma-
trix, wherem is the number of original features andk is
the number of transformed features, is generated by
trieving the eigenvectors of the data covariance ma
corresponding to thek largest eigenvalues(k must be
chosen by some criterion!.

2. Nonlinear principal component analysis~NLPCA! ap-
plies a nonlinear transformation on the original featu
space, generating a lower dimensional space to re
sent the original data. One common way of conduct
NLPCA is to employ a five-layer neural network,30 in
which both the input and output nodes represent
original features. The middle layer represents a lin
function that takes the outputs from the nonlinear s
ond layer and generates the input for the nonlin
fourth layer in the network. The training of this neur
network resembles an autoencoder.30 The bottom three
layers, including the linear one, are used as a nonlin
principal components extractor after training the fiv
layer neural network.

3. A second method to extract nonlinear relationsh
from the original feature space is kernel principal com
ponent analysis~KPCA!. KPCA is composed of two
steps31: the first step is to map the original feature spa
to a very high dimensional feature space using a ker
function; the second step is to apply PCA in the hi
dimensional space. The maximum dimensionality of t
transformed space is the number of data points in
original space. Therefore, we can extract as many n
linearly combined features as the number of poin
which means that KPCA can be used as a feature
pansion method as well as a feature reduction meth

4. A higher requirement for the transformed features th
their nonlinearity is independence. Independent d
criminative features are the basis for an ideal feat
space where different data classes can be spread o
much as possible. Modeling the independence in
feature space can be achieved through indepen
component analysis~ICA!.30 Similar to blind source
separation, ICA assumes that a source matrix wh
columns are statistically independent generates the
served dataset. We can define a cost function, suc
nonGaussianity,32 to be maximized when all columns in
the source matrix are statistically independent. T
source matrix features can then be used to represen
original data.
Biomedical Optics d September/October 2004 d Vol. 9 No. 5 897
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Table 2 Feature sets defined for 3-D fluorescence microscope images.

Feature set name SLF number Feature description

SLF9 SLF9.1 The number of fluorescent objects in the image

SLF9.2 The Euler number of the image

SLF9.3 The average object volume

SLF9.4 The standard deviation of object volumes

SLF9.5 The ratio of the max object volume to min object volume

SLF9.6 The average object distance to the protein center of fluorescence (COF)

SLF9.7 The standard deviation of object distances from the protein COF

SLF9.8 The ratio of the largest to the smallest object to protein COF distance

SLF9.9 The average object distance to the COF of the DNA image

SLF9.10 The standard deviation of object distances from the COF of the DNA image

SLF9.11 The ratio of the largest to the smallest object to DNA COF distance

SLF9.12 The distance between the protein COF and the DNA COF

SLF9.13 The ratio of the volume occupied by protein to that occupied by DNA

SLF9.14 The fraction of the protein fluorescence that colocalizes with DNA

SLF9.15 The average horizontal distance of objects to the protein COF

SLF9.16 The standard deviation of object horizontal distances from the protein COF

SLF9.17 The ratio of the largest to the smallest object to protein COF horizontal distance

SLF9.18 The average vertical distance of objects to the protein COF

SLF9.19 The standard deviation of object vertical distances from the protein COF

SLF9.20 The ratio of the largest to the smallest object to protein COF vertical distance

SLF9.21 The average object horizontal distance from the DNA COF

SLF9.22 The standard deviation of object horizontal distances from the DNA COF

SLF9.23 The ratio of the largest to the smallest object to DNA COF horizontal distance

SLF9.24 The average object vertical distance from the DNA COF

SLF9.25 The standard deviation of object vertical distances from the DNA COF

SLF9.26 The ratio of the largest to the smallest object to DNA COF vertical distance

SLF9.27 The horizontal distance between the protein COF and the DNA COF

SLF9.28 The signed vertical distance between the protein COF and the DNA COF

SLF10 SLF10.1 to 10.9 Nine features selected from SLF9 using stepwise discriminant analysis

SLF11 SLF11.1 to 11.14 SLF9.1 to 9.8, SLF9.15 to 9.20

SLF11.15 The fraction of above threshold pixels that are along an edge

SLF11.16 The fraction of fluorescence in above threshold pixels that are along an edge

SLF11.17/30 Average/range of angular second moment

SLF11.18/31 Average/range of contrast

SLF11.19/32 Average/range of correlation

SLF11.20/33 Average/range of sum of squares of variance

SLF11.21/34 Average/range of inverse difference moment

SLF11.22/35 Average/range of sum average

SLF11.23/36 Average/range of sum variance

SLF11.24/37 Average/range of sum entropy

SLF11.25/38 Average/range of entropy

SLF11.26/39 Average/range of difference variance

SLF11.27/40 Average/range of difference entropy

SLF11.28/41 Average/range of info measure of correlation 1

SLF11.29/42 Average/range of info measure of correlation 2

SLF14 SLF14.1 to 14.14 SLF9.1 to 9.8, SLF9.15 to 9.20
898 Journal of Biomedical Optics d September/October 2004 d Vol. 9 No. 5
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Fig. 1 Feature selection using genetic algorithms (from Ref. 29).
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3.2.2 Feature selection

1. Classical decision tree theory uses the information gain
ratio to select the optimal feature for each split node in
a decision tree hierarchy.33 This ratio measures the
goodness of each feature in terms of the amount o
information gained after splitting the dataset on this fea-
ture. The more information can be learned at the split-
ting, the better the feature is. This feature evaluation
criterion can be straightforwardly applied to choosek
features with top information gain ratios(k must again
be chosen by some criterion!.

2. The intrinsic dimensionality of a self-similar dataset
can be thought of as the number of parameters in th
data generation model that the entire dataset is gene
ated from. The observed features can be evaluated b
their contribution to the intrinsic dimensionality of the
dataset. Only those features that significantly contribute
to the intrinsic dimensionality should be kept. Fractal
dimensionality, which is also called correlation fractal
dimensionality,34 is often used as an approximation of
the intrinsic dimensionality. A backward elimination
procedure is implemented in the fractal dimensionality
reduction~FDR! algorithm, which starts from the full
feature set and drops the feature whose remova
changes the fractal dimensionality the least.34 The fea-
ture selection will stop when no feature whose remova
can change the fractal dimensionality over a prespeci
fied threshold can be found. Unlike other feature selec
tion methods, FDR does not require labeled data. The
fractal dimensionality of a dataset can be regarded a
roughly the final number of features we should keep.

3. If we project a labeled dataset into its feature space, th
ratio of the variance within each data cluster to the vari-
ance between different clusters determines how difficul
it is for a classifier to distinguish different data classes
given this feature set. This instinctive idea can be trans
formed into a statistic, Wilk’sL, which is defined to be
the ratio of the within-group covariance matrix to the
among-group covariance matrix.35 The stepwise dis-
criminant analysis~SDA! algorithm converts Wilk’sL
to F statistics, and employs a forward-backward schem
that starts from the full feature set to select the bes
features ranked according to their ability to separate
different data clusters, while at the same time keeping
each cluster as compact as possible.35

4. The search space for choosing a set of best features
very limited in the previous three feature selection
methods, in that they all employ deterministic strategies
of selecting features including forward, backward, and
forward-backward methods, respectively. Alternatively,
Journal of
-

s

we can apply a randomized approach in a much lar
feature subspace using a genetic algorithm.36 Figure 1
shows the flow chart of genetic algorithm. It starts fro
some random feature seeds, and performs a random
search in the feature space using various genetic op
tors such as mutation and crossover. This generate
group of candidate feature sets. An evaluation functi
which is often a classifier, is employed to evaluate t
sets of features and selects from both the top and b
tom sets under a predefined probability distribution.
new starting pool is then created for a new iteration
locally randomized search. The algorithm stops wh
no more improvements can be achieved or a maxim
iteration number is reached. This approach has the
tential to find better feature combinations~since it may
search a much larger set of combinations!, but it is very
computationally expensive.

3.3 State-of-the-Art Classifiers

3.3.1 Neural networks
Neural networks model a feed-forward system in which
layers except for the input layer serve as an activator t
takes the outputs from the previous layer, combines them
early, and emits its activation via a nonlinear mapping~sig-
moid! function.33 The training of a neural network is the sam
as fitting optimal parameters for a cost function that measu
the correspondence between the actual and desired net
outputs. We can define a cost function, such as the classi
tion error rate, and train a neural network using various al
rithms such as gradient descent back-propagation, conju
gradient, and Newton’s method.30 Different training algo-
rithms generate different locally optimal solutions. There ha
been many techniques invented to alleviate overtraining o
neural network such as momentum and learning rate.33

3.3.2 Support vector machines
Similar to neural networks, support vector machines~SVMs!
are a set of classifiers that employ linear classifiers as build
blocks. Instead of organizing linear classifiers in a netwo
hierarchy, SVMs generalize linear classifiers using ker
functions and the maximum-margin criterion.37 The light-
weight linear classifier is often a good choice in a simp
problem setting, while the linear decision boundary hypo
esis is challenged in more complex problems. In additi
choosing from a group of equally good linear classifiers
sometimes error prone. As described in KPCA, a nonlin
kernel function can be employed to transform the origin
feature space to a very high, sometimes unbounded, dim
sional space. SVMs train linear classifiers in this very hi
dimensional space, in that the nonlinear decision bound
Biomedical Optics d September/October 2004 d Vol. 9 No. 5 899
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Huang and Murphy
can be regarded as linear after the kernel mapping. To addre
the difficulty of making a decision among equally behaved
linear classifiers, SVMs choose the maximum-margin hyper
plane as the decision boundary, which in theory minimizes the
structural risk of a classifier, the upper bound on the expecte
test error.38 High dimensional space is not a problem for rep-
resenting the decision boundary, in that only those training
data points lying on the maximum-margin hyperplane, which
are called support vectors, are needed.

SVMs were originally characterized for two-class prob-
lems. There have been a few methods to expand them fo
K-class problems.38–40 The max-win method employs a one-
versus-others strategy, in whichK binary SVMs are trained to
separate each class from all other classes. Given a test da
point, the class with the highest output score is selected as th
prediction. The pair-wise method employs a one-versus-on
strategy, in whichK(K21)/2 binary SVMs are created for all
possible class pairs. Each classifier gives a vote to one cla
given a test data point, and the class with the most votes i
selected as the output. Alternatively, theK(K21)/2 binary
SVMs can be put in a rooted binary directed acyclic graph
~DAG!, where a data point is classified as not-i at each node
wheni is the loser class. The only class left when a leaf node
is reached will be selected as the prediction. Multiclass SVMs
can employ different kernel functions to differentiate protein
location patterns nonlinearly.

3.3.3 AdaBoost
The training of a classifier may result in a decision boundary
that performs well for a majority cluster of training data
points but poorly for others. AdaBoost addresses this problem
by focusing classifier training on hard examples in an iterative
scheme.41 A base classifier generator keeps generating simpl
classifiers such as a decision tree or one-hidden-layer neur
networks. At each iteration, a simple classifier is trained with
a different distribution of the entire training data with more
weight associated with those points incorrectly classified from
the previous iteration. By balancing the performance betwee
correctly and incorrectly classified data, we obtain a series o
classifiers, each of which remedies some errors from its pre
decessor while possibly introducing some new errors. The fi
nal classifier is generated by linearly combining all trained
simple classifiers inversely weighted by their error rates. Ada
Boost was originally characterized for two-class problems
and a few expansion methods have been proposed to apply
to K-class problems.42,43

3.3.4 Bagging
Instead of weighting the entire training data iteratively, the
bagging approach samples the training data randomly usin
bootstrap replacement.44 Each random sample contains on av-
erage 63.2% of the entire training data. A preselected class
fier is trained repeatedly using different samples and the fina
classifier is an unweighted average of all trained classifiers
The motivation for bagging is the observation that many clas
sifiers, such as neural networks and decision trees, are signi
cantly affected by slightly skewed training data. Bagging sta-
bilizes the selected classifier by smoothing out all possible
variances, and makes the expected prediction robust.
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3.3.5 Mixtures of experts
Similar to AdaBoost’s idea of focusing a classifier on ha
training examples, ‘‘mixtures of experts’’ goes one step fu
ther by training individual classifiers, also called local exper
at different data partitions and combining the results fro
multiple classifiers in a trainable way.45,46 In ‘‘mixtures of
experts,’’ a gating network is employed to assign local expe
to different data partitions, and the local experts, which can
various classifiers, take the input data and make predictio
The gating network then combines the outputs from the lo
experts to form the final prediction. Both the gating netwo
and local experts are trainable. Increasing the number of lo
experts in mixtures of experts will increase the complexity
the classifier in modeling the entire training data.

3.3.6 Majority-voting classifier ensemble
There are a large number of classifiers available in the m
chine learning community, each of which has its own theor
ical justification. More often than not, the best performin
classifier on one dataset will not be the best on anot
dataset. Given limited training data, all classifiers also su
from overfitting. One way to alleviate these problems is
form a classifier ensemble in which different classifiers c
combine their strengths and overcome their weaknesses
suming the error sources of their prediction are not fu
correlated.44 The most straightforward way of fusing classifi
ers is the simple majority-voting model. Compared to oth
trainable voting models, it is the fastest and performs as w
as other trainable methods.47

In summary, the classification methods vary in the co
plexity of the decision boundaries they can generate,
amount of training data needed, and their sensitivity to un
formative features. Differences in their performance c
therefore be expected.

3.4 Automated Interpretation of Fluorescence
Microscope Images

3.4.1 Image datasets
The goal of designing good image features and classifiers
achieve accurate and fast automated interpretation of ima
The goodness of the image features, various feature reduc
methods, and classifiers must be evaluated using diverse
age datasets. We therefore created several image sets i
lab and also obtained images from our colleagues. These
contain both 2-D and 3-D fluorescence microscope ima
taken from different cell types, as well as different micro
copy methods. Table 3 summarizes the four image sets
used for the learning tasks described in this review.

The 2-D CHO dataset was collected for five location p
terns in Chinese hamster ovary cells.23 The proteins were
NOP4 in the nucleus, giantin in the Golgi complex, tubulin
the cytoskeleton, and LAMP2 in lysosomes, each of wh
was labeled by a specific antibody. Nuclear DNA was a
labeled in parallel to each protein. The four protein classe
well as the DNA class contain different numbers of imag
ranging from 33 to 97. An approximate correction for out
focus fluorescence was made by nearest-neighbor decon
tion using images taken 0.23mm above and below the chose
plane of focus.48 Since most images were taken from a fie
o. 5



From quantitative microscopy . . .
Table 3 Image sets used to develop and test methods for subcellular pattern analysis (data from Ref. 50).

Image
set

Microscopy
method Objective

Pixel size in original
field

(microns)
Number of colors

per image
Number of

classes

2-D CHO Wide-field with
deconvolution

1003 0.23 1 5

2-D HeLa Wide-field with
deconvolution

1003 0.23 2 10

3-D HeLa Confocal scanning 1003 0.049 3 11

3-D 3T3 Spinning disk
confocal

603 0.11 1 46
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with only one cell, manual cropping was done on these im-
ages to remove any partial cells on the image boundary. Th
resulting images were then background subtracted using th
most common nonzero pixel intensity and thresholded at
value three times higher than the background intensity. Th
DNA channel in this image set was not used for calculating
features, but for forming a fifth location class. Figure 2 shows
typical images from different cells from each class of the 2-D
CHO dataset after preprocessing.

The other collection of 2-D images we have used is the
2-D HeLa dataset.19 It contains ten location patterns from nine
sets of images taken from the human HeLa cell line by using
the same wide-field, deconvolution approach used for the
CHO set. More antibodies are available for the well-studied
HeLa cell line, and better 2-D images can be obtained from
the larger, flatter HeLa cells. This image set covers all majo
subcellular structures using antibodies against giantin an
gpp130 in the Golgi apparatus, actin and tubulin from the
cytoskeleton, a protein from the endoplasmic reticulum mem
brane, LAMP2 in lysosomes, a transferrin receptor in endo
somes, nucleolin in the nucleus, and a protein from mitochon
dria outer membrane.19 The goal of including two similar
proteins, giantin and gpp130, in this set was to test the ability
of our system to distinguish similar location patterns. A sec-
ondary DNA channel was used both as an additional class an
for feature calculation. Between 78 and 98 images were ob
Journal of
e

d

tained for each class. Following the same cropping and ba
ground subtraction steps, each image was further filtered
ing an automatically selected threshold49 calculated from the
image. Figure 3 shows typical images from each class of
2-D HeLa dataset after preprocessing.

2-D images represent a single slice from the subcellu
distribution of a protein, which may ignore differences in l
cation pattern at other positions in a cell. For unpolariz
cells, 2-D images are usually sufficient to capture the sub
lular distribution of a protein because of the flatness of
cells. For polarized cells, however, 3-D images are prefer
to describe what may be different location patterns of a p
tein at the ‘‘top’’ ~apical! and ‘‘bottom’’ ~basolateral! domains
of a cell. Even for unpolarized cells, additional informatio
may be present in a complete 3-D image. We therefore
lected a 3-D HeLa image set using probes for the same n
proteins used for the 2-D HeLa set.20 A three-laser confocal
scanning microscope was used. Two parallel channels, to
tect total DNA and total protein, were added for each prote
resulting in a total of 11 classes, each of which had from 50

Fig. 3 Typical images from the ten-class 2-D HeLa cell image collec-
tion after preprocessing. Each image is displayed with two false col-
ors: red (DNA) and green (target protein).
Fig. 2 Typical images from the five-class 2-D CHO cell image collec-
tion after preprocessing. Five major subcellular location patterns are:
giantin(a), LAMP2(b), NOP4(c), tubulin(d), and DNA(e).23
Biomedical Optics d September/October 2004 d Vol. 9 No. 5 901



Huang and Murphy
Fig. 4 Typical images from the 11-class 3-D HeLa cell image collection after preprocessing. Each 3-D image is displayed with three false colors: red
(DNA), blue (total protein), and green (target protein). The target proteins used are the same as those of Fig. 2. Two projections on the X-Y and X-Z
planes are shown together.
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58 images. Each 3-D image contained a stack of 14 to 24 2-D
slices, and the resolution of each voxel was0.04930.049
30.2mm ~this represents oversampling relative to the Ny-
quist requirement by about a factor of 2 in each direction!.
The total protein channel was not only used as an additiona
class representing a predominantly ‘‘cytoplasmic’’ location
pattern, it was also used for automated cell segmentation by
seeded watershed algorithm using filtering of the DNA chan
nel to create ‘‘seeds’’ for each nucleus20 ~the cells on each
slide are reasonably well separated from each other, and th
seeding method was therefore observed to perform very well!.
Finally, background subtraction and automated thresholdin
were conducted on the segmented images. Figure 4 show
typical images from each class of the 3-D HeLa dataset afte
preprocessing.

The last image set used in our analysis was collected a
part of a project to demonstrate the feasibility and utility of
using CD-tagging13 to tag large numbers of proteins in a cul-
tured cell line. A set of mouse NIH 3T3 cell clones expressing
different GFP-tagged proteins was generated using a retrovir
vector and the identity of the tagged gene found using revers
transcription polymerase chain reaction amplification and
BLAST searches.16 A number of 3-D images of live cells from
each clone were collected using a spinning-disk laser scan
ning microscope.5 The 3-D 3T3 dataset we used contained
images for 46 clones, with 16 to 33 images for each clone~the
size of each voxel was0.1130.1130.5mm). Each image
was further processed by manual cropping to isolate singl
cells, background subtraction, and automatic thresholding
Figure 5 shows typical images from some of the classes in th
3-D 3T3 dataset after preprocessing.

3.4.2 Supervised classification of fluorescence
microscope images
Classifying 2-D images.The first task in building our auto-
mated image interpretation system was to classify 2-D fluo
rescence microscope images. The initial classifier we use
was a neural network with one hidden layer and 20 hidden
nodes. We evaluated this classifier using various feature se
and image sets. Table 4 shows the performance of this class
902 Journal of Biomedical Optics d September/October 2004 d Vol. 9 N
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fier for various feature sets on both 2-D CHO and 2D He
datasets. The training of the neural network classifier w
conducted on a training dataset, and the training was stop
when the error of the classifier on a separate stop set no lo
decreased. We evaluated the performance of the classifie
ing eight-fold cross validation on the 2-D CHO set using bo
the Zernike and Haralick feature sets.22,23 (n-fold cross vali-
dation involves randomly dividing the available images inton
groups, using the firstn21 of these as training data and th
last group as test data, repeating this with each group as
test data, and averaging classifier performance over alln test
groups.! The performance using these two feature sets w
similar and much higher than a random classifier~which
would have been expected to give 20% average performa
on this five-class dataset!. The same classifier was then eval
ated using ten-fold cross-validation on the 2-D HeLa set us
various 2-D feature sets.18,19 The morphological and DNA
features in SLF2 gave an average accuracy of 76% on the
location patterns. By adding both Zernike and Haralick fe
tures to SLF2 to create feature set SLF4, a 5% improvem
in this performance was achieved~to 81%!. Removing the six
DNA features to create set SLF3 resulted in a 2% decre
suggesting that having information on the location of t
nucleus provides only a modest increase in the overall ab
to classify the major organelle patterns, although performa
for specific classes improves more than this~data not shown!.

Adding the six new features defined in SLF7~SLF7.79 to
7.84!, we observed a 5% decrease in accuracy compare
SLF3 alone.18 Since all of the information present in SLF
should be present in SLF7, the results suggested that
larger number of features interfered with the ability of th
classifier to learn appropriate decision boundaries~since it
required it to learn more network weights!. This can be over-
come by eliminating uninformative or redundant features
ing any of a variety of feature reduction methods. Our p
liminary results for feature selection using stepwi
discriminant analysis~SDA! showed anywhere from 2% im
provement~SLF5 versus SLF4! to 12% improvement~SLF8
versus SLF7!. Comparing the performances of SLF13~which
includes DNA features! and SLF8~which does not! confirms
o. 5



From quantitative microscopy . . .
Fig. 5 Selected images from the 3-D 3T3 cell image collection after preprocessing. Each image represents a major cluster from the subcellular
location tree created by cluster analysis.5 Projections on the X-Y and X8-Z planes are shown together.
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the prior conclusion that including the DNA features provides
an improvement of approximately 2%.

Since feature selection improved classification accuracy in
the previous experiments, we conducted a comparison o
eight different feature reduction methods~described in Sec.
3.2! on the feature set SLF7 using the 2-D HeLa image set.29

To facilitate feature subset evaluation, a faster classifier,
multiclass support vector machine with a Gaussian kerne
was used to evaluate each of the resulting feature subse
using ten-fold cross-validation.29 Table 5 shows the results of
the eight feature reduction methods. First, about 11% accu
racy improvement was achieved by simply changing the neu
ral network classifier to the support vector machine classifie
using the same feature set SLF7. Although the four featur
selection methods performed better than the four feature re
combination methods in general, only the genetic algorithm
and SDA gave statistically better results over SLF7 alone
Considering the overall accuracy and the running time re
quired, the best performance among the eight methods was b
SDA. In subsequent work, we therefore used SDA as ou
feature selection method. SDA returns a set of features tha
are considered to discriminate between the classes at som
specified confidence level, ranked in decreasing order of the
statistic. To determine how many of these to use for a specifi
classification task, we routinely train classifiers with sets of
features where thei ’ th set consists of the firsti features re-
turned by SDA, and then choose the set giving the best pe
formance.

To further improve the classification accuracy on the 2-D
HeLa image set, we evaluated eight different classifiers, a
described in Sec. 3.3, using the feature subsets SLF13 an
SLF8 ~which were the best feature subsets with and withou
DNA features, respectively!. All parameters were considered
changeable in these eight classifiers, and the optimal one
were selected by ten-fold cross-validation. Since each class
Journal of
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fier has its own constraints and suffers from overfitting giv
limited data, instead of choosing the optimal single classi
for each feature subset, we constructed an optimal majo
voting classifier ensemble by considering all possible com
nations of the eight evaluated classifiers. The average pe
mance of this majority-voting classifier was 3% higher th
the neural network classifier for both SLF8 and SLF13~Table
4!.

The features used to obtain the results described so fa
of a variety of types that were chosen to capture differ
aspects of the protein patterns. To determine whether the
formance could be improved further, we explored adding
large set of new features that might duplicate those alre
used, and employing SDA to find the best discriminative fe
tures. We therefore added 60 Gabor texture features an
Daubechies four-wavelet features, as described in theWavelet
featuresparagraph of Sec. 3.1.1, to feature set SLF7. S
was performed on the combined set with and without DN
features, and the ranked features were evaluated incremen
by using the optimal majority-voting classifiers for SLF13 a
SLF8, respectively. This resulted in two new feature se
SLF16, which contains the best 47 features selected from
entire feature set, including DNA features, and SLF15, wh
contains the best 44 features selected from the entire fea
set, excluding DNA features. The same strategy of constr
ing the optimal majority-voting classifier was conducted
these two new feature subsets. As seen in Table 4, the re
was a small improvement in classification accuracy~to 92%!,
and the same accuracy was obtained with and without
DNA features~indicating that some of the new features ca
tured approximately the same information!.

The results in Table 4 summarize extensive work to op
mize the classification of protein patterns in 2-D images,
the overall accuracy does not fully capture the ability of t
Biomedical Optics d September/October 2004 d Vol. 9 No. 5 903
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Table 4 Progression in classification accuracy for 2-D subcellular patterns as a result of improving feature sets and optimizing classifiers. NN:
one-hidden-layer neural network with 20 hidden nodes. MV: Majority voting classifier. N/A: not available.

Image
dataset Feature set

Requires
DNA

image?

Number
of

features Classifier

Average classifier accuracy
(%)

On test set On training
set

2-D CHO Zernike
moment

no 49 NN 87 94

2-D CHO Haralick
texture

no 13 NN 88 89

2-D HeLa SLF2 yes 22 NN 76 89

2-D HeLa SLF4 yes 84 NN 81 95

2-D HeLa SLF5 (SDA
from SLF4)

yes 37 NN 83 95

2-D HeLa SLF3 no 78 NN 79 94

2-D HeLa SLF7 no 84 NN 74 N/A

2-D HeLa SLF8 (SDA
from SLF7)

no 32 NN 86 N/A

2-D HeLa SLF13 (SDA from
SLF71DNA)

yes 31 NN 88 N/A

2-D HeLa SLF8 no 32 MV 89 N/A

2-D HeLa SLF13 yes 31 MV 91 N/A

2-D HeLa SLF15 no 44 MV 92 N/A

2-D HeLa SLF16 yes 47 MV 92 N/A
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systems to distinguish similar patterns. This can be displaye
using a confusion matrix, which shows the percentages o
images known to be in one class that are assigned by th
system to each of the classes~since all of the images were
acquired from coverslips, for which the antibody used was
known, the ‘‘ground truth’’ is known!. Table 6 shows such a
matrix for the best system we have developed to date, th
optimal majority-voting classifier using SLF16. Superimposed
on that matrix are results for human classification of the sam
images.18 These results were obtained after computer-
supervised training and testing. The subject was a biologis
who was well aware of cellular structure and organelle shape
but without prior experience in analyzing fluorescence micro-
scope images. The training program displayed a series of ran
domly chosen images from each class, and informed the sub
ject of its class. During the testing phase, the human subjec
was asked to classify randomly chosen unseen images fro
each class, and the responses were recorded. The training a
testing were repeated until the performance of the human sub
ject stopped improving. The final average performance acros
the ten location patterns was 83%, much lower than the pe
formance of the automated system. Except for small improve
ments on a couple of classes such as mitochondria and end
some, the human classifier performed worse than th
automated system, especially for the two closely related
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Table 5 Feature reduction results of eight feature reduction methods
on a multiclass support vector machine with Gaussian kernel and
ten-fold cross-validation using the 2-D HeLa image set. Feature reduc-
tion started from the feature set SLF7, which contains 84 features.
(Data from Ref. 29).

Feature selection
method

Minimum
number of

features for over
80% accuracy

Highest
accuracy (%)

Number of
features

required for
highest accuracy

None Not applicable 85.2 84

PCA 17 83.4 41

NLPCA None found 75.3 64

KPCA 17 86.0 117

ICA 22 82.9 41

Information gain 11 86.6 72

SDA 8 87.4 39

FDR 18 86.2 26

Genetic algorithm Not available 87.5 43
o. 5



From quantitative microscopy . . .
Table 6 Classification results for the optimal majority-voting classifier on the 2-D HeLa image set using feature set SLF16, compared to those for
a human classifier on the same dataset. The values in each cell represent the percentage of images in the class shown on that row that are placed
by the classifier in the class shown for that column (the values in parentheses are for human classification if different). The overall accuracy is 92%
(versus 83% for human classification). (Data from Refs. 18 and 55.)

True
class

Output of the classifier

DNA ER Gia Gpp Lam Mit Nuc Act TfR Tub

DNA 99 (100) 1 (0) 0 0 0 0 0 0 0 0

ER 0 97 (90) 0 0 0 (3) 2 (6) 0 0 0 1 (0)

Gia 0 0 91 (56) 7 (36) 0 (3) 0 (3) 0 0 2 0

Gpp 0 0 14 (53) 82 (43) 0 0 2 (0) 0 1 (3) 0

Lam 0 0 1 (6) 0 88 (73) 1 (0) 0 0 10 (20) 0

Mit 0 3 0 0 0 92 (96) 0 0 3 (0) 3 (0)

Nuc 0 0 0 0 0 0 99 (100) 0 1 (0) 0

Act 0 0 0 0 0 0 0 100 (100) 0 0

TfR 0 1 (13) 0 0 12 (3) 2 0 1 (0) 81 (83) 2 (0)

Tub 1 (0) 2 (3) 0 0 0 1 (0) 0 0 (3) 1 (0) 95 (93)
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classes giantin and gpp130. The experiment indicates that
human classifier is unable to differentiate between these tw
‘‘visually indistinguishable’’ patterns, while our methods were
able to provide over 80% differentiation.

Classifying 3-D images.Given the encouraging results for
classifying 2-D fluorescence microscope images, we extende
the evaluation to 3-D fluorescence microscope images. Th
3-D HeLa dataset we used contains 11 subcellular locatio
patterns, the ten patterns in the 2-D HeLa dataset, plus a tot
protein ~or ‘‘cytoplasmic’’! pattern. For this dataset we first
evaluated the neural network classifier with one hidden laye
and 20 hidden nodes using a new SLF9 feature set modele
on the morphological features of SLF2.20 As shown in Table
7, the average accuracy over 11 classes was 91% after 5
cross-validation trials, which was close to the best 2-D result
SLF9 contains morphological features derived from both the
protein image and parallel DNA images. To determine the
value of the DNA features, the 14 features that require a par
Journal of
a

d

l

d

0

allel DNA image were removed from SLF9, and the rema
ing 14 features were defined as SLF14. The same neural
work was trained using SLF14 on the 3-D HeLa image s
and the average accuracy achieved was 84%, 7% lower
for SLF9. The greater benefit from DNA features for 3-
images than for 2-D images could be due to at least t
reasons. The first is that at least some of the nonmorphol
cal features in the larger 2-D feature sets capture informa
that duplicates information available by reference to a DN
image, and since only morphological features were used
the 3-D analysis, that information was not available witho
the DNA features. The second is that the DNA reference p
vides more information in 3-D space than in a 2-D plane.

As before, we applied stepwise discriminant analysis
SLF9 and selected the best nine features to form the su
SLF10, for which 94% overall accuracy was achieved by e
ploying the neural network classifier on the same image se20

To further improve the classification accuracy, we employ
Table 7 Progression in performance for 3-D subcellular patterns as a result of improving feature sets and optimizing classifiers. NN: one-hidden-
layer neural network with 20 hidden nodes. MV: Majority voting classifier. N/A: not available.

Image
dataset Feature set

Requires DNA
image?

Number of
features Classifier

Average classifier accuracy
(%) on test set

3-D
HeLa

SLF9 yes 28 NN 91

SLF14 no 14 NN 84

SLF10 (SDA
from SLF9)

yes 9 NN 94

SLF14 no 14 MV 90

SLF10 yes 9 MV 96
Biomedical Optics d September/October 2004 d Vol. 9 No. 5 905
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Huang and Murphy
the same strategy used for 2-D images by creating optima
majority-voting classifiers for both SLF10 and SLF14. About
6 and 2% performance improvements over the previously
configured neural network classifier were observed for SLF14
and SLF10, respectively. The confusion matrix of the optima
majority-voting classifier for SLF10 on the 3-D HeLa image
set is shown in Table 8. Compared to the confusion matrix in
Table 6, the recognition rates of most location patterns wer
significantly improved. The two closely related patterns, gian-
tin and gpp130, now could be distinguished over 96% of the
time, 14% higher than the best 2-D results. It suggests tha
3-D fluorescence microscope images do capture more info
mation about protein subcellular distribution than 2-D images
even for unpolarized cells.

Implications and cost-performance analysis.As discussed
before, the three properties of a desirable automated imag
interpretation system are objectivity, accuracy, and speed. Th
first two properties have been demonstrated extensively, an
we now turn to the computational time required for classify-
ing images using our system. The time spent on each analys
task can be divided into three parts: image preprocessing, fe
ture calculation, and final analysis. The preprocessing step
for both 2-D and 3-D images include segmentation, back
ground subtraction, and thresholding. To calculate the cost o
each feature set, we consider both the setup cost~a group of
related features may share a common setup cost! and the in-
cremental cost for each feature. Table 9 shows the times fo
typical classification tasks using various feature sets. Prepro
cessing of 2-D images needs fewer resources than the actu
feature calculation. In contrast, the preprocessing step occu
pies the largest portion of the feature costs for 3-D images
The cost of training and testing a classifier largely depends o
the implementation of the specific classifier. We therefore
used a support vector machine with Gaussian kernel functio
as an example classifier for each feature set, which performe
reasonably well and was ranked as one of the top classifie

Table 8 Confusion matrix for the optimal majority-voting classifier
on the 3-D HeLa image set using feature set SLF10. The overall accu-
racy is 96%. (Data from Ref. 55.)

Cyt DNA ER Gia Gpp Lam Mit Nuc Act TfR Tub

Cyt 100 0 0 0 0 0 0 0 0 0 0

DNA 0 98 0 0 0 0 0 2 0 0 0

ER 0 0 97 0 0 0 0 0 2 0 2

Gia 0 0 0 98 0 2 0 0 0 0 0

Gpp 0 0 0 4 96 0 0 0 0 0 0

Lam 0 0 0 2 2 96 0 0 0 0 0

Mit 0 0 0 3 0 0 95 0 2 0 0

Nuc 0 0 0 0 0 0 0 100 0 0 0

Act 0 0 2 0 0 0 1 0 95 2 0

TfR 0 0 0 0 0 6 4 0 2 85 4

Tub 0 0 4 0 0 0 0 0 0 2 94
906 Journal of Biomedical Optics d September/October 2004 d Vol. 9 N
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for each feature set. Comparing all three cost compone
feature calculation dominates the classification task of 2
images and image preprocessing dominates that of 3-D
ages. Figure 6 displays the best performance of each fea
set as a function of its computational cost. Using the feat
set SLF13, we can expect to process about 8000~six images
per minute over 24 h! 2-D fluorescence microscope image

Table 9 Execution times for classifying 2-D and 3-D fluorescence
microscope images. The number inside parentheses indicates the
number of features in each feature set. Classification times shown are
for the training/testing of an SVM classifier. All times are for a 1.7 GHz
CPU running Matlab 6.5. (Data from Ref. 55.)

Operation CPU time per image(s)

Image
preprocessing

2-D
preprocessing

0.6

3-D
preprocessing

27.9

Feature
calculation

2-D DNA SLF13 (31) 10.2

SLF16 (47) 65.7

2-D SLF8 (32) 12.6

SLF15 (44) 67.7

3-D DNA SLF10 (9) 4.1

3-D SLF14 (14) 3.6

Classification 2-D DNA SLF13 1.431022/5.931022

SLF16 2.131022/1.131021

2-D SLF8 1.531021/2.031021

SLF15 1.231021/3.631021

3-D DNA SLF10 4.331022/3.831022

3-D SLF14 8.531022/4.831022

Fig. 6 Best performance of six feature sets versus their time costs on
the 2-D and 3-D HeLa image collections. SLF8 (filled square), SLF10
(open diamond), SLF13 (filled diamond), SLF14 (open square), SLF15
(filled triangle), SLF16 (filled circle).
o. 5



From quantitative microscopy . . .
Fig. 7 Average performance of six feature set in image set classifica-
tion with different set sizes. SLF8 (filled square), SLF10 (open dia-
mond), SLF13 (filled diamond), SLF14 (open square), SLF15 (filled tri-
angle), SLF16 (filled circle).
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per day with approximately 92% average accuracy over te
major subcellular location patterns. Of course, the calculation
of many of the features we have used can potentially be
speeded up dramatically by generating optimized, compiled
code rather than using Matlab scripts.

The approaches described here can be used as a roadm
for building automated systems to recognize essentially an
combination of subcellular patterns in any cell type. We have
described over 170 2-D features and 42 3-D features that ca
be used in combination with various feature selection and
classification strategies.

Classifying sets of images.Cell biologists rarely draw con-
clusions about protein subcellular location by inspecting an
image of only a single cell. Instead, a conclusion is usually
drawn by examining multiple cells from one or more slides.
Journal of
ap

n

We can improve the overall classification accuracy of au
mated systems in a similar manner by classifying sets of
ages drawn from the same class using plurality voting19

Theoretically, we should observe a much higher recognit
rate given a classifier performing reasonably well on in
vidual images. Two factors influence the accuracy of this
proach: the number of images in each set and the numbe
features used for classification. Increasing the set size sh
enhance the accuracy, such that a smaller set of feat
would be good enough for essentially perfect classificati
On the other hand, given a larger set of good features
smaller set size would be sufficient for accurate recogniti
We have evaluated this tradeoff for the 2-D and 3-D He
datasets~Figs. 7 and 8!. For each feature set, random sets o

Fig. 8 Average performance of six feature sets using different numbers
of features in classifying ten-image sets. SLF8 (filled square), SLF10
(open diamond), SLF13 (filled diamond), SLF14 (open square), SLF15
(filled triangle), SLF16 (filled circle).
Fig. 9 A subcellular location tree (SLT) created for the ten-class 2-D HeLa cell collection.50
Biomedical Optics d September/October 2004 d Vol. 9 No. 5 907



Huang and Murphy
Fig. 10 Selecting the best feature subset from SLF11 to classify the 46-class 3-D 3T3 cell image collection. The average performance of a neural
network classifier with one hidden layer and 20 hidden nodes after 20 cross-validation trials is shown for sets comprising increasing numbers of
features from SDA.5
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given size were drawn from the test image set for a given
classifier ~all images in the set were drawn from the same
class!, and each image was classified using the optima
majority-voting classifier for that feature set. The class receiv
ing the most votes was assigned to that random set. This pro
cess was repeated for 1000 trials for each class.

The results showed that the smallest image set size for a
overall 99% accuracy was seven 2-D images for SLF13 an
five 3-D images for SLF10, respectively~Fig. 7!. The fewest
features to achieve an average 99% accuracy given a te
image set were the first nine features from SLF16 on 2-D
images and the first six features from SLF10 on 3-D images
respectively~Fig. 8!. The higher recognition rate for SLF10
on 3-D HeLa images accounts for both the smaller set siz
and the smaller number of features required for essentiall
perfect classification. This approach of using an imperfec
single cell classifier to achieve nearly perfect accuracy on
small sets of images is anticipated to be especially useful fo
classifying patterns in single wells via high-throughput mi-
croscopy.

3.4.3 Unsupervised clustering of fluorescence
microscope images
We have reviewed the prior work on supervised learning o
subcellular location patterns in a number of image sets take
from different types of cells and microscopy methods. The
results demonstrate not only the feasibility of training such
systems for new patterns and cell types, but also demonstra
that the numerical features used are sufficient to capture th
essential characteristics of protein patterns without being
908 Journal of Biomedical Optics d September/October 2004 d Vol. 9 N
-
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e

overly sensitive to cell size, shape, and orientation. The va
of these features for learning known patterns suggests
they can also be valuable for analyzing patterns for prote
whose location is unknown~or not completely known!. In this
section, we describe results for such unsupervised cluste
of fluorescence microscope images according to their loca
similarity. By definition, no ground truth is available fo
evaluating results from unsupervised clustering, and the go
ness of clustering results can only be evaluated empirical

One of the most popular clustering algorithms is hierarc
cal clustering, which organizes the clusters in a tree struct
Hierarchical clustering is often conducted agglomeratively
starting with all instances as separate clusters and merging
closest two clusters at each iteration until only one cluste
left. The distance between each cluster pair can be calcul
using different measures, such as the Euclidean distance
the Mahalanobis distance~which normalizes for variation
within each feature and correlation between features!. An
average-link agglomerative hierarchical clustering algorith
was first applied for SLF8 on the ten-class 2-D HeLa ima
set.50 Each class was represented by the mean feature ve
calculated from all images in that class. Mahalanobis d
tances were computed between two classes using their fe
covariance matrix. The resulting tree~subcellular location
tree! is shown in Fig. 9. This tree first groups giantin an
gpp130, and then the endosome and lysosome patterns
two most difficult pattern pairs to distinguish in supervis
learning.

Just as protein family trees have been created that grou
proteins by their sequence characteristics,51 we can also create
o. 5



From quantitative microscopy . . .
Fig. 11 A SLT created by using the best ten features selected from SLF11 by SDA for the 46 proteins from the 3T3 image collection.5
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a subcellular location tree~SLT! that groups all proteins ex-
pressed in a certain cell type by their subcellular location. The
data required to create comprehensive SLTs can be obtaine
from projects such as the CD-tagging project started a few
years ago,13,16 the goal of which was to tag all possible genes
in mouse 3T3 cells and collect fluorescence microscope im
ages of the tagged proteins. Preliminary results on clusterin
3-D images of the first 46 proteins to be tagged have bee
described.5 The approach used is parallel to that for classifi-
cation: feature selection and then selection of a clusterin
method.

To select the optimal features for clustering, SDA was con-
ducted starting from feature set SLF11~which contains 42
3-D image features!. For this purpose, each clone was consid-
ered to be a separate class, even though some clones mig
show the same location pattern. The rationale was that an
feature that could distinguish any two clones would be ranked
highly by SDA. To decide how many of the features returned
by SDA to use, a neural network classifier with one hidden
layer and 20 hidden nodes was used to measure overall cla
sification accuracy for increasing numbers of the selected fea
Journal of
d

ht

-
-

tures ~Fig. 10!. The first 10 to 14 best features selected
SDA give an overall accuracy close to 70% on the 46 prote
~since some of the clones may have the same pattern, w
not expect to achieve the same high accuracy that we obta
earlier when the classes were known to be distinct!. We there-
fore applied the agglomerative hierarchical clustering alg
rithm on the 3-D 3T3 image set using the first ten featu
selected from SLF11. The features were normalized to h
zero mean and unit variance~z scores!, and Euclidean dis-
tances between each clone were computed from their m
feature vectors. The resulting SLT is shown in Fig. 11. Eva
ation of trees such as this can be difficult, since if the ex
location of each protein was known, clustering would not
necessary. However, we can examine images from var
branches from the tree to determine whether the results a
least consistent with visual interpretation. For example, t
clusters of nuclear proteins can be seen in the tree: Hmga
Hmga1-2, Unknown-9, Ewsh, Hmgn2-1 in one, an
Unknown-11, SimilarToSiahbp1, and Unknown-7 in anoth
By inspecting two example images selected from these
clusters, as shown in Fig. 12, it is obvious that the form
Biomedical Optics d September/October 2004 d Vol. 9 No. 5 909



ace,
the
ut-
an
cal
cted,
tion
13

ical
hile
ture.
or-

Huang and Murphy
Fig. 12 Two example images selected from the two nuclear clusters
shown in Fig. 11: (a) Hmga1-1; and (b) Unknown-11.5
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cluster represents proteins uniquely localized in the nucleus
and the latter cluster represents proteins localized in both th
nucleus and the cytoplasm near the nucleus. This type of em
pirical comparison can heighten confidence that the tree rep
resents an objective grouping of the location patterns.

3.4.4 Other important applications
The automated system described so far provides a validate
converter that transforms the information on a protein subcel
lular distribution in a digital image into a set of numbers
~features! that are informative enough to replace the image
itself. Many off-the-shelf statistical analysis tools can be di-
rectly applied to this numerical image representation, and hel
us to draw statistically sound conclusions for protein patterns

Typical image selection.An example is to obtain the most
typical image from a set of fluorescence microscope images
Typical image selection is often encountered in a situation
when a very small number of images have to be selected from
a large image collection. Traditionally, visual inspection is
used, which is both subjective and unrepeatable given differ
ent inspectors. We have described methods that provide a
objective and biologically meaningful way of ranking images
by their typicality from a collection.52

The images in a collection can be represented as a group
multidimensional data points in the feature space. The cen
troid of this group can be calculated by taking the mean fea
ture vector of all data points. Distances, such as Euclidean an
Mahalanobis distances, can be computed between each da
point and the centroid. All images in the collection can be
910 Journal of Biomedical Optics d September/October 2004 d Vol. 9 N
,

-
-

d

.

n

f
-

d
ta

ranked by their distances to the centroid in the feature sp
and the most typical image would be the one on the top of
list.52 To obtain the most reliable centroid, we found that o
lier rejection was very helpful and provided better results th
other methods. Various experiments on finding most typi
images from contaminated image sets have been condu
and the results showed that the Mahalanobis distance func
was better than the Euclidean distance function. Figure
shows results from one of the experiments. The most typ
Golgi images are characterized by compact structure, w
the least typical ones are characterized by dispersed struc
The biological explanation for this observation is that a n
mal Golgi complex goes through fragmentation prior to c
division, and therefore a minority of cells shows a dispers
pattern. The results illustrate the value of automated typica
analysis.

Image set comparison.Each fluorescence microscope im
age representing a certain subcellular location pattern is
termined by two factors: the protein that is labeled and
environment under which the image is taken. One factor
be easily employed to infer changes of the other. For insta
the various protein subcellular location patterns can be co
pared to each other given a fixed environment for all class
On the other hand, we can compare the properties of var
environments~such as the presence of drugs! given a fixed
protein as the reference. In both scenarios, two sets of ima
taken from different conditions have to be compared. We h
described an objective method to compare two image se53

which can be used in many practical applications such as d
screening and target verification.

Given our informative features, the task of comparing tw
image sets can be transformed to a statistical analysis
compares two feature matrices computed from the two s
The HotellingT2 test,54 which is the multivariate version o
the t test, can be used to compare two feature matrices. A
illustration of the approach, we performed all pairwise co
parisons of the ten-class 2D HeLa set using feature
SLF6.53 Each comparison yielded an F value, which could
compared to a critical F value for a given significance lev
All pair-wise F values were larger than the critical F value f
95% confidence, and therefore all class pairs were consid
statistically different~which is consistent with the observatio
that classifiers can be trained to distinguish all of them!. The
Fig. 13 Most and least typical giantin images selected from a contaminated image set. (a) through (d): giantin images with high typicality; (e)
through (h): giantin images with low typicality.52
o. 5
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From quantitative microscopy . . .
two pairs that gave the smallest F values were giantin with
gpp130, and LAMP2~lysosomes! with a transferrin receptor
~endosomes!, which are again consistent with the classifica-
tion and clustering results described earlier. To prove that th
statistical test was not overly sensitive, we conducted two
experiments. The first experiment was designed to compar
equal-sized sets randomly drawn from the same class 100
times. Approximately 5% of the total trials were considered to
be statistically different, which is what is expected for a 95%
confidence level. The second experiment was designed t
compare two sets of giantin images by using different labeling
approaches, a rabbit antiserum and a mouse monoclonal an
body. The resulting F value was 1.04, less than the critical F
value 2.22 for 95% confidence. These two experiments con
firmed that our methods were able to correctly identify two
sets from the same pattern, but able to distinguish sets draw
from patterns known to be different.

As a further step, we can perform univariate t tests to in-
spect the contribution of each feature to the discrimination o
two image sets. Table 10 shows the features found by univar
ate t tests to be most different between the giantin and gpp13
image sets. The distinction between these two sets could b
largely attributable to the morphological features that describ
the overall cell shape and object properties. Our objective
image set comparison method can be applied in drug scree
ing, where the candidate drug would be the one that could
cause the most significant location change of a target protein
On the other hand, the optimal target could be selected as th
one that displays the largest location change given a know
drug.

4 Summary
In this review, we describe an image understanding system
that features image processing, classification, clustering, an
statistical analysis of fluorescence microscope images. Th
system is an example of applying advanced computer visio
and pattern recognition techniques to digital images generate
from quantitative microscopy. An objective, accurate, and

Table 10 Most discriminative features from SLF6 ranked by their
univariate t-test results for the giantin and gpp 130 image sets. (Data
from Ref. 53).

Feature

Confidence level
at which the feature

differs

Eccentricity of the ellipse equivalent to
the protein image convex hull

99.99999

Convex hull roundness 99.9999

Measure edge direction homogeneity 1 99.9873

Average object size 99.9873

Average object distance to the center of
fluorescence

99.9873

Ratio of largest to smallest object to
image center of fluorescence distance

99.9873
Journal of
0

i-

n

-

e

-

.
e

d

d

high-throughput system is necessary for reliable and rob
image interpretation in biomedical optics applications. O
methods, along with high-throughput imaging hardware, c
be used to determine the subcellular location of every pro
expressed in a certain cell type, which results in a comp
location tree necessary for functional proteomics. The w
described here only scratches the surface of what is poss
for automated microscopy.
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