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Abstract. Diffuse optical tomography allows quantification of hemo-
globin, oxygen saturation, and water in tissue, and the fidelity in this
quantification is dependent on the accuracy of optical properties de-
termined during image reconstruction. In this study, a three-step algo-
rithm is proposed and validated that uses the standard Newton mini-
mization with Levenberg-Marquardt regularization as the first step.
The second step is a modification to the existing algorithm using a
two-parameter regularization to allow lower damping in a region of
interest as compared to background. This second stage allows the
recovery of the actual size of an inclusion. A region-based reconstruc-
tion is the final third step, which uses the estimated size and position
information from step 2 to yield quantitatively accurate average val-
ues for the optical parameters. The algorithm is tested on simulated
and experimental data and is found to be insensitive to object contrast
and position. The percentage error between the true and the average
recovered value for the absorption coefficient in test images is re-
duced from 47 to 27% for a 10-mm inclusion, from 38 to 13% for a
15-mm anomaly, and from 28 to 5.5% for a 20-mm heterogeneity.
Simulated data with absorbing and scattering heterogeneities of 15
mm diam located in different positions show recovery with less than
15% error in absorption and 6% error in reduced scattering coeffi-
cients. The algorithm is successfully applied to clinical data from a
subject with a breast abnormality to yield quantitatively increased
absorption coefficients, which enhances the contrast to 3.8 compared
to 1.23 previously. © 2004 Society of Photo-Optical Instrumentation Engineers.
[DOI: 10.1117/1.1803545]
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1 Introduction
Since Jobsis showed in 1977 that the relatively good transpa
ency of biological materials to the near-infrared part of the
spectrum can be used to help monitor hemoglobin and oxyge
saturation information,1 the field of noninvasive optical imag-
ing has experienced sustained growth and development to
ward clinically viable imaging systems. Studies have been
performed using this modality to interrogate different tissues
such as brain,2–4 breast,5–7 muscle,8 forearm,9 and skin,10 or
for monitoring light-sensitive treatments such as photody-
namic therapy.11,12 In the case of breast tissue, the technique
provides new information that may be used to diagnose tu
mors based on their metabolic and functional status repre
sented through vascularization, oxygenation, and water con
tent. This information is not available from conventional
imaging modalities such as mammography, and there is po
tential for combining these with the added information pro-
vided by near infrared~NIR! optical tomography to increase
the specificity and sensitivity of clinical screening.13 In optical
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imaging, the dominant contrast results from increased he
globin at the location of the tumor due t
neovascularization,14 which causes increased optic
absorption,6,15,16 although scattering mechanisms also occ
that may hold diagnostic promise as well. Tissue hypo
typically found in malignant tumors14 is recorded in the oxy-
gen saturation images of the breast, and water content im
are also anticipated to provide additional information in ca
such as fiberadenoma15 or fibrocystic disease. Recent studi
have suggested that structural information related to den
of the breast and risk of cancer may also be available thro
NIR optical tomography.17–20

Obtaining hemoglobin, oxygen saturation, and water i
ages of the breast using diffuse optical tomography is a th
stage process: 1. obtaining measurements of light reflecta
from the breast; 2. applying a model of light propagation
recover the bulk optical properties of the breast such as
sorption and reduced scattering coefficients; and 3. estima
concentrations of the underlying molecular chromophores
the tissue using their known spectral signatures. Hence,
quantitative reliability of chromophore concentration es
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Srinivasan et al.
mates from the last stage depends significantly on the resul
from stages 1 and 2. Several experimental techniques involv
ing time domain,21,22 frequency domain,23,24 and continuous
wave25,26 signals have been developed for quantification of
tissue optical properties. Advancements in instrumentation ar
improving the quality of the measured data, but the process o
obtaining the optical properties from the data is itself a com-
plex problem. Several models have been developed, and
particular interest is the diffusion approximation to the radia-
tion transport equation. This approximation is widely used
because it can be computationally fast and robust when imple
mented using the finite element approach, providing a flexible
way to model arbitrary tissue volumes.27 Image reconstruction
results have shown accurate spatial recovery of heterogen
ities, however, the common consensus seems to be that t
spatial resolution is poor, which results physically from the
dominance of scattering within tissue.28,29 There is also some
limitation on the ability to uniquely separate absorption and
scattering coefficients when both variations exist within tis-
sues, although empirical methods have been devised to min
mize this problem.30 Even when absorption and scattering im-
ages can be recovered~as in most cases!, the quantitative
characterization of heterogeneities in terms of their absorptio
coefficient has been found to decrease as the size of the he
erogeneity decreases,31 which is an unfortunate side effect of
having images that are essentially low-pass filtered in spatia
frequency. Studies have shown that optical properties are re
covered to within 15% of true value in cases of anomalies o
size 25 mm,32 and 25% for heterogeneities of size 17 mm;30

however, for an object of 10 mm, the error limit can be much
higher. In 3-D modeling of diffusion theory, Dehghani et al.
have shown that only 15% of the true value could be reache
for an object of diameter 8 mm.33 Since this inaccuracy af-
fects the resultant chromophore concentrations, the ability t
quantify hemoglobin, oxygen saturation, and water suffers
and poses a limit on the reliability and diagnostic capability of
optical tomography.

Several studies have focused on developing innovative ap
proaches to solving the problem of maximizing the accuracy
of small objects. For example, Paulsen and Jiang implemente
a technique to modify the objective function to minimize both
the least-square error and the total variation of the field, which
provided reconstruction of objects with sharp edges, thereb
minimizing the total variation between pixels within the
field.34 Other alternative objective functions are possible, and
several have been attempted with limited success.35,36 Epp-
stein et al. introduced the idea of using successive zonatio
approaches in image reconstruction, similar to the multigrid
methods used in larger scale relaxation methods.37 Another
concept along these lines is to usea priori information about
the size and position of the tumor to enhance the quantitativ
accuracy of absorption and scattering of tumors, as demon
strated by Schweiger and Arridge,38 Pogue and Paulsen,39 De-
hghani et al., and Brooksby et al.40 This kind of high accuracy
characterization would be especially useful to have in smal
objects. However, thea priori information is typically ob-
tained from MRI and requires a combined MRI-NIR system,
which is currently unavailable in most cases. While all of the
techniques noted have their strengths and weaknesses, o
overriding issue is the need for a problem-dependent calibra
1162 Journal of Biomedical Optics d November/December 2004 d Vol.
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tion factor in the objective function, or the inclusion ofa
priori information in the process.

This work is directed toward developing an algorithm f
increased accuracy in quantification of heterogeneities w
out a priori information and without a strong need for empir
cally derived calibration factors. It applies a variant of t
zonation technique proposed by Eppstein et al.,37 and follows
a systematic investigation of how to implement the approa
Specifically, the existing reconstruction algorithm has be
modified to first start with the standard Newton minimizatio
approach, and follow this up with zonation methods, whi
reduce the problem to one that is uniquely defined and d
not require regularization. The modification examined is
three-step reconstruction, where step 1 consists of the exis
algorithm that gives the approximate size and position of
anomaly, while step 2 repeats this reconstruction with a tw
parameter regularization scheme where the anomaly~detected
as a region of interest from step 1! is given a lower value
compared to the background, yielding more freedom to
date in areas with the largest change in optical properties. T
type of reconstruction allows the heterogeneity to recover
true size, and the knowledge of size and position of
anomaly are extracted from this second step. Step 3
region-based reconstruction that uses the second step re
as a priori information, to produce quantitatively accura
values for the optical parameters. This method substanti
improves the image accuracy and has been validated u
simulated and experimental data for anomalies between
sizes of 10 and 20 mm with differing contrasts and positio
Finally, the algorithm is applied to clinical subject data
examine how it changes the observed contrast in a tumor r
tive to the background breast properties.

2 Methods
The image reconstruction is based on the frequency dom
diffusion equation used to model light propagation in high
scattering media,21,41 which is given by

2¹D~r !¹F~r ,v!1Fma~r !1
iv

c GF~r ,v!5q0~r ,v!,

~1!

whereF(r ,v) is the isotropic fluence,D(r ) is the diffusion
coefficient,ma(r ) is the absorption coefficient,c is the speed
of light in the medium,v is the modulation frequency, an
q0(r ,v) is an isotropic source. The diffusion coefficient ca
be written as

D~r !5
1

3@ma~r !1ms8~r !#
, ~2!

wherems8 is the reduced scattering coefficient. Equation~1!
has been modeled using finite element theory and the bo
ary condition applied is a type 3 Robin-type boundary con
tion relatingF(r ,v) to the internal reflection at the boundar
Complete details of the implementation of this algorithm c
be found elsewhere.27,28,42Briefly, the core of the reconstruc
tion scheme is a Newton-Raphson minimization method
iteratively updating the optical property parameters based
minimization of the standard sum of squared differences
9 No. 6
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Improved quantification of small objects . . .
tween the measured and calculated optical radiance at speci
detector locations. This type of error is a measure of the fit o
the model to the measured data, often referred to as the pr
jection error, and is commonly used as a surrogate measure
the convergence of the algorithm.

2.1 Step 1: Levenberg-Marquardt Reconstruction
Algorithm
Using a truncated Taylor series expansion forF to relate it to
the update of the optical properties at each iteration gives42

IDm5F02Fc , ~3!

whereI is the Jacobian matrix consisting of derivatives ofF
with respect toma and D for each source-detector location
pair, Dm is the vector containing the perturbations ofma and
D, and F0 and Fc are the measured and calculated fluence
detected at the boundary. Detailed derivations are available i
Refs. 29 and 42. Equation~3! is a matrix equation of type
Ax5b, wherex is the solution vector to be found. The matrix
A in this equation is generally ill-conditioned such that the
solutionx is known to be overwhelmed by data and rounding
errors. Many regularization techniques have been studied fo
the purpose of obtaining stable solutions from this class o
ill-posed problems.43 Regularization helps to keep the contri-
butions from different errors within limits by constraining the
problem witha priori estimates that bound the solution.

Multiplying Eq. ~3! by IT to make the matrix to be in-
verted square in the number of parameter estimates, we ge

ITIDm5IT~F02Fc!, ~4!

which is regularized to yield

~ITI1lI !Dm5IT~F02Fc!, ~5!

whereI is the identity matrix andl is the regularizing factor
that stabilizes the solution~i.e., matrix inversion!. The
Levenberg-Marquart technique is a widely used regularization
technique~introduced by Ref. 44! that normalizes Eq.~5! and
makes the HessianITI diagonally dominant by using a diag-
onal matrixG, whose terms are comprised of inverse square
roots of the corresponding diagonal terms ofITI to produce45

@G~ITI1lI !G#~G21Dm!5GIT~F02Fc!. ~6!

The sequencing approach forl as introduced by
Marquardt46,47 depends on the projection error and can be
written as

l~k11!5H l~k!

c
, x2~k!<x2~k21!

l~k!,c, x2~k!.x2~k21!
J , ~7!

where c is a constant(c5A10 in this work! and x2 is the
projection error. The value ofl in Eq. ~6! obviously deter-
mines the nature of the relationship. Ifl is too high, it domi-
nates Eq.~5! and successive iterations do not yield much
change in the update vector. However, if this damping facto
is too small, then the problem will be dominated by noise in
the data. In our studies, we have found empirically that a
starting value ofl in the range of 1000 to 1 reasonably re-
Journal of Bio
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covers the optical images,48 and noise begins to dominate fo
starting regularization values below 1. The stopping criter
is met when the projection error is within 2% of the previo
iteration’s error. This typically occurs at 10 to 12 iteration
and all the reconstructions in step 1 in this study have be
with l510. We use a dual mesh scheme,34 where the Jacobian
is calculated on a fine mesh~1785 nodes! and interpolated
onto a coarse mesh~425 nodes! to minimize the number of
unknowns being estimated in Eq.~6!. This algorithm, when
implemented, recovers spatial heterogeneities in appr
mately the correct position.30 Because of the ill-posed natur
of the problem, the size of the anomaly is typically blurr
with an approximately Gaussian-shaped profile,49 and the av-
erage quantification of optical properties is underestima
with this underestimation depending on the heterogen
size.30,49 However, since this reconstruction recovers the h
erogeneity in its approximate position, this is used as step
the three-step procedure.

2.2 Step 2: Two Region Regularization
Since the regularization parameter governs the freedom of
pixels to change more from one iteration to the next, if
lower regularization parameter is specified in a region of
terest ~ROI! compared to the background, the pixels in t
ROI have more opportunity to update so that the proper
ultimately reach the true value, and the ROI reaches the
size. In step 2 of our reconstruction,l in Eq. ~6! is rewritten
as

l~k!5H l1~k!, ROI

l2~k!, otherwiseJ , ~8!

wherel1 and l2 are two selected regularization paramete
that follow the relationship expressed in Eq.~7! with l1
,l2 .

The ROI to be given lower regularization is determined
full width half maximum~FWHM! criterion on the final ab-
sorption or scattering coefficient images~when the algorithm
has iterated to stopping criterion! from step 1. ROI computed
this way is the region containing all the reconstructed no
having optical parameters greater than or equal to a thresh
defined as the difference between maximum and half of
difference between the maximum and mean of the param
throughout the image. It is assumed that FWHM gives a r
sonable measure of the size of the recovered heterogen
Due to the blurring effect, the ROI defined from step 1 typ
cally encompasses the actual heterogeneity as well as a
sition zone. In comparison, when the final images from
second step are regionized in the same way using FWHM
more accurate size estimate of the heterogeneity is obtai
The quantitative accuracy of the property value recovery fr
step 2 may still deviate from the true value, but it is expec
to be closer to the true values relative to step 1. The b
numerical values to use forl1 and l2 will depend on the
object size as well as its contrast and position. In our al
rithm, we have examined a series of values forl1 andl2 and
chosen the optimal pair based on the projection er
behavior—the pair giving the lowest projection error at t
last iteration~when error change is less that 2%! is used.
medical Optics d November/December 2004 d Vol. 9 No. 6 1163
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Srinivasan et al.
2.3 Step 3: Region-Based Reconstruction Using
Spatial Information from Step 2
Step 3 of the process is a region-based reconstruction that h
been applied previously in the context of usinga priori
information.33,38,39The implementation of this algorithm has
been described in detail in Ref. 33. In short, it consists of
homogenizing regions in the mesh, by updating selecte
zones uniformly so that the final image consists of a signifi-
cantly reduced set of parameter values that represent the pro
erty estimates for the individual regions. This type of recon-
struction, where the number of unknowns has been reduced
the number of regions, has shown quantitative accuracy of 9
and 93.4% in absorption and scatter for an 8-mm object a
shown by Ref. 33 using 3-D reconstruction. Our simulations
in 2-D have indicated similar high accuracy, given precise
information about the size and position of the heterogeneity
as reported in the results section. In the third step, the geo
metric constraints are derived from step 2. The mesh is as
signed regions through the zonation of areas based on FWHM
peaks in the absorption or scatter images from step 2. Thi
algorithm has proved to be sensitive to accurate position an
size estimates for the anomaly, and hence, the approxima
ROI size obtained from step 1 has proved to be inadequate fo
accurate quantification. Step 3 can be given an initial gues
obtained by averaging the optical coefficients in the step 2
ROI and a regularization factor of 100. It can also be given
the same initial guess as the two previous steps, and bo
converge to the same result with nearly identical projection
error, the only difference in the final result being the number
of iterations in which it converges.

3 Results
The results presented in the following sections focus on th
need for quantitative accuracy in NIR tomography~Sec. 1!
and demonstrate the application of the three-step reconstru
tion to simulated and experimental data and the sensitivity o
the algorithm to both contrast and position of the anomaly
~Sec. 2!. Section 3 shows promising results when applied to
clinical patient data with an abnormality. While these results
are specific to breast imaging, the concept can be extended
all 2-D or 3-D FEM applications of the diffusion approxima-
tion for improved quantification in an ROI.

3.1 Section 1: Advantage of A Priori Information
The boundary data at modulation frequency 100 MHz were
generated using the forward solver42 for a circular disk of
diameter 86 mm~mesh contains 1785 nodes! with a single
absorbing heterogeneity. The model had a backgroundma

50.005 mm21 andms851 mm21; and data for Secs. 1 and 2
were generated for differing absorption coefficient in the
anomaly ranging from 1.2 to 4.0 times the background in
increments of 0.2. This type of data was generated for a cir
cular object of diameter 10, 15, and 20 mm. Random
Gaussian-distributed noise~1%! was added, as in all simu-
lated data used in this study~1% noise has been established to
be the level of shot noise in the experimental system31!. The
object was positioned 10 mm from the edge in all cases. Th
initial guess for the reconstructions from all three steps wa
obtained from calibration of the data50 with a homogenous set
of measurements generated on the same mesh with the sa
1164 Journal of Biomedical Optics d November/December 2004 d Vol.
s

-

o

-
-

e
r

h

-

o

e

1% noise. As noted, the initial guess for steps 2 and 3 can
be obtained from the average reconstructed values from
previous stage of the reconstruction. There is no differenc
the two approaches, except in the number of iterations
quired for the solution to converge.

Figure 1~a! shows the average value for absorption coe
cient recovered in the region of interest for different diamet
of the anomaly~10, 15, and 20 mm!, for varying contrast,
based on step 1. The reconstruction was stopped when
projection error was less than 2% of the previous iterati
and a starting regularization parameter of 10 was used in
cases. The average value was computed as the mean o
absorption coefficient within the FWHM of the peak absor
tion coefficient. The high frequency noise near the bound
typically found in our images was removed from consid
ation during the regionization. Figure 1~a! shows data that
indicate quantitative accuracy suffers as the diameter of
anomaly decreases. Specifically, the mean percent error
respect to the true value used to generate the data ha
creased from 28% for a 20-mm object, to 38% for a 15-m
object, to 47.3% for a 10-mm object. A simple analysis h
been pursued to evaluate how this percent error in absorp
coefficient estimates propagates into the estimation of ch
mophore concentrations. The analysis begins with a kno
set of chromophore concentrations(HbT, StO2 , and water!
and obtains the absorption coefficients corresponding to th
concentrations using matrix multiplication@(ma)5@e#(C)
wheree is the molar absorption spectra at the six waveleng
available in our system, as evaluated in Ref. 51, andC is the
concentration of hemoglobin, oxy-hemoglobin, and wate#.

Fig. 1 (a) Average reconstructed absorption coefficients plotted as a
function of contrast for heterogeneities of different diameters com-
pared to the true values, which illustrate the bias error as the size of
the heterogeneity decreases. (b) Same as (a) for 10- and 20-mm het-
erogeneities using region-based reconstruction with a priori informa-
tion on the position and size of the inclusion.
9 No. 6
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Improved quantification of small objects . . .
Random noise was added to these sets of absorption coef
cients at the six wavelengths, and the concentrations wer
recovered using a constrained linear least-squares fit. Th
analysis was carried out for a starting concentration of tota
hemoglobin530 mM, oxygen saturation560%, and water
560% ~typical concentration found in the breast tissue5!, and
the percent error estimate used is the mean of 1000 such re
etitions. The results show that, using the current six wave
lengths used by our system, an error of nearly 50% in the
reconstructed absorption coefficient for an anomaly of 10 mm
diam can result in as much as 70% error in our estimation o
water content in the breast. Since the accuracy in these p
rameters is likely a key determinant of the diagnostic utility of
NIR information, this analysis shows the importance of quan-
titative accuracy in recovering the optical absorption coeffi-
cient, especially in small objects.

If the size and position of the anomaly is knowna priori
without steps 1 and 2, this information can directly be incor-
porated in our region-based reconstruction~step 3! to recover
the average optical properties in the ROI and background
Results from such a reconstruction for an anomaly of size 1
and 20 mm for varying contrasts is shown in Fig. 1~b!, where
data were generated in a similar fashion as before, with 1%
noise. Accurate results with less than 6% error are obtaine
for objects of both 10 mm as well as 20 mm diam~5.35% for
10 mm and 2% for 20 mm!. Hence, knowledge of anomaly
position and size is extremely useful and important in cases o
objects of 10 mm in size. The next part of the study is targeted
at extracting this information from the existing reconstruction.

3.2 Section 2: Application of Three Stage
Reconstruction
Figure 2 shows the application of the three-stage reconstruc
tion to the data generated in Sec. 1, where the quantificatio
of the average property estimate has been improved by th
final stage of the reconstruction. As noted earlier, the regular
ization parameter for step 1 is 10, whereas for step 2, th
optimal pair of the starting parameters has been chosen b
searching over all sets of possible parameters, withl1 in the
range 10 to 25~varied in steps of 5!, andl2 in the range 1 to
10 ~in steps of 1!. This range of parameters was chosen em-
pirically after testing the algorithm for different ratios ofl.
The pair giving the lowest projection error at the last iteration
has been chosen for step 2, and the regularization pair thu
obtained varies with contrast and size of the anomaly. The
results from this stage are carried on to step 3. The computa
tion time in a multiprocessing environment, for reconstruc-
tions on a fine mesh~;2000 nodes!, is approximately 3 min
for convergence~;15 iterations! for first and last step, and
varies for the second step, depending on the number of pe
mutations of regularization parameters. There is improvemen
in accuracy from a 47.3% mean error in step 1 to a 27.3%
mean error in the final step of this three-stage reconstruction
There are certain spurious oscillations in the curve for step 3
and these oscillations probably stem from very small scale
fluctuations present in the results from step 1, since step
provides the starting estimate for the ROI. There are certai
artifacts in the image arising from the small size of the
anomaly and the underdetermined nature of the reconstructio
problem, which are also a possible reason for the oscillations
Journal of Bio
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The reduced scattering coefficient is found to stay constan
the ROI, with a standard deviation of 0.06 mm21, for varying
contrast in absorption coefficient, and there is a 12% incre
in the mean of the reduced scattering coefficient result
from step 3.

Fig. 2 (a) The average reconstructed absorption coefficients in the
heterogeneity are shown for the 10-mm-diam anomaly, obtained us-
ing the original reconstruction (stage 1) and using a final step of the
three stage reconstruction. These are compared against the true values
for differing contrast levels. (b) Same as (a) but using a 15-mm-diam
anomaly, and (c) same as (a) but using a 20-mm-diam anomaly. (d)
Average reconstructed absorption coefficient in the background as a
function of contrast, with a 10-mm-diam anomaly from the final step
of three-stage reconstruction, which illustrates that the background is
not strongly affected by the three stage algorithm (true value=0.005
mm−1).
medical Optics d November/December 2004 d Vol. 9 No. 6 1165
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Srinivasan et al.
The same analysis was carried out for data from an
anomaly of 15 mm diam, where the results obtained from the
final stage of the three-step reconstruction have been com
pared to the theoretical values and the original results in Fig
2~b!. As in the case of the 10-mm anomaly, Fig. 2~b! is en-
couraging and shows increased quantitative accuracy. Speci
cally, the error has dropped to 13% in the final reconstruction
step compared to 38% in the original algorithm. Figure 2~c!
shows analogous results for a 20-mm-diam anomaly. As ex
pected, the algorithm achieves better quantification of large
objects ~mean error of 5.5% in the final step, compared to
28.2% in the original reconstruction!. The background absorp-
tion is found to stay constant for all three anomaly sizes, and
results from a 10-mm case are shown in Fig. 2~d!.

To illustrate the importance of the sequence of steps in th
three-stage reconstruction, a comparison of the results ob
tained by the three stage reconstruction, using just steps 1 an
3, is shown in Fig. 3~a! for the 15-mm anomaly case. The
mean percent error improvement by using the three-stage r
construction is 13% compared to 24% observed by using jus
steps 1 and 3. The plot of projection error as a function of
iterations for different reconstruction steps~15-mm anomaly,
contrast52.2 case! is shown in Fig. 3~b!. The projection error
in step 3, which generates the most accurate average optic
parameters, is higher than steps 1 and 2, which is expecte
since this is a homogeneous estimate in the anomaly an
background, and a two-unknown problem is not sufficient to
compensate for high frequency variations near the boundar
This observation is consistent in all the studies done, includ
ing the experimental and patient data. Figure 3~c! shows the
difference in the projection error between starting the third
step with same initial guess as the previous steps, relative t
using an average of parameters from the previous steps
reconstruction. Both converge to the same projection error in
step 3. The quantitative values of the recovered optical prop
erties were also found to be almost identical.

The results shown in Fig. 2 indicate that the three-stage
reconstruction yields improved quantification for all degrees
of contrast studies; however, all of the results have been base
on a single location of the anomaly. Application of the algo-
rithm for different anomaly positions at a fixed contrast~2:1,
ROI relative to background! has been explored. Data were
generated as before for an anomaly with the same backgroun
properties as for Figs. 1 and 2(ma50.005 mm21 and ms8
51 mm21) with 1% random noise. This time the position of
the anomaly was varied starting 10 mm from the edge to
center in steps of 3 mm for both 10 and 20 mm diam. After
calibration, the three-step reconstruction was carried out an
Fig. 4~a! shows the reconstructed average absorption coeffi
cient for step 1~original reconstruction! and step 3~final
stage!, along with the theoretical value. As seen from the fig-
ure, the final step provides better quantification compared t
step 1. Overall, the reconstruction shows variation with the
position, but no clear trend is visible. The mean error was
decreased from 40% in step 1 to 19.47% in the final step. Th
variation in the reconstructed values in the final stage for dif-
ferent positions was 9.32% of their mean, suggesting that th
algorithm is largely insensitive to position of the anomaly. To
show the improvement in quantification and insensitivity to
position using experimental data, data with similar parameter
were collected. Specifically, an 84-mm cup phantom was
1166 Journal of Biomedical Optics d November/December 2004 d Vol.
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made of epoxy resin, with India ink for absorption and tit
nium dioxide for scattering,31 ~optical properties measured b
the system! with a wall thickness of 5 mm. This cup was fille
with Intralipid solution of the same optical properties as t
phantom(ma50.0045 mm21 andms851.12 mm21, measured
independently!. A cylindrical rod of diameter 10 mm~made
similar to the cup phantom!, with optical properties ofma

50.009 mm21 and ms851.5 mm21, was moved starting 10
mm from the edge to the center in 4-mm increments, wh
measurements were acquired using a frequency domain
system.52 The three-step reconstruction was carried out on
data and the results are shown in Fig. 4~b!. The graph shows
that there is improvement in accuracy using the three-s

Fig. 3 (a) Comparison of average reconstructed absorption coefficient
in the heterogeneity for the 15-mm anomaly, obtained using just step
1, using steps 1 and 3, without step 2, and using the sequence of steps
1, 2, and 3, which shows the advantage of the sequence of the three-
stage algorithm. (b) Projection error versus iteration number for the
three steps of the reconstruction algorithm when recovering an image
from simulated data for a 15-mm-diam anomaly with a contrast of 2.2
with the background. (c) Projection error versus iteration number for
the final step of reconstruction, using an initial guess from calibration
compared to an initial guess from the previous step of reconstruction.
9 No. 6
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Fig. 4 (a) Average reconstructed absorption coefficient in the inclu-
sion for different positions of a 10-mm region obtained from the origi-
nal reconstruction (stage 1 only) and the final step of the three-stage
algorithm. Results are also compared with true values. The measure-
ment data were simulated and the position of the inclusion was varied
from a location 10 mm from edge to the center, in increments of 3
mm. (b) Same as (a), except that experimental data is used from a
10-mm object. The position was varied from a location 10 mm from
edge to the center in increments of 4 mm. (c) Same as (a) for a 20-mm
heterogeneity with simulated data. (d) Same as (b) for a 20-mm object.
The position of the inclusion was varied from 10 mm from the edge to
the center in increments of 3 mm.
Journal of Bio
reconstruction, and again similarly to Fig. 4~a!, the variation
in the absorption coefficient offers no clear trend. The er
has been reduced from 27.56% in step 1 to 16.26% in ste
There is an overshoot in the absorption coefficient values
some positions, which may be due to experimental artifac

Figures 4~c! and 4~d! show the analyses for a 20-mm
anomaly. The simulations were performed in the same w
for different positions of the anomaly, and the trends are si
lar to Fig. 4~a!: the simulated data show improvement in a
curacy from 23.2% in the original reconstruction to 9.8%
the final stage. The same experiments were also conducte
a rod of diameter 20 mm, and quantification has been
proved from 19.64 to 6.8% in this case.

3.3 Section 3: Clinical Abnormality—Absorption and
Scattering Heterogeneity in Different Positions
All the results presented in the previous sections had eithe
absorption-only heterogeneity or both absorption and sca
ing heterogeneity located in the same position. However
the clinical environment, breast images with abnormalit
may contain absorption and scattering heterogeneities in
ferent positions. The algorithm can still be applied in th
case, where the regionization from step 1 is based on b
absorption and scattering images, and these regions are
signed lower regularization compared to the background
step 2. This ensures that both absorption and scattering
erogeneities are underdamped, and hence can update t
true size and quantitative property value. The regionizat
from step 2 is again absorption and scatter based, and
mesh is divided into different zones so that the region-ba
reconstruction for step 3 can generate accurate average op
parameters in the assigned areas. This algorithm was im
mented and explored with simulated data using backgro
propertiesma50.01 mm21 andms851.0 mm21, and a 15-mm
absorption anomaly having twice the background(ma

50.02 mm21) located with center coordinates at~0,220! and
a 15-mm scattering object ofms851.5 mm21 with center co-
ordinates close to~0,20! and 1% random Gaussian noise.
was found that the scattering object always appears in redu
size compared to its true extent, while the absorption objec
exaggerated. Empirically, it was found, increasing the scat
ing region obtained by FWHM of the scattering image
20% of its radius and decreasing the absorption region
20% of its radius in stages works with simulated data to br
the regionized size to its original expanse. The recovered
as it emerges in step 3 was found to be almost identical to
original 15-mm size of the anomalies, and there was no
servable shift in position. The images from the three steps
shown in Figs. 5~a!, 5~b!, and 5~c!. An accurate quantification
with 13% error inma and 5.8% error inms8 was found in the
final step, and the values for the background and the anom
for the initial and final steps are reported in Table 1.

This algorithm was automated and implemented on m
surements from the left breast of a Caucasian subject of
38 years, diagnosed with an intraductal carcinoma from
opsy. Mammograms showed that the cancer was in the 6
clock-face position and 3 cm from the nipple. The NIR bre
exam was completed within an imaging study that has
proval by the Dartmouth Institutional Review Board, whe
all subjects participate under informed consent. Figure
medical Optics d November/December 2004 d Vol. 9 No. 6 1167
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Fig. 5 (a), (b), and (c) Reconstructed images from the three stages of
reconstruction, respectively, using simulated measurement data with
1% Gaussian noise generated from a phantom with background prop-
erties of: ma50.01 mm21 and ms851.0 mm21, and a 15-mm absorp-
tion object near 6 o’clock with ma50.020 mm21 and 15-mm scatter-
ing object with ms851.5 mm21 near 12 o’clock.
i
t

lds
gion
aly,
ob-
the
teps,
shows the application of the 3-step algorithm on this clinical
data measured at 785 nm. From the reconstructed images
step 1, we can see that the increased absorption appears at
position of the tumor and increased scattering contrast pre
sents in a different position. These two regions were given

Table 1 The average reconstructed parameters for the three stages of
reconstruction quantified from regions in the final images, when ap-
plied to the simulated data shown in Fig. 5.

Average ma
in anomaly

Average ma
in background

Average ms8
in anomaly

Average ms8
in background

Step 1 0.0128 0.0101 1.3977 1.0117

Step 2 0.0132 0.0101 1.5938 1.0115

Step 3 0.0226 0.0099 1.5865 1.0015
1168 Journal of Biomedical Optics d November/December 2004 d Vol.
n
he
-

lower regularization, and step 2 was carried out, which yie
comparable images to step 1. Step 3 shows the three-re
reconstruction where the background, absorption anom
and scattering anomaly, whose size and position were
tained from step 2, were updated uniformly. Table 2 shows
average absorption and scattering values from the three s

Fig. 6 (a), (b), and (c) Reconstructed images from the three stages of
the reconstruction, using clinical data at 785-nm wavelength from the
left breast of a subject having an intraductal carcinoma in the lower
region of the breast. The measurements were recorded 30 mm from
the nipple.

Table 2 The average reconstructed parameters from the three stages
of reconstruction when applied to an image from the clinical data,
discussed in Fig. 6.

Average ma
in tumor

Average ma
in background

Average ms8
in tumor

Average ms8
in background

Step 1 0.010455 0.0085 0.9251 1.0033

Step 2 0.010584 0.008523 0.9175 1.0036

Step 3 0.02904 0.007645 0.4245 1.002
9 No. 6
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Improved quantification of small objects . . .
and as seen, the absorption coefficient is much higher in ste
3 compared to steps 1 and 2, and is likely more accurat
relative to previous results. The contrast has been enhanced
the final stage through increased absorption at the site of th
tumor and lower background values.

4 Discussion and Conclusions
The primary benefit of NIR diffuse optical tomography arises
from the ability to image tissue volumes that characterize the
breast. Early iterations of the reconstruction can yield image
with the correct heterogeneity locations, but at these earl
iterations, the quantitative values of optical parameters ar
significantly underestimated~by nearly 50% or more!. Later
iterations show more noise and artifacts in the image, but th
quantitative values of optical properties recovered are close
to the true values. The focus of the current study is quantita
tive property accuracy rather than overall image quality, and
hence, all reconstructions have been allowed to proceed un
the projection error reduction is less than 2%. The simple
analysis in Sec. 1 has shown that a 50% error in quantifying
the absorption coefficient of an object translates into nearly
70% error in estimation of its water content, which indicates
the importance of quantification in NIR tomography.

The three-stage reconstruction has been implemented o
simulated data with 1% random Gaussian noise for a range o
typical contrasts in tumors of up to a maximum, absorption of
4 times the background. The results show improved quantifi
cation in 10-, 15-, and 20-mm-diam region data by bringing
the reconstructed optical property values closer to tolerabl
error limits. The background absorption was found to stay
constant, and hence improved contrast has also been observ
using this method. The graphs in Fig. 2 show that the algo
rithm yields results that are insensitive to contrast compare
to the original single-step algorithm where the higher con-
trasts were more difficult to recover. The algorithm has been
tested for variation in position of the anomaly~from edge to
center! and insensitive to object position because changes ex
pected in positioning are treated in the first two steps. This
trend was also evident in experimental data for anomaly size
of 10 and 20 mm, and the experimental results show im
proved quantification as well, with error reductions from 28 to
16% in the 10-mm case and from 20 to 7% in the 20-mm
case.

The results in Sec. 3 indicate that the algorithm can accom
modate both absorption and scattering heterogeneities, whe
accurate values within error limits of 15% for absorption and
6% for scattering have been obtained in simulated data wit
1% random Gaussian noise. The algorithm has been succes
fully applied to clinical data, and the tabular column in Table
2 shows a much higher contrast of 3.8 in the absorption co
efficient between tumor and background in the final step
compared to 1.23 in the original reconstruction. The main
drawback with patient data is that there is no knowledge o
the true optical properties; however, studies performed in
phantoms and with simulated data suggest that the value
from the final step of reconstruction are much closer to the
actual properties relative to the original reconstruction. Trom-
berg et al.16 showed measurements with a frequency domain
photon migration~FDPM! system, where a contrast of ap-
proximately 3 fold was observed between tumor versus nor
Journal of Bio
p

in

r

il

n
f

ed

-

e

s-

s

mal sites when the probe was placed just 5 mm lateral of
tumor center. Our results also show that quantification of c
trast in the focal region has been increased substantially w
the tumor is zoned through region-based reconstruction.
images of patient data in Fig. 6 also demonstrate the trad
between image quality and quantitative accuracy. In the th
stage reconstruction, the images from the final step con
homogeneous regions in the breast, and characterize the
anomalies. These may not be the best images, since diffe
kinds of tissue, such as glandular, fatty, and fibrous,
present in the breast. However, the regionization improves
reliability of the modality in quantifying chromophore con
centrations in the tumor, at the cost of characterization
other heterogeneities in the breast. Since this characteriza
is available from step 1, it is not completely lost, and t
information from the final step is more reliable in quantifyin
the optical properties of the tumor.

Finally, the method of defining the two regularization p
rameters in step 2 by the projection error approach is v
robust, since this includes the change in these parameters
to changes in contrast and size of the anomalies. The a
rithm is automated and can easily be executed in a multip
cessor computing environment. Future studies will aim to
corporate the three-step reconstruction for all differe
wavelength measurements of phantom solutions and clin
data, so that the chromophore concentrations can be ca
lated; and oxygenation status of the tumor will be studied
depth based on the more accurate quantification of oxy
saturation and other NIR parameters.
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