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Improved quantification of small objects in near-infrared
diffuse optical tomography

Subhadra Srinivasan Abstract. Diffuse optical tomography allows quantification of hemo-
Brian W. Pogue globin, oxygen saturation, and water in tissue, and the fidelity in this
Hamid Dehghani quantification is dependent on the accuracy of optical properties de-
Shudong Jiang termined during image reconstruction. In this study, a three-step algo-
Xiaomei Song rithm is proposed and validated that uses the standard Newton mini-
Keith D. Paulsen mization with Levenberg-Marquardt regularization as the first step.
Dartmouth College The second step is a modification to the existing algorithm using a
Thayer School of Engineering two-parameter regularization to allow lower damping in a region of

Hanover, New Hampshire 03755 interest as compared to background. This second stage allows the

recovery of the actual size of an inclusion. A region-based reconstruc-
tion is the final third step, which uses the estimated size and position
information from step 2 to yield quantitatively accurate average val-
ues for the optical parameters. The algorithm is tested on simulated
and experimental data and is found to be insensitive to object contrast
and position. The percentage error between the true and the average
recovered value for the absorption coefficient in test images is re-
duced from 47 to 27% for a 10-mm inclusion, from 38 to 13% for a
15-mm anomaly, and from 28 to 5.5% for a 20-mm heterogeneity.
Simulated data with absorbing and scattering heterogeneities of 15
mm diam located in different positions show recovery with less than
15% error in absorption and 6% error in reduced scattering coeffi-
cients. The algorithm is successfully applied to clinical data from a
subject with a breast abnormality to yield quantitatively increased
absorption coefficients, which enhances the contrast to 3.8 compared
to 1.23 previously. © 2004 Society of Photo-Optical Instrumentation Engineers.
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1 Introduction imaging, the dominant contrast results from increased hemo-

Since Jobsis showed in 1977 that the relatively good transpar-9l0bin at the ‘location of the tumor due to
ency of biological materials to the near-infrared part of the neovasgulagllszgtlo?ﬂ which causes increased optical
spectrum can be used to help monitor hemoglobin and oxygenabsorpt'orﬁ' ’ a!though_ scatter!ng mechamsms also occur
saturation information,the field of noninvasive optical imag- tha't may hold .d|agn'ost|c promisé as well. T|§sue hypoxia
ing has experienced sustained growth and development to_typlcally foqnd n malignant tumofSis recorded in the Xy
ward clinically viable imaging systems. Studies have been gen saturatlprl images of th.e breas.t,_ and yvater co_nte_nt Images
performed using this modality to interrogate different tissues are also a_mt|C|pated to pro_wde adf:iltlo_nal information in cases
such as braid-? breasf~" muscle® forearm?® and skint® or such as fiberadenortaor flbrocygtlc dlsegse. Recent studles
for monitoring light-sensitive treatments such as photody- have suggested that structural information relatgd to density
namic therapy™2 In the case of breast tissue, the technique of the breast and risk of cancer may also be available through

: 7—20
provides new information that may be used to diagnose tu- NIR optical tomography’

. . - Obtaining hemoglobin, oxygen saturation, and water im-
mors based on their metabolic and functional status repre- . . . .
S . ages of the breast using diffuse optical tomography is a three
sented through vascularization, oxygenation, and water con-

tent. This information is not available from conventional stage process: 1. obtaining measurements of light reflectance
rent. This dol't' atio hs ot avarable ho Cdothe N3l from the breast; 2. applying a model of light propagation to
Imaging modaiities such as mammography, an Ere 1S PO racover the bulk optical properties of the breast such as ab-
tential for combining these with the added information pro-

. . . . sorption and reduced scattering coefficients; and 3. estimatin
vided by near infraredNIR) optical tomography to increase b g g

h ifici d itivity of clinical iy ical concentrations of the underlying molecular chromophores in
the specificity and sensitivity of clinical screenifign optica the tissue using their known spectral signatures. Hence, the

quantitative reliability of chromophore concentration esti-
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mates from the last stage depends significantly on the resultstion factor in the objective function, or the inclusion af
from stages 1 and 2. Several experimental techniques involv-priori information in the process.

ing time domairf>? frequency domaif®?* and continuous This work is directed toward developing an algorithm for
wave®?8 signals have been developed for quantification of increased accuracy in quantification of heterogeneities with-
tissue optical properties. Advancements in instrumentation areouta priori information and without a strong need for empiri-
improving the quality of the measured data, but the process of cally derived calibration factors. It applies a variant of the
obtaining the optical properties from the data is itself a com- zonation technique proposed by Eppstein et’and follows
plex problem. Several models have been developed, and ofa systematic investigation of how to implement the approach.
particular interest is the diffusion approximation to the radia- Specifically, the existing reconstruction algorithm has been
tion transport equation. This approximation is widely used modified to first start with the stgndard N.ewton minimizatipn
because it can be computationally fast and robust when imple-aPProach, and follow this up with zonation methods, which
mented using the finite element approach, providing a flexible reduce the problem to one that is uniquely defined and does
way to model arbitrary tissue volum&slmage reconstruction Ot require regularization. The modification examined is a
results have shown accurate spatial recovery of heterogeneNree-step reconstruction, where step 1 consists of the existing
ities, however, the common consensus seems to be that thé!g0rithm that gives the approximate size and position of the
spatial resolution is poor, which results physically from the &nomaly, while step 2 repeats this reconstruction with a two-
dominance of scattering within tissé?° There is also some ~ Parameter regularization scheme where the anofuiafiected
limitation on the ability to uniquely separate absorption and @S @ region of interest from step I given a lower value
scattering coefficients when both variations exist within tis- compared to the background, y'EId'ng more freedom to up-
sues, although empirical methods have been devised to mini-date in areas with the largest change in opt|ca_l properties. T.h's
mize this probleni® Even when absorption and scattering im- type of reconstruction allows the heterogeneity to recover its

ages can be recoverdds in most cas¢sthe quantitative tarrljgmsallze,a?ende;tr;gcl(en dovgrlgr?]g?hg ssézcin%lngtgosg?en O:; itgea
characterization of heterogeneities in terms of their absorption Y P- P

coefficient has been found to decrease as the size of the het_regmn-based reconstruction that uses the second step results

erogeneity decreasswhich is an unfortunate side effect of as a prort mformz_atlon, to produce q_uantltatlvely accura_te
S . ) . ._values for the optical parameters. This method substantially
having images that are essentially low-pass filtered in spatial

frequency. Studies have shown that optical properties are re_improves the image accuracy and has been validated using
d y. Stud op prop ; simulated and experimental data for anomalies between the
covered to within 15% of true value in cases of anomalies of

size 25 mm#? and 25% for heterogeneities of size 17 riin: sizes of 10 and 20 mm with differing contrasts and positions.

. . Finally, the algorithm is applied to clinical subject data to
hpwever, for an Obje(?t of 10 ’.“m’.the error limit can b? MUCh oy amine how it changes the observed contrast in a tumor rela-
higher. In 3-D modeling of diffusion theory, Dehghani et al. tive to the background breast properties.
have shown that only 15% of the true value could be reached
for an object of diameter 8 mii.Since this inaccuracy af-
fects the resultant chromophore concentrations, the ability t0 9 Methods
quantify hemoglobin, oxygen saturation, and water suffers,
and poses a limit on the reliability and diagnostic capability of
optical tomography.

Several studies have focused on developing innovative ap-
proaches to solving the problem of maximizing the accuracy
of small objects. For example, Paulsen and Jiang implemented —vVD(r)Vd(r,w)+
a technique to modify the objective function to minimize both
the least-square error and the total variation of the field, which @
provided reconstruction of objects with sharp edges, thereby where® (r,w) is the isotropic fluenceD(r) is the diffusion
minimizing the total variation between pixels within the coefficient,u,(r) is the absorption coefficient,is the speed
field 3* Other alternative objective functions are possible, and of light in the medium,w is the modulation frequency, and
several have been attempted with limited sucé&3SEpp- go(r,w) is an isotropic source. The diffusion coefficient can
stein et al. introduced the idea of using successive zonationbe written as
approaches in image reconstruction, similar to the multigrid
methods used in larger scale relaxation methiédsnother 1
concept along these lines is to ws@riori information about D(r)= ; )
the size and position of the tumor to enhance the quantitative B[ palr)+ ps(r)]
accuracy of absorption and scattering of tumors, as demon-where x is the reduced scattering coefficient. Equatidn
strated by Schweiger and ArridgéPogue and PaulséfiDe- has been modeled using finite element theory and the bound-
hghani et al., and Brooksby et dThis kind of high accuracy ary condition applied is a type 3 Robin-type boundary condi-
characterization would be especially useful to have in small tion relating®(r,) to the internal reflection at the boundary.
objects. However, the priori information is typically ob- Complete details of the implementation of this algorithm can
tained from MRI and requires a combined MRI-NIR system, be found elsewher&:?®42Briefly, the core of the reconstruc-
which is currently unavailable in most cases. While all of the tion scheme is a Newton-Raphson minimization method for
techniques noted have their strengths and weaknesses, ongeratively updating the optical property parameters based on
overriding issue is the need for a problem-dependent calibra- minimization of the standard sum of squared differences be-

The image reconstruction is based on the frequency domain
diffusion equation used to model light propagation in highly
scattering medi&-“*! which is given by

pal1)+ | (1, 0) = 0ol ),

2
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tween the measured and calculated optical radiance at specificovers the optical imagé8,and noise begins to dominate for
detector locations. This type of error is a measure of the fit of starting regularization values below 1. The stopping criterion
the model to the measured data, often referred to as the prod4s met when the projection error is within 2% of the previous
jection error, and is commonly used as a surrogate measure ofteration’s error. This typically occurs at 10 to 12 iterations,
the convergence of the algorithm. and all the reconstructions in step 1 in this study have begun
with A=10. We use a dual mesh scheffigjhere the Jacobian
is calculated on a fine megti785 nodesand interpolated

2.1 Step 1: Levenberg-Marquardt Reconstruction onto a coarse mesk125 nodesto minimize the number of
Algorithm unknowns being estimated in E(5). This algorithm, when
Using a truncated Taylor series expansiondoto relate it to implemented, recovers spatial heterogeneities in approxi-

the update of the optical properties at each iteration §ives  mately the correct positioif. Because of the ill-posed nature

of the problem, the size of the anomaly is typically blurred

TJAp=>dy— D, 3 with an approximately Gaussian-shaped prdfiland the av-

erage quantification of optical properties is underestimated,
with this underestimation depending on the heterogeneity
size3%4° However, since this reconstruction recovers the het-
erogeneity in its approximate position, this is used as step 1 of
the three-step procedure.

where7J is the Jacobian matrix consisting of derivativesdof
with respect tou, and D for each source-detector location
pair, Au is the vector containing the perturbationsef and

D, and®, and ®. are the measured and calculated fluence
detected at the boundary. Detailed derivations are available in
Refs. 29 and 42. Equatiof8) is a matrix equation of type
Ax=Db, wherex is the solution vector to be found. The matrix
A in this equation is generally ill-conditioned such that the L
solutionx is known to be overwhelmed by data and rounding S'|nce the regularization parameter.govelrns the freedom qf the
errors. Many regularization techniques have been studied forPIX€lS t change more from one iteration to the next, if a
the purpose of obtaining stable solutions from this class of IOWer regularization parameter is specified in a region of in-
ill-posed problemé? Regularization helps to keep the contri- t€rést(ROD compared to the background, the pixels in the
butions from different errors within limits by constraining the RO! have more opportunity to update so that the properties
problem witha priori estimates that bound the solution. ultimately reach the true value, and the ROI reaches the true

Multiplying Eq. (3) by 37 to make the matrix to be in- size. In step 2 of our reconstructiok,in Eq. (6) is rewritten

2.2 Step 2: Two Region Regularization

verted square in the number of parameter estimates, we get as
ITTAp=TT(Do— D), (4 \(k), RO
which is regularized to yield M= Ao(k), otherwiseg’ ®
(3TN Ap=TT(Dy—D,), 5 where\; and\, are two selected regularization parameters
wherel is the identity matrix and is the regularizing factor ~ that follow the relationship expressed in E() with \,
that stabilizes the solutioni.e., matrix inversion The <A.

Levenberg-Marquart technique is a widely used regularization _ The ROI t0 be given lower regularization is determined by
technique(introduced by Ref. 44that normalizes Eq5) and full Wldth half max_lmum(FWHM)_crlterlon on the flnal_ ab-
makes the Hessiad'J diagonally dominant by using a diag-  SOTPtion or scattering coefficient imageshen the algorithm
onal matrixG, whose terms are comprised of inverse square Nas itérated to stopping criteripfrom step 1. ROI computed

roots of the corresponding diagonal term<J8 to producé® this way is the region containing all the reconstructed nodes
having optical parameters greater than or equal to a threshold,

[G(3T3+)\|)G](G—lAM):GjT((DO_(I)C). (6) d_efined as the difference bgtween maximum and half of the

) ) difference between the maximum and mean of the parameter

The sequencing approach fom as introduced Dby  throughout the image. It is assumed that FWHM gives a rea-
Marquardt®*’ depends on the projection error and can be sonable measure of the size of the recovered heterogeneity.

written as Due to the blurring effect, the ROI defined from step 1 typi-
cally encompasses the actual heterogeneity as well as a tran-

m 2(k)<x4(k—1) sition zone. In comparison, when the final images from the
AMk+1)= c '’ X =X , 7) second step are regionized in the same way using FWHM, a

more accurate size estimate of the heterogeneity is obtained.

2 201,
A(K),c,  x“(k)>x(k—1) The quantitative accuracy of the property value recovery from

wherec is a constan{c= /10 in this work) and y? is the step 2 may still deviate from the true value, but it is expected
projection error. The value af in Eq. (6) obviously deter- to be closer to the true values relative to step 1. The best
mines the nature of the relationship.Nfis too high, it domi- numerical values to use fax,; and A, will depend on the

nates Eq.(5) and successive iterations do not yield much object size as well as its contrast and position. In our algo-
change in the update vector. However, if this damping factor rithm, we have examined a series of valuesNgrandX , and

is too small, then the problem will be dominated by noise in chosen the optimal pair based on the projection error
the data. In our studies, we have found empirically that a behavior—the pair giving the lowest projection error at the
starting value of\ in the range of 1000 to 1 reasonably re- last iteration(when error change is less that 2% used.
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2.3 Step 3: Region-Based Reconstruction Using
Spatial Information from Step 2

Step 3 of the process is a region-based reconstruction that has
been applied previously in the context of usimagpriori
information®33%3°The implementation of this algorithm has
been described in detail in Ref. 33. In short, it consists of
homogenizing regions in the mesh, by updating selected
zones uniformly so that the final image consists of a signifi-

cantly reduced set of parameter values that represent the prop- 0 T
erty estimates for the individual regions. This type of recon- 1 18 2 25 3 35 4 45
struction, where the number of unknowns has been reduced to (@) contrast

the number of regions, has shown quantitative accuracy of 97 0.028

and 93.4% in absorption and scatter for an 8-mm object as ]

shown by Ref. 33 using 3-D reconstruction. Our simulations 0.02

in 2-D have indicated similar high accuracy, given precise ] > °
information about the size and position of the heterogeneity, ""E 0.015

as reported in the results section. In the third step, the geo- % ] 3

metric constraints are derived from step 2. The mesh is as- 2 0011

signed regions through the zonation of areas based on FWHM 0.00 ] — theary
peaks in the absorption or scatter images from step 2. This T @ 10mm
algorithm has proved to be sensitive to accurate position and 0] . . . . __ 0 20mm
size estimates for the anomaly, and hence, the approximate 1 18 2 28 3 35 4 45
ROI size obtained from step 1 has proved to be inadequate for  (b) contrast

accurate quantification. Step 3 can be given an initial guess

obtained by averaging the optical coefficients in the step 2 Fig. 1 (a) Average reconstructed ab.S(.)rption c.oefficienFs plotted as a

ROI and a regularization factor of 100. It can also be given function of contrast for hetgroggnemes of d|fferent diameters com-
- . pared to the true values, which illustrate the bias error as the size of

the same initial guess as the _tWO prewo_us s_teps, ar_]d pOththe heterogeneity decreases. (b) Same as (a) for 10- and 20-mm het-

converge to the. same re?“” Wlt.h nearly |der.‘t|ca| Projection erogeneities using region-based reconstruction with a priori informa-

error, the only difference in the final result being the number tion on the position and size of the inclusion.

of iterations in which it converges.

3 Results 1% nois_e. As noted, the initial guess for steps 2 and 3 can also
] ) ] be obtained from the average reconstructed values from the
The results presented in the following sections focus on the yrevious stage of the reconstruction. There is no difference in
need for quantitative accuracy in NIR tomograpt8ec. 1 the two approaches, except in the number of iterations re-
and demonstrate the application of the three-step reconstrucyired for the solution to converge.
tion to simulated and experimental data and the sensitivity of ~ Figyre 1a) shows the average value for absorption coeffi-
the algorithm to both contrast and position of the anomaly cjent recovered in the region of interest for different diameters
(Sec. 2. Section 3 shows promising results when applied to of the anomaly(10, 15, and 20 mip for varying contrast,
clinical patient data with an abnormality. While these results pased on step 1. The reconstruction was stopped when the
are specific to breast imaging, the concept can be extended tqyrgjection error was less than 2% of the previous iteration,
all 2-D or 3-D FEM applications of the diffusion approxima-  and a starting regularization parameter of 10 was used in all

tion for improved quantification in an ROI. cases. The average value was computed as the mean of the
. ] o . absorption coefficient within the FWHM of the peak absorp-
3.1 Section 1: Advantage of A Priori Information tion coefficient. The high frequency noise near the boundary

The boundary data at modulation frequency 100 MHz were typically found in our images was removed from consider-
generated using the forward solffefor a circular disk of ation during the regionization. Figurgd shows data that
diameter 86 mm(mesh contains 1785 nodewith a single indicate quantitative accuracy suffers as the diameter of the
absorbing heterogeneity. The model had a backgroupd anomaly decreases. Specifically, the mean percent error with
=0.005mm* andu.=1 mm!; and data for Secs. 1 and 2  respect to the true value used to generate the data has in-
were generated for differing absorption coefficient in the creased from 28% for a 20-mm object, to 38% for a 15-mm
anomaly ranging from 1.2 to 4.0 times the background in object, to 47.3% for a 10-mm object. A simple analysis has
increments of 0.2. This type of data was generated for a cir- been pursued to evaluate how this percent error in absorption
cular object of diameter 10, 15, and 20 mm. Random coefficient estimates propagates into the estimation of chro-
Gaussian-distributed noisd%) was added, as in all simu- mophore concentrations. The analysis begins with a known
lated data used in this stud¥% noise has been established to set of chromophore concentratiogslb;, SO,, and water

be the level of shot noise in the experimental systenThe and obtains the absorption coefficients corresponding to these
object was positioned 10 mm from the edge in all cases. The concentrations using matrix multiplicatiop(w,) =[ €](C)

initial guess for the reconstructions from all three steps was wheree is the molar absorption spectra at the six wavelengths
obtained from calibration of the dafavith a homogenous set  available in our system, as evaluated in Ref. 51, @rid the

of measurements generated on the same mesh with the sameoncentration of hemoglobin, oxy-hemoglobin, and whter
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Random noise was added to these sets of absorption coeffi- 0.025 7
cients at the six wavelengths, and the concentrations were = True value
recovered using a constrained linear least-squares fit. This
analysis was carried out for a starting concentration of total
hemoglobir=30 uM, oxygen saturation60%, and water
=60% (typical concentration found in the breast tisyuand
the percent error estimate used is the mean of 1000 such rep-
etitions. The results show that, using the current six wave- ]
lengths used by our system, an error of nearly 50% in the 0 —————————————————
reconstructed absorption coefficient for an anomaly of 10 mm (@ 1 15 2 25 3 35 4 45
diam can result in as much as 70% error in our estimation of
water content in the breast. Since the accuracy in these pa-
rameters is likely a key determinant of the diagnostic utility of
NIR information, this analysis shows the importance of quan-
titative accuracy in recovering the optical absorption coeffi-
cient, especially in small objects.

If the size and position of the anomaly is knowrpriori
without steps 1 and 2, this information can directly be incor-
porated in our region-based reconstructistep 3 to recover

—— True value

the average optical properties in the ROI and background. 0 T ' T T T '
Results from such a reconstruction for an anomaly of size 10 (b) o2 25 3 35 4 45
and 20 mm for varying contrasts is shown in Figh)1 where 0.025

data were generated in a similar fashion as before, with 1% ] — True value

noise. Accurate results with less than 6% error are obtained
for objects of both 10 mm as well as 20 mm di&n35% for

10 mm and 2% for 20 min Hence, knowledge of anomaly
position and size is extremely useful and important in cases of
objects of 10 mm in size. The next part of the study is targeted
at extracting this information from the existing reconstruction.

3.2 Section 2: Application of Three Stage © 1 15 2 25 3 35 4 45
Reconstruction 0.008

Figure 2 shows the application of the three-stage reconstruc- = 0.007 ]

tion to the data generated in Sec. 1, where the quantification 5 0.006

of the average property estimate has been improved by the ;?nmsj s o o o 8 4 o s 4 a s 4

final stage of the reconstruction. As noted earlier, the regular- 3

ization parameter for step 1 is 10, whereas for step 2, the _5 0.004

optimal pair of the starting parameters has been chosen by g u.ous—: — True
searching over all sets of possible parameters, witlin the E 0.002 © Original
range 10 to 2Fvaried in steps of § and\, in the range 1 to 0.001 ¢ Final

10 (in steps of 1. This range of parameters was chosen em- 0 T " " T : T
pirically after testing the algorithm for different ratios nf o2 28 3 35 4 43
The pair giving the lowest projection error at the last iteration (d) contrast

has been chosen for step 2, and the regularization pair thusFig. 2 (a) The average reconstructed absorption coefficients in the
obtained varies with contrast and size of the anomaly. The heterogeneity are shown for the 10-mm-diam anomaly, obtained us-
results from this stage are carried on to step 3. The computa-ing the original reconstruction (stage 1) and using a final step of the
tion time in a multiprocessing environment, for reconstruc- three stage reconstruction. These are compared against the true values
tions on a fine mesk~2000 nodek is approximately 3 min for differing contrast levels. (b) Samg as (a) but using a 15-mm-diam
for convergencd~15 iteration$ for first and last step, and ;”Omaly’ and (c) same as (a) but using a 20-mm-diam anomaly. (d)

. : verage reconstructed absorption coefficient in the background as a
varies for the second step, depending on the number of per-g;,cion of contrast, with a 10-mm-diam anomaly from the final step
mutations of regularization parameters. There is improvement of three-stage reconstruction, which illustrates that the background is
in accuracy from a 47.3% mean error in step 1 to a 27.3% not strongly affected by the three stage algorithm (true value=0.005
mean error in the final step of this three-stage reconstruction. mm™).

There are certain spurious oscillations in the curve for step 3,

and these oscillations probably stem from very small scale

fluctuations present in the results from step 1, since step 1The reduced scattering coefficient is found to stay constant in
provides the starting estimate for the ROI. There are certain the ROI, with a standard deviation of 0.06 mfor varying
artifacts in the image arising from the small size of the contrastin absorption coefficient, and there is a 12% increase
anomaly and the underdetermined nature of the reconstructionin the mean of the reduced scattering coefficient resulting
problem, which are also a possible reason for the oscillations. from step 3.
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The same analysis was carried out for data from an 0025 P——
anomaly of 15 mm diam, where the results obtained from the —— Theory ;
final stage of the three-step reconstruction have been com- 0% : :::ﬁz&s
pared to the theoretical values and the original results in Fig. x step 1&3 only

20015

2(b). As in the case of the 10-mm anomaly, FigbRis en- g x X

couraging and shows increased quantitative accuracy. Specifi- z 0.0 ] R

cally, the error has dropped to 13% in the final reconstruction MR

step compared to 38% in the original algorithm. Figufe) 2 0.005

shows analogous results for a 20-mm-diam anomaly. As ex-

pected, the algorithm achieves better quantification of larger 0 T

objects(mean error of 5.5% in the final step, compared to @ 1 15 2 28 3 385 4 45

28.2% in the original reconstructipriThe background absorp- contrast

tion is found to stay constant for all three anomaly sizes, and 10—

results from a 10-mm case are shown in Figd)2 93 o step 1
To illustrate the importance of the sequence of steps in the = 3 . Astell:z

three-stage reconstruction, a comparison of the results ob- g 6 *step3

tained by the three stage reconstruction, using just steps 1 and g g 3 .

3, is shown in Fig. &) for the 15-mm anomaly case. The L a3 8 .

mean percent error improvement by using the three-stage re- 2 31 . Y., .

construction is 13% compared to 24% observed by using just 2 4 ¢ s, MRS

steps 1 and 3. The plot of projection error as a function of 15 e 8

iterations for different reconstruction stefi-mm anomaly, 0T T e
contrast2.2 casgis shown in Fig. 8). The projection error ) 6 2 4 6 5 W 1 U
in step 3, which generates the most accurate average optical lteradons

parameters, is higher than steps 1 and 2, which is expected
since this is a homogeneous estimate in the anomaly and
background, and a two-unknown problem is not sufficient to

compensate for high frequency variations near the boundary.
This observation is consistent in all the studies done, includ-

-
o
L

. Init guess from

ing the experimental and patient data. Figute) 3hows the + calibration

difference in the projection error between starting the third ., .,

step with same initial guess as the previous steps, relative to LR I I
using an average of parameters from the previous steps of Init guess from

projection error
DWW AWMOGw ®©

reconstruction. Both converge to the same projection error in —— S S—
step 3. The quantitative values of the recovered optical prop- 0 2 4 6 8 w 4
erties were also found to be almost identical. ()
The results shown in Fig. 2 indicate that the three-stage ) i -
reconstruction yields improved quantification for all degrees F8: 3 (@ Comparison of average reconstructed absorption coefficient
g n the heterogeneity for the 15-mm anomaly, obtained using just step

of contrast studies; however, all of the results have been baseoll/ using steps 1 and 3, without step 2, and using the sequence of steps
on a single location of the anomaly. Application of the algo- 1, 2, and 3, which shows the advantage of the sequence of the three-
rithm for different anomaly positions at a fixed contréatl, stage algorithm. (b) Projection error versus iteration number for the
ROI relative to backgroundhas been exp|0red_ Data were three steps of the reconstruction algorithm when recovering an image
generated as before for an anomaly with the same backgrouncf“_’m simulated data for a 15-fnm.-diam anomaly vyith a contrast of 2.2

. . _ 1 v with the background. (c) Projection error versus iteration number for
properttes a; for Figs. 1 and @3_0.'00.5 mm a“d, Hs the final step of reconstruction, using an initial guess from calibration
=1mm 1) with 1% random noise. This time the position of compared to an initial guess from the previous step of reconstruction.
the anomaly was varied starting 10 mm from the edge to
center in steps of 3 mm for both 10 and 20 mm diam. After
calibration, the three-step reconstruction was carried out and
Fig. 4@ shows the reconstructed average absorption coeffi- made of epoxy resin, with India ink for absorption and tita-
cient for step 1(original reconstructionand step 3(final nium dioxide for scattering; (optical properties measured by
stage, along with the theoretical value. As seen from the fig- the systemwith a wall thickness of 5 mm. This cup was filled
ure, the final step provides better quantification compared to with Intralipid solution of the same optical properties as the
step 1. Overall, the reconstruction shows variation with the phantom(u,=0.0045mm* andu,=1.12mm %, measured
position, but no clear trend is visible. The mean error was independently A cylindrical rod of diameter 10 mnimade
decreased from 40% in step 1 to 19.47% in the final step. The similar to the cup phantom with optical properties ofu,
variation in the reconstructed values in the final stage for dif- =0.009 mm* and x/=1.5mn !, was moved starting 10
ferent positions was 9.32% of their mean, suggesting that themm from the edge to the center in 4-mm increments, where
algorithm is largely insensitive to position of the anomaly. To measurements were acquired using a frequency domain NIR
show the improvement in quantification and insensitivity to systen?? The three-step reconstruction was carried out on the
position using experimental data, data with similar parameters data and the results are shown in Figo)4 The graph shows
were collected. Specifically, an 84-mm cup phantom was that there is improvement in accuracy using the three-step

iterations
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Fig. 4 (a) Average reconstructed absorption coefficient in the inclu-
sion for different positions of a 10-mm region obtained from the origi-
nal reconstruction (stage 1 only) and the final step of the three-stage
algorithm. Results are also compared with true values. The measure-
ment data were simulated and the position of the inclusion was varied
from a location 10 mm from edge to the center, in increments of 3
mm. (b) Same as (a), except that experimental data is used from a
10-mm object. The position was varied from a location 10 mm from
edge to the center in increments of 4 mm. (c) Same as (a) for a 20-mm
heterogeneity with simulated data. (d) Same as (b) for a 20-mm object.
The position of the inclusion was varied from 10 mm from the edge to
the center in increments of 3 mm.
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reconstruction, and again similarly to Figia4 the variation
in the absorption coefficient offers no clear trend. The error
has been reduced from 27.56% in step 1 to 16.26% in step 3.
There is an overshoot in the absorption coefficient values in
some positions, which may be due to experimental artifacts.
Figures 4c) and 4d) show the analyses for a 20-mm
anomaly. The simulations were performed in the same way
for different positions of the anomaly, and the trends are simi-
lar to Fig. 4a): the simulated data show improvement in ac-
curacy from 23.2% in the original reconstruction to 9.8% in
the final stage. The same experiments were also conducted for
a rod of diameter 20 mm, and quantification has been im-
proved from 19.64 to 6.8% in this case.

3.3 Section 3: Clinical Abnormality—Absorption and
Scattering Heterogeneity in Different Positions

All the results presented in the previous sections had either an
absorption-only heterogeneity or both absorption and scatter-
ing heterogeneity located in the same position. However, in
the clinical environment, breast images with abnormalities
may contain absorption and scattering heterogeneities in dif-
ferent positions. The algorithm can still be applied in this
case, where the regionization from step 1 is based on both
absorption and scattering images, and these regions are as-
signed lower regularization compared to the background for
step 2. This ensures that both absorption and scattering het-
erogeneities are underdamped, and hence can update to the
true size and quantitative property value. The regionization
from step 2 is again absorption and scatter based, and the
mesh is divided into different zones so that the region-based
reconstruction for step 3 can generate accurate average optical
parameters in the assigned areas. This algorithm was imple-
mented and explored with simulated data using background
propertiesu,=0.01mm * andu.=1.0mm %, and a 15-mm
absorption anomaly having twice the backgrourfg,
=0.02mm 1) located with center coordinates @—20) and

a 15-mm scattering object @f,=1.5mm ! with center co-
ordinates close 190,20 and 1% random Gaussian noise. It
was found that the scattering object always appears in reduced
size compared to its true extent, while the absorption object is
exaggerated. Empirically, it was found, increasing the scatter-
ing region obtained by FWHM of the scattering image by
20% of its radius and decreasing the absorption region by
20% of its radius in stages works with simulated data to bring
the regionized size to its original expanse. The recovered size
as it emerges in step 3 was found to be almost identical to the
original 15-mm size of the anomalies, and there was no ob-
servable shift in position. The images from the three steps are
shown in Figs. 8a), 5(b), and Jc). An accurate quantification
with 13% error inu, and 5.8% error i, was found in the
final step, and the values for the background and the anomaly
for the initial and final steps are reported in Table 1.

This algorithm was automated and implemented on mea-
surements from the left breast of a Caucasian subject of age
38 years, diagnosed with an intraductal carcinoma from bi-
opsy. Mammograms showed that the cancer was in the 6:30
clock-face position and 3 cm from the nipple. The NIR breast
exam was completed within an imaging study that has ap-
proval by the Dartmouth Institutional Review Board, where
all subjects participate under informed consent. Figure 6
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Fig. 6 (a), (b), and (c) Reconstructed images from the three stages of
the reconstruction, using clinical data at 785-nm wavelength from the
left breast of a subject having an intraductal carcinoma in the lower
region of the breast. The measurements were recorded 30 mm from
the nipple.

Fig. 5 (a), (b), and (c) Reconstructed images from the three stages of
reconstruction, respectively, using simulated measurement data with
1% Gaussian noise generated from a phantom with background prop-
erties of: u,=0.01mm ™" and u,=1.0mm™", and a 15-mm absorp-
tion object near 6 o’clock with x£,=0.020 mm~" and 15-mm scatter-
ing object with u.=1.5mm™" near 12 o’clock.

lower regularization, and step 2 was carried out, which yields

shows the application of the 3-step algorithm on this clinical comparable images to step 1. Step 3 shows the three-region
data measured at 785 nm. From the reconstructed images if€construction where the background, absorption anomaly,
step 1, we can see that the increased absorption appears at th@nd scattering anomaly, whose size and position were ob-
position of the tumor and increased scattering contrast pre-tained from step 2, were updated uniformly. Table 2 shows the
sents in a different position. These two regions were given average absorption and scattering values from the three steps,

Table 1 The average reconstructed parameters for the three stages of
reconstruction quantified from regions in the final images, when ap-
plied to the simulated data shown in Fig. 5.

Table 2 The average reconstructed parameters from the three stages
of reconstruction when applied to an image from the clinical data,
discussed in Fig. 6.

Average n, Average n, Average u,  Average u. Average u, Average u, Average u.  Average u,

in anomaly in background in anomaly in background in fumor  in background  in tumor  in background
Step 1 0.0128 0.0101 1.3977 1.0117 Step 1 0.010455 0.0085 0.9251 1.0033
Step2  0.0132 0.0101 1.5938 1.0115 Step2 0.010584  0.008523 0.9175 1.0036
Step 3 0.0226 0.0099 1.5865 1.0015 Step 3 0.02904 0.007645 0.4245 1.002
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and as seen, the absorption coefficient is much higher in stepmal sites when the probe was placed just 5 mm lateral of the
3 compared to steps 1 and 2, and is likely more accurate tumor center. Our results also show that quantification of con-
relative to previous results. The contrast has been enhanced inrast in the focal region has been increased substantially when
the final stage through increased absorption at the site of thethe tumor is zoned through region-based reconstruction. The
tumor and lower background values. images of patient data in Fig. 6 also demonstrate the tradeoff
between image quality and quantitative accuracy. In the three-
stage reconstruction, the images from the final step contain
4 Discussion and Conclusions homogeneous regions in the breast, and characterize the main
The primary benefit of NIR diffuse optical tomography arises anomalies. These may not be the best images, since different
from the ability to image tissue volumes that characterize the kinds of tissue, such as glandular, fatty, and fibrous, are
breast. Early iterations of the reconstruction can yield images present in the breast. However, the regionization improves the
with the correct heterogeneity locations, but at these early reliability of the modality in quantifying chromophore con-
iterations, the quantitative values of optical parameters are centrations in the tumor, at the cost of characterization of
significantly underestimatetby nearly 50% or more Later other heterogeneities in the breast. Since this characterization
iterations show more noise and artifacts in the image, but theis available from step 1, it is not completely lost, and the
quantitative values of optical properties recovered are closerinformation from the final step is more reliable in quantifying
to the true values. The focus of the current study is quantita- the optical properties of the tumor.
tive property accuracy rather than overall image quality, and ~ Finally, the method of defining the two regularization pa-
hence, all reconstructions have been allowed to proceed untilrameters in step 2 by the projection error approach is very
the projection error reduction is less than 2%. The simple robust, since this includes the change in these parameters due
analysis in Sec. 1 has shown that a 50% error in quantifying to changes in contrast and size of the anomalies. The algo-
the absorption coefficient of an object translates into nearly rithm is automated and can easily be executed in a multipro-
70% error in estimation of its water content, which indicates cessor computing environment. Future studies will aim to in-
the importance of quantification in NIR tomography. corporate the three-step reconstruction for all different
The three-stage reconstruction has been implemented orwavelength measurements of phantom solutions and clinical
simulated data with 1% random Gaussian noise for a range ofdata, so that the chromophore concentrations can be calcu-
typical contrasts in tumors of up to a maximum, absorption of lated; and oxygenation status of the tumor will be studied in
4 times the background. The results show improved quantifi- depth based on the more accurate quantification of oxygen
cation in 10-, 15-, and 20-mm-diam region data by bringing saturation and other NIR parameters.
the reconstructed optical property values closer to tolerable
error limits. The background absorption was found to stay Acknowledgments
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