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Abstract. Receiver operating characteristic �ROC� analysis was per-
formed on simulated near-infrared tomography images, using both hu-
man observer and contrast-to-noise ratio �CNR� computational assess-
ment, for application in breast cancer imaging. In the analysis, a
nonparametric approach was applied for estimating the ROC curves.
Human observer detection of objects had superior capability to local-
ize the presence of heterogeneities when the objects were small with
high contrast, with a minimum detectable threshold of CNR near 3.0
to 3.3 in the images. Human observers were able to detect heteroge-
neities in the images below a size limit of 4 mm, yet could not accu-
rately find the location of these objects when they were below 10 mm
diameter. For large objects, the lower limit of a detectable contrast
limit was near 10% increase relative to the background. The results
also indicate that iterations of the nonlinear reconstruction algorithm
beyond 4 did not significantly improve the human detection ability,
and degraded the overall localization ability for the objects in the
image, predominantly by increasing the noise in the background. In-
terobserver variance performance in detecting objects in these images
was low, suggesting that because of the low spatial resolution, detec-
tion tasks with NIR tomography is likely consistent between human
observers. © 2007 Society of Photo-Optical Instrumentation Engineers.
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Introduction
ear-infrared �NIR� tomographic image reconstruction meth-
ds can be used to recover the distribution of absorber, scat-
erer, or fluorophore concentrations in living tissue, using
oninvasive diffusely transmitted measurements. This pro-
ides a diagnostic modality to noninvasively quantify oxygen
aturation, hemoglobin concentration, water concentration,
cattering, and potentially exogenous chromophores in
issues.1–6 It has been shown that tumors tend to have a higher
evel of vascularity and cellular stroma relative to normal
issues7 due to hyperactive growth and angiogenesis, and this
eads to significant contrast in the near-infrared spectrum,3 or
ight between 650-, and 850-nm wavelengths. Images of tu-

ors within normal breast tissue have been demonstrated, and
linical trials are ongoing to interpret the potential clinical
ole of this type of imaging device. The purpose of this study
s to provide a preliminary understanding of how NIR images
an be used in detection tasks, using observer performance
ssessment.8,9 The capabilities of NIR tomography recon-
truction algorithms are analyzed, and the results are put into
ontext with how such a system might be used in breast can-
er imaging.

ddress all correspondence to Brian W. Pogue, Dartmouth College, Thayer
chool of Engineering, Hanover, NH 03755. Tel: 603-646-3861; Fax: 603-646-

856; E-mail: pogue@dartmouth.edu
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Using frequency domain NIR tomography imaging, ampli-
tude modulated light signals are transmitted through tissue to
quantify both absorption and scattering images of the breast.
The intensity and phase-shift information of the transmitted
near-infrared signal provides this information. While several
promising NIR reconstruction schemes have been developed
and demonstrated in preclinical and clinical studies, little con-
sideration has been given to the measurement of observer per-
formance on the NIR tomographic images of a specific
method. NIR tomography offers an interesting test case for
such observer studies, in that the reconstruction algorithm is a
nonlinear iterative approach that has niche uses in other clini-
cal modalities, but has not been systematically tested for how
it affects receiver operating characteristic �ROC� responses
and local receiver operating characteristic �LROC� responses.
Additionally, one major issue in diffuse tomography, which is
problematic for this type of analysis, is that generally there is
nonlinear response across the imaging field. Thus, evaluation
of this type of iterative-based reconstruction method is com-
plicated because there are many parameters to examine and
few systematic studies of how they impact detectability. Fol-
lowing the established methodologies in radiology, observer
studies can be carried out to assess the effects of iteration and
location of objects in the imaging field. In this study, this
1083-3668/2007/12�5�/054013/14/$25.00 © 2007 SPIE
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valuation is done using the standard approach to the ROC
urve analysis, and the LROC. These are used to study several
arameters including: 1. the minimum object size detectable,
. object-background contrast levels, 3. reconstruction process
fficacy, and 4. the confidence level of the outcome from the
ystem. Human observers with and without NIR tomography
maging experience and computational measures based on
ontrast-to-noise ratio �CNR� were used in this study. CNR is
efined as the relative difference between the average prop-
rty values within the ROI and those within the background
egion, divided by the average variation in the background.

hile CNR is a simple objective basis for measuring image
uality in an automated way, it is generally an inferior surro-
ate to human observer or ideal observer estimates.10,11 None-
heless, it is quantified here, because if the purpose of the
ystem ultimately shifts from one in which detection of re-
ions is not the goal, but rather quantification of region values
s the goal, then knowledge of the CNR does provide a useful

easure of the system performance.
The ROC methodology has been widely used to address

he clinical efficacy of medical imaging systems.11–14 In an
OC study, the reader views images, some of which contain

ingle or multiple abnormalities, while the remaining images
re normal. The reader then assigns numeric ratings to each
mage as an indication of their confidence level that the image
s abnormal. The resulting rating data are then plotted on an
OC curve, which entails the true-positive fraction plotted
gainst the false-positive fraction, as the positivity criterion is
aried across the range of the rating scale. An example of this
nalysis was recently reported by Chance et al.,4 using reflec-
ance data from breast tumor measurements, without tomog-
aphic reconstruction. In this work, however, this concept is
xtended for tomography assessment. Summary measures of
he curve, including the partial area under the curve in a par-
icular region of interest or the area under the entire curve, are
ypically used as an objective measure of the ability of the
eader to detect objects in the images.11 The area under the
urve must be greater than 0.5 for a greater than 50% chance
f detecting objects, and can achieve a maximum of 1.0 for
erfect detection ability.

Typically, ROC analysis is a way to represent the image
uality of the medical modality for a specific human detection
ask. In standard ROC methods, the complexity of the target
bject location is often eliminated by clearly specifying the
ossible ROI �region of interest� in the images. However, in
ore complex medical imaging applications where the ex-

ected image resolution is spatially dependent, the applicabil-
ty of standard ROC analysis is very limited. Recent develop-

ents in localization-response ROC �LROC� analysis
tatistically offer more understanding of medical imaging
ethodology, in terms of measuring the conjoint ability of

etecting and correctly localizing the actual targets in medical
mages. These developments include simultaneous ROC/
ROC fitting9 and alternative free-response ROC �AFROC�
nalysis.11,15

The LROC plots the probability of both detecting and lo-
ating objects in images with abnormalities versus the prob-
bility of falsely detecting objects in normal images as the
etection criteria is varied. Several models have been pro-
osed to be used in LROC analysis, including the discrete-

16
ocation models and the general detection-localization

ournal of Biomedical Optics 054013-
model;15 however, both models hold their particular assump-
tions. In this study, both human readers with or without medi-
cal imaging background and a “computational reader” were
required to specify the location of the suspicious area of ab-
normalities, which makes both ROC and LROC techniques
applicable. While ROC and LROC analysis have been used in
iterative image formation analysis before, they have not been
systematically examined in an algorithm that uses iterative
refinement of an ill-posed image reconstruction problem. The
nature of the physical attenuation of NIR light decreases the
sensitivity by over an order of magnitude with every centime-
ter of penetration into the tissue, and thus the sensitivity ma-
trix contains values that vary by many orders of magnitude.
This type of a sensitivity matrix is highly ill-posed, and the
images formed in this process are not well characterized in
terms of how humans interpret them. This work is the first
published systematic study of this type of algorithm.

Despite the essential simplicity of the fundamental con-
cepts of ROC analysis and CNR analysis in medical imaging,
professionals designing and performing ROC studies often
find that many subtle issues related to experimental design
and data analysis must be confronted in practice. Such issues
include: 1. case selection, 2. collection, 3. presentation; 4.
observer selection and grouping; 5. system error and tolerance
analysis; 6. localization of data, 7. the strategy of data analy-
sis and curve fitting, and 8. confidence interval of the test
results. All of these issues are considered here in the process
of this initial study design, with the goal of developing an
efficient and well-understood way to interpret NIR tomogra-
phy images and the NIR image reconstruction process.

2 Methods
2.1 Near-Infrared Tomography Simulation and Image

Preparation
In previous publications, NIR frequency domain absorption
and scatter tomography reconstruction has been demonstrated
by several researchers, using finite element models of the dif-
fusion approximation, and iterative reconstruction
algorithms.17–21 In the work proposed in this study, the focus
is on a particular experimental system design used at Dart-
mouth, which can produce 2-D or 3-D images of absorption
and scatter coefficients of the objects examined by the nonin-
vasive imaging array. The top level of the tomographic system
detection interface is shown in Fig. 1, with a circular arrange-
ment of 16 linear translation stages that allow direct contact of
the optical fiber bundles to the tissue being imaged. While
experimental images are not used in the analysis of this study,
the configuration of sources, detectors, and data noise are
simulated particularly to match this experimental system, such
that future studies could focus on the ROC and LROC analy-
sis of the clinical data generated by this system.

A circular 86-mm-diam field was chosen as the back-
ground in which to place objects and test the methodology
based on computed images. The finite element mesh used was
a 2000 node forward 2-D geometry, which is commonly used
for breast image reconstruction, which is an average spatial
resolution of 1.7 mm between nodes. This field had an ab-
sorption coefficient �a=0.005 mm−1, and a reduced scatter-
ing coefficient �s�=1.0 mm−1, and within this field a spherical

−1
object with fixed �s�=1.0 mm and a variable �a was placed

September/October 2007 � Vol. 12�5�2
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to provide a localized heterogeneity. The �a value of the ob-
ject was varied to simulate changes in absorption contrast,
with values ranging from 1.06:1 �6%� up to to 1.3:1 �30%�.
The size of the object ranged from 4 to 16 mm in diameter.
Forward calculations were based on this specific NIR tomog-
raphy system geometry and diffusion theory solution using
the finite element numerical method, and were used along
with zero-mean Gaussian noise of 1% in amplitude and 1 deg
in phase shift, to create simulated measurement data. The re-
construction algorithm was then applied to generate the 2-D
absorption and scattering coefficient images. In the same
manner, thousands of reconstructed images were automati-
cally created, having the same noise level and size of hetero-
geneities but with different locations of the ROI and different
contrasts. Similar images were created with no objects inside,
to simulate normal tissue, or the “control” images. The
amount and constitution of the reconstructed image pool was
designed specially for several different studies presented here,
and these contained images of different ROI size �4, 6, 10,
and 16 mm� or contrast, or different variations of the recon-
struction algorithm, i.e., different iteration numbers of the re-
construction program or different contrast levels between the
ROI and the background.

The output of the forward problem, also known as the
calculated system measurement, was compared to the mea-
sured data and thereafter to determine the quality of the re-
construction process. An important measure of error in the
reconstruction process is the objective function defined as:

�k
2 =

��M − �C��k��2

M�2 , �1�

where �M is the measured set of data, �C��k� is the calcu-
lated measurements at the k’th iteration, M is the number of
measurements, and � is the entire image standard deviation.
This is also sometimes referred to as the projection error, as it
is a direct measurement of the squared error of measured and
simulated projection data through the tissue.

2.2 Human Observer Detection and Localization
Tasks

Four human observers participated in this study, of which two
observers had the NIR tomography imaging experience and
the other two observers did not. A MATLAB program made
with a graphical user interface was used as the main test pro-
gram, and is shown in Fig. 2. This controlled the data collec-
tion stage of the observer performance studies. The ROC ex-
periment was completed by displaying a fixed number of
reconstructed homogeneous or heterogeneous images in ran-
dom order. After a computer-controlled training session, in
which the observer was presented with sample images, then
information was asked of the observed as to whether the im-
ages contained heterogeneity and also what the possible re-
gion size was. The observers were asked to view 600 different
reconstructed images in one ROC experiment session. Instead
of just deciding whether the viewed image was homogeneous
or heterogeneous, the observers were asked to rate the prob-
ability that the image was heterogeneous, using a continuous
scale value between 0 and 1, where 0 represented “absolutely
homogeneous,” 1 represented “absolutely heterogeneous,”
ig. 1 �a� A mechanical model view of the NIR imaging fiber interface
s shown, using a set of 16 fiber bundles for imaging the tissue in a
ircular tomographic geometry, which are all moved in and out on
inear translation stages, allowing imaging of different sized breasts in

circular geometry.5,6 �b� Typical simulated NIR tomography images
re shown with the same size and location of ROI, iteration number,
nd reconstruction algorithm but different contrast levels, which indi-
ates different image quality for a typical reconstructed absorption
oefficient image. At the top, the contrast was C=1.1; in the middle
and 0.5 was a guess of “it not being known.” The observer

September/October 2007 � Vol. 12�5�3



w
s
o
b
o
p
t

2

I
n
t
d
r
g
i
b
R
a

w
�
�
a
w
w
g
c
r
l
r
a
v

F
e

Song et al.: Receiver operating characteristic and location analysis…

J

as also asked to pick up a possible location of the ROI by
electing the centroid of the region with a mouse cursor. The
bserver was able to control the image contrast and brightness
y adjusting the minimum and maximum display parameters
f the MATLAB image profile. For every viewed image, the
rogram recorded all of the information about this image and
he decision of the observer.

.3 Computational Assessment of Contrast-to-Noise
Ratio

n addition to human observer assessment, the contrast-to-
oise ratio �CNR� was also used as a computational measure
hroughout this study. Similar to the signal-to-noise ratio in
igital signal processing theory, the CNR is defined as the
elative difference between the ROI and the background re-
ion values of the property, divided by the average variation
n the background.22–24 There are different choices for the
ackground, and here the entire region outside of the target
OI was used as the background, and thus the CNR is defined
s25

CNRIII =
�ROI − �background

�wROI�ROI
2 + wbackground�background

2
, �2�

here �ROI is the mean of the node values in the target;

background is the mean value over the variable background;

ROI and �background are the standard deviations of the target
nd the whole background areas, respectively; and wROI and

background are the weights in the target and background,
hich are defined as the fractional size of the target and back-
round in the image field. Given the ROI size, CNR was
alculated at each node and the maximum CNR and its cor-
elated location was considered as the real ROI CNR and
ocation. Using the images generated in Sec. 2.2 and given the
eal diameter and location of the target, CNR was calculated
s the absorption contrast and the ROI size was systematically

ig. 2 The image detection program is shown. Observers can adjus
stimated heterogeneity location with the computer mouse.
aried.

ournal of Biomedical Optics 054013-
2.4 Parametric and Nonparametric Receiver
Operating Characteristic Analysis

ROC curves are usually generated by a model-based fit to the
reader data, as illustrated in Fig. 3. Several methods have
been published to plot ROC curves based on discrete or con-
tinuous test data. These methods can be divided into two basic
categories, nonparametric or parametric. The empirical non-
parametric method is used to calculate the ROC curve using
empirical histogram distributions, in which there is no need
for structural assumptions nor parameters for model fitting.
Though the empirical nonparametric method is robust and
easy in some cases, it is not a smooth fitted curve leading to
less conclusive analysis in the case of sparse datasets.

An improvement to the empirical nonparametric method is
the nonparametric kernel smoothing technique.13,26,27 In this
method, a local density function, or the so-called kernel func-
tion, and a bandwidth are introduced to estimate the observer
decision distribution function for diseased and healthy im-
ages. The kernel function and the bandwidth are optimized to
numerically represent the distribution functions, thereby plot-
ting a smooth and optimal ROC curve. More objective para-
metric methods require that some assumption be made regard-
ing the functional form of the ROC curve. Several functional
models have been proposed since ROC analysis was first
developed.28 One of the most popular models is the binormal
ROC method, which assumes that a pair of latent normal de-
cision variable distributions underlies the ROC data, and this
has been widely used for ROC curve fitting.12,29–32 According
to this two-parameter model, each ROC curve is assumed to
have the same functional form as that implied by two Gauss-
ian decision variable distribution functions. Within this binor-
mal model, the task of curve fitting becomes one of choosing
numerical values for the two parameter pair to best represent
the measured data in observer performance studies.

The software prepared for this study includes a MATLAB
command line based program, in which the empirical non-
parametric approach and the maximum-likelihood estimation

29

mage gray map scale with the top two slide bars, and point to the
t the i
ROC curve fitting methods were applied �Fig. 3�. In the
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OC fitting process, each image reading was assumed to be
ndependent of all other images, thus the whole observer prac-
ice followed an independent multinomial distribution formed
fter classifying the continuous rating according to an ordinal
lassification. It was also assumed that two latent normal dis-
ributions for homogeneous and heterogeneous tissue underlie
he ordinal classification, leading to a multinomial probability

odel for the ROC curve. Based on these two assumptions,
he parameters of the ROC curve were determined via

aximum-likelihood estimation ROC analysis. In the LROC
tting process, observer performance information for recon-
tructed images consists of two parts: 1. a continuous confi-
ence rating of possible heterogeneity presence, and 2. coor-
inates representing the possible object location. The one-
tage plug-in method with a biweight kernel function13 was
sed to generate the distribution bandwidth, and these were
hen applied to fitting the LROC curve, as illustrated in Fig. 4.
his kernel function is as described in Ref. 12, with the opti-
al bandwidth chosen to smooth the data. The diagnostic

robability density distribution functions of normal and dis-
ased cases are estimated to be in the form of

f�t� =
1

n0h�
n0

K� t − xi

h
� , �3�

ig. 3 A screen view of the graphical user interface �GUI�-based RO
nalysis, maximum-likelihood estimation-based binormal ROC analy
ence interval boundary, standard error, data correlation, and parame
C fitting platform is shown, which includes empirical nonparametric initial
sis, and related statistical parameter analysis such as the ROC curve confi-
i=1

ournal of Biomedical Optics 054013-
Fig. 4 The distributions graph of human observer responses are
shown, and fitted with kernel density estimation. The window width
was chosen from the direct plug-in method, and the Epanechnikov

9
kernel was used.
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g�t� =
1

n1h�
i=1

n1

K� t − yi

h
� , �4�

here xi and yi are the assessed data points for normal and
bnormal probabilities, with sample sizes n0 and n1. In this
pproach, the integration of K over the space provides a
ean-zero value, and h is the bandwidth that controls the

egree of smoothing. By using these models to represent the
ata, a smoothed version of the data is provided, in a nonpara-
etric manner.

Results
n the subsections here, the results of the overall study are
escribed. Four human observers and CNR values were cal-
ulated for all image sets. Human observer and CNR values
re reported in terms of ROC and LROC curves and the re-
ated area-under-curve value with error correction. The results
f the human observers with or without medical imaging
ackground were compared to each other and then compared
ith the CNR-based computational observer. As discussed in
ec. 2.1, given a fixed system noise level, three key param-
ters determine the quality of a reconstructed image: 1. the
ize of the heterogeneities, 2. the absorption and scattering
oefficient contrast between the heterogeneities and the ho-
ogeneous tissue, and 3. the number of the reconstruction

terations used in the image formation. In other words, the
etectable object size and object-background contrast level
eed to be determined in this approach, and the reconstruction

Table 2 Parameter settings used in the study of

Study

Noise level
�random normally

distributed�

1 1% amplitude and 1-deg phase shift

2 1% amplitude and 1-deg phase shift

3 1% amplitude and 1-deg phase shift

4 1% amplitude and 1-deg phase shift

Table 1 Observer performance results for rece
�LROC� for human observers numbered 1 throug
observers 3 and 4 are inexperienced.

Observer
�note�

ROC area under the curve
with error correction

ROI=6 mm ROI=10 mm ROI=

1 0.90±0.012 0.99±0.008 0.99

2 0.89±0.015 0.98±0.009 0.99

3 0.88±0.014 0.99±0.005 1.00

4 0.93±0.009 0.99±0.003 0.96
ournal of Biomedical Optics 054013-
process efficacy needs to be analyzed. In this section, the
results of a number of studies designed to evaluate the im-
pacts of these three parameters are reported for a standard
version of the NIR tomography reconstruction algorithm.
While other parameters such as signal to noise, artifact pres-
ence, etc., may also be important, these parameters have been
found to be dominant factors qualitatively in changing the
nature of the recovered images, and so are examined in detail
here.

3.1 Human Observer Performance Comparisons
In trying to minimize the effect of the observer’s background
experience as a factor in the observer performance results, a
training session was given to all participants prior to the final
image presentation and detection process. In the training ses-
sion, the trainee was asked to review sample images with the
same reconstruction condition, and were notified if the images
contained heterogeneity, and if so, what the location of the
heterogeneity was. The trainee was allowed to review and
analyze as many as 200 images before the real detection task
began. Table 1 summarizes the area under the curve �AUC�
values and associated standard error for both ROC and LROC
curves for different observers in the three heterogeneity-size
studies. The standard deviation between observers on the
whole is less than 1% of the ROC and LROC area under the
curve values, indicating that the observer performances are
quite similar in this group of four subjects.

geneity size �iteration number=6�.

rogeneity properties Background properties

mm−1�
Diameter

�mm� �a �mm−1�

5 to 0.01 4 0.0050

5 to 0.01 6 0.0050

5 to 0.01 10 0.0050

5 to 0.01 16 0.0050

erating characteristic �ROC� and location ROC
ote that observers 1 and 2 are experienced, and

LROC area under the curve
with error correction

ROI=6 mm ROI=10 mm ROI=16 mm

0.23±0.026 0.71±0.023 0.90±0.013

0.23±0.026 0.69±0.024 0.89±0.01

0.23±0.026 0.70±0.024 0.91±0.013

0.25±0.028 0.68±0.025 0.89±0.014
hetero

Hete

�a �

0.005

0.005

0.005

0.005
iver op
h 4. N

16 mm

±0.003

±0.004

±0.001

±0.008
September/October 2007 � Vol. 12�5�6
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.2 Human Observer Versus Computational Contrast-
to-Noise Ratio Performance Comparison

.2.1 Heterogeneity-size study
his study was designed to evaluate how the NIR tomography

maging reconstruction algorithm response to different sized
eterogeneities would affect the human perception from the
mages. For the sake of simplicity, a circular geometry was
hosen for the heterogeneities with a diameter ranging from
to 16 mm, compared to an 86-mm-diam region for the

ackground homogeneous tissue. Table 2 summarizes the rel-

ig. 5 Sample images from heterogeneity-size studies are shown. The
bjects all have the same contrast of C=2.0, the same reconstruction
rocess iteration number I=6, but with different object sizes. In �a�, a
mall-sized object was used, with diameter of 6 mm. In �b�, a
edium-sized object was used, with diameter of 10 mm. In �c�, a

arge object of diameter 16 mm was used.
vant parameters of four observer performance studies, of

ournal of Biomedical Optics 054013-
which each study contained 600 images with optical property
ranges listed in the table. To maintain experimental consis-
tency, zero-mean Gaussian noise of 1% amplitude and 1 deg
in phase shift were added to the calculated boundary data of
all studies to simulate a realistic dataset from our NIR tomog-
raphy system. Sample images from heterogeneity-size studies,
in which objects were sized from 4 to 16 mm and the contrast
level defined in the next section is ranged from 1.1 to 2.0, are
shown in Fig. 5.

Figure 6 summarizes the human observer and computed
CNR performance in the heterogeneity-size studies. In Fig.
6�a�, as the diameter of the target decreases down to 6 mm,
the CNR value decreases below a level from which the het-
erogeneity can be efficiently detected, corresponding to when
the AUC of the ROC is equal to 0.5. However, human ob-
server detection is sufficiently high �above 0.5� for all hetero-
geneous images, even below 6 mm, having AUC values of
0.82 for 4-mm objects and 0.88 for 6-mm objects. As the size
of the targets increases, the CNR values increase to allow for
automated detection of objects in the image. Interestingly, as
shown in Fig. 6�b�, the localization accuracy is considerably
worse in these same sets of images, with objects smaller than
10 mm not being able to be localized accurately.

3.2.2 Heterogeneity contrast level study
The optical property contrast between the object and back-
ground was provided by the absorption coefficient difference
between the heterogeneity and the background. The
heterogeneity-to-background contrast was defined as

C =
�ROI

�background
, �5�

where �ROI is the mean absorption coefficient of the node
values in the target and �background is the mean absorption
coefficient value over the variable background. Using fixed
object diameter D=10 mm and reconstruction process itera-
tion number I=6, and varied contrast ranging from 1.1 to 2.0
in steps of 0.1, resulted in 600 images in total. The same
human and computational observers are used in these ten
studies. An example image from C=1.4, 1.7, and 2.0 is shown
in Fig. 7.

Figure 8 summarizes the human observer and computed
CNR performance in the heterogeneity contrast level studies
for ROC detection task assessment �Fig. 8�a�	 and LROC lo-
calization task assessment �Figure 8�b��. In Figure 8�a�, where
the ROI size was fixed at 10 mm, the human observer per-
formed quite well, even at low contrast levels, and achieved
perfect detection �AUC=1.0� performance when the contrast
level was above 1.6. The computed CNR, on the other hand,
was unacceptably low for the 10 to 50% contrast range, but
was sufficiently accurate above this range. Human observers
have more capability to detect heterogeneities with small con-
trast levels, yet this difference was negligible if the heteroge-
neity was at higher contrast levels compared to the homoge-
neous background.

3.2.3 Analysis of the reconstruction process iteration
The most dominant factors in the reconstruction process that

affect image quality is the regularization parameter and the

September/October 2007 � Vol. 12�5�7
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umber of iterations used in their formation. In the presented
ork a modified Levenberg Marquardt scheme is used, in
hich the regularization parameter starts out at a high value

elative to the normalized Hessian diagonal �near 100��, and
hen is systematically decreased by a factor of 3 at each suc-
essive iteration. Using this approach, the iteration number is
he major factor influencing the detection of objects, and so
his was studied here. The outline of the iteration study is
ummarized in Table 3, where 600 images were used in total.
uring a single reconstruction process step, the 2-D image
as first constructed and used as the input data for the for-
ard problem.

In practice, as the iteration number increases, the objective
unction first decreases and then eventually reaches a lowest

ig. 6 The heterogeneity-size study for both human and computation
ith LROC and AUC data. Both of these are shown for datasets wher
oint, and then is increased very slowly, as shown in Fig. 9.

ournal of Biomedical Optics 054013-
Here the ROI was 10 mm diam and the contrast ranged from
1.1 to 2.0. The error was estimated from a number of recon-
structions, and the mean error is plotted as a function of itera-
tion number. In Fig. 9, the minimum objective function value
occurs at an iteration number of 9. Theoretically, the recon-
structed image parameter value should be closest to the true
image value at the point where the objective function is at its
lowest value, but in practice, the reconstruction iteration pro-
cess also inevitably introduces some high-frequency spatial
noise, so that it affects the judgment of both the human ob-
servers and the computational observer. Sample images from
iteration numbers 4, 6, and 10 are shown in Fig. 10.

Figure 11 summarizes the human observer and the com-
puted CNR values for performance as a function of the itera-

rvers is shown in �a� with ROC and area under curve data, and in �b�
bsorption contrast ranged from 1.1 to 2.0, with a fixed six iterations.
al obse
tion number for ROC detection tasks �Fig. 11�a�	 and LROC
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ocalization tasks �Fig. 11�b�	. From Fig. 11, where the ROI
ize was fixed at 10 mm and the contrast level was varied
rom 1.1 to 2.0, it can be seen that the human observer always
as better performance than this computed value of CNR, in
erms of detectability and localization accuracy. In the range
f 4 to 10 iterations, the iteration number has either negligible
mpact �see human observer data in Fig. 11�a�	 or a slightly
egative impact on the computed CNR data �Fig. 11� for both
uman observers and CNR detection and localization
ecisions.

ig. 7 Sample images from heterogeneity contrast studies are shown.
he objects had the same size, with diameter of 10 mm, same recon-
truction process with iteration number I=6, but with different con-
rasts. In �a�, the contrast was C=1.4; in �b�, the contrast was C=1.7;
nd in �c�, the contrast was C=2.0.
ournal of Biomedical Optics 054013-
4 Discussion
4.1 Assessment of the Human Observer Data

In the interhuman observer performance comparison study,
AUC values for the ROC and LROC curves are summarized
in Table 1. It is well known that the area under the curve of an
ROC and LROC curve is a reasonable indicator of the quality
of the observer performance. Given the fact that observers 1
and 2 had NIR medical experience and observers 3 and 4
were inexperienced, the main observation from Table 1 is that
after the training procedure, readers without NIR imaging ex-
perience had negligible performance difference compared to
readers with NIR imaging experience �i.e., less than 1% stan-
dard deviation in the AUC values overall�. This trend is also
observed when tested with different heterogeneity contrast
levels and when the reconstruction process iteration number
was varied �see Table 1�. Summarizing these different tests, it
was concluded that the four observers had less than 4% total
variation from one another in any category of test, and the
standard deviation in each test was less than 1%. These ob-
servations were important to then allow averaging of the ROC
and LROC data results processed independently for all four
human readers, in subsequent experimental datasets, thereby
providing better power to assess the human observer results. It
is always problematic to determine when averaging data from
different readers is possible. However in this study all observ-
ers were given the same control of the images and all per-
formed in a substantially similar manner, thus averaging the
ROC data is a logical choice to assess the repeatability be-
tween readers. Analysis of the individual observer’s datasets
were carried out, and the computed ROC AUC values did not
show substantial difference from one another �less than 5% in
AUC�.

4.2 Human Observer Decision Versus Computed
Contrast-to-Noise Ratio

In the human observer detection process, readers were re-
quired to continuously rate the possibility of a heterogeneity
being present in the images. In the computational observer
detection process, the CNR value was calculated at each node
and the maximum value was considered in the “decision” or
“rating” of the computational observer for the NIR tomogra-
phy images. Both the human observer and computational ob-
server decision data are plotted as scatter pairs for the two
image groups, including datasets where the ROI size was 10
and 16 mm. These are shown in Fig. 12. The solid line in Fig.
12 is a linear fit of human observer and CNR values, of which
the fitted equation and R square value are also listed in the
diagram. From Fig. 12, the main observation is that the CNR
of the reconstructed images and the human observer responses
are directly linearly correlated when the diameters of the tar-
gets are larger, and there is an enhanced ability of the human
reader to detect smaller objects as lower CNR values. Inter-
estingly, while the fit to the data is quite good in Fig. 12�b�
with R2=0.91, the fit to the data in Fig. 12�a� is not as ideal,
and the shape of the data might indicate that a higher order fit
is in order, perhaps with a saturation below human observer
probabilities of 0.5. Further studies of this observation are
ongoing, and would be consistent with the need for more

complex models of human observers that require spatial
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atched filter analysis to accurately mimick the detection rate
f a human observer.

Examining Fig. 12, the data lines plotted cross the 50%
oint on the x axis at a level near 3.0 to 3.3 in CNR. This
epresents the CNR value at which the human observer has a
0% probability of detecting an object present in the image,
nd thus represents the threshold level at which observers can
etect objects. Below this CNR value, the human observer
annot be expected to detect the object, as they have an equal
robability of not detecting it. This observation is used as a
ower limit rule of thumb in interpreting the data.

ig. 8 The heterogeneity contrast study for both human and computa
howing the LROC curves and area under curve. The diameter of the
tional observers is shown, with �a� being the ROC curves and AUC, and �b�
ournal of Biomedical Optics 054013-1
Table 3 Parameter settings used in the reconstruction process for the
study of iteration numbers.

Study Noise level

Heterogeneity properties

Iteration
numberContrast

Diameter
�mm�

1 1% amplitude and
1-deg phase shift

1.1 to 2.0 10 3

2 1% amplitude and
1-deg phase shift

1.1 to 2.0 10 6

3 1% amplitude and
1-deg phase shift

1.1 to 2.0 10 8
September/October 2007 � Vol. 12�5�0
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.3 Analysis of Human Observer Versus Computed
Contrast-to-Noise Ratio Decisions

iven NIR images with a suspicious object in them, it is clear
hat the human observer would perform better than a measure
f CNR; however, the human ability to localize where the
egion is may not be as developed as the ability to determine
f an object is present. When the object size is as small as

mm, the existence of this object will change the diffuse
ight image, but its impact is not significant enough to be
etected from within the noise pattern of the image. Iterations
eyond the fourth iteration tend to degrade the ability to find
he location as well. Though the object is not big enough to be
een on the reconstructed image at the object true location, its
resence generally makes the image seem noisier than the
verage homogeneous image. This entire image profile
hange is detectable by a human observer whose strategy and
verall ability are more sensitive to noise appearance. As the
eterogeneity size increases to 10 mm, it dominates the image
ufficiently enough to be accurately found, and as a result, the
uman observers have adequate detection capability and lo-
alization accuracy. Interestingly, this phenomenon is not ap-
arent for the CNR value, where the AUC value does not
ramatically change from ROC to LROC plots. This latter
oint indicates that the use of CNR for tumor detection in
IR tomography images would only provide a good indicator

t larger sizes and higher contrast values, whereas localization
f the region may be similar to that of human observers.

An interesting area that requires further investigation is the
hoice of size for “detecting” a region with LROC analysis. In
his study, the choice of detection versus nondetection of the
ocation was based on using the physical size of the known
bject as a measure. If the observer chose outside this region,
hen it was counted as a mistake in localization. Given that
IR tomography has a Guassian blurred imaging field, the

ize of the region that is suitable to use for LROC could
rguably be larger than the physical size of the existing re-
ion. However, since the resolution of the image varies with
adial location, it is not obvious what choice of distance

ig. 9 The mean of the projection error function of 294 heteroge-
eous reconstructed images is shown as the function of iteration num-
er, using a diameter ROI of 10 mm and an absorption contrast range
rom 1.1 to 2.0. The error bars are the average standard deviations
rom all images.
ould be optimal for LROC analysis. The results here repre-

ournal of Biomedical Optics 054013-1
sent one interpretation. However, if the size was increased, it
is likely that the statistics of LROC values would improve
monotonically with the increase in size. A further analysis
could be carried out where the LROC AUC is plotted as a
function of the choice of diameter for “detection.”

The analysis here was completed on embedded inclusions
where the contrast always increased relative to the back-
ground. In clinical studies, tumors always appear to have
equal or larger vascularity, and thus have increases in contrast.
So while the ROC analysis may be slightly different for situ-
ations where the contrast decreases relative to the back-

Fig. 10 Sample images from the reconstruction process are shown for
different iteration numbers. The images have the same object size,
D=10 mm, the same object-to-background contrast of C=2.0, but are
from different numbers of iteration in the algorithm. In �a�, the result
from four iterations is shown. In �b�, the result from six iterations is
shown. And in �c�, the result from ten iterations is shown.
ground, this remains to be analyzed fully. Similarly, the noise
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evels were fixed in this analysis, and were chosen to be rep-
esentative of the clinical instrument that is being used at our
edical center. However, it should be expected that lower

ignal-to-noise level values would lead to degradation of the
mages and hence poorer performance in the ROC and LROC
urves.

Conclusion
n this study, NIR tomography image analysis is completed
ith observer performance assessment. Using results of expe-

ienced and inexperienced human observers and contrast-to-
oise ratio computational calculations, NIR tomography im-
ges are assessed in terms of sensitivity to human observer
iscrepancy, detectable object size, object-to-background con-
rast levels and reconstruction algorithm parameters. While

ig. 11 The reconstruction process iteration number was studied for
hown, and in �b�, the LROC and AUC are shown, for a fixed diamet
he computed CNR and human observer detection data have

ournal of Biomedical Optics 054013-1
similar capabilities to accurately localize the heterogeneity,
human observers are more capable of detecting objects in NIR
images with inclusion sizes of 6 mm diameter or less. Human
observers are also more capable of detecting heterogeneities
with contrast levels as small as 1.1, yet this difference is neg-
ligible if the heterogeneity is at higher contrast levels com-
pared to the homogenous background. Human observer detec-
tion of objects appears to converge to a probability of 50%
when the contrast-to-noise ratio of the region is near 3.0, in-
dicating that images with lower than CNR=3.0 could not be
expected to have detectable regions in them. The results also
indicate that effects of iteration and algorithm performance
alter detectability of objects in NIR tomography images for
both human observers and in the computed CNR value. Four
interactions of the reconstruction process are sufficient to
achieve maximum detection levels, and further iterations

human and computational observers. In �a�, the ROC and AUC are
al to 10 mm and with varying absorption contrast from 1.1 to 2.0.
both
thereafter have negligible impact on the human observer de-
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ection rate and a distinct detrimental impact on the computed
NR and localization decisions.
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