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Abstract. Saccharide interferences such as Dextran, Galactose, etc. have a great potential to interfere with near
infrared (NIR) glucose analysis since they have a similar spectroscopic fingerprint and are present physiologically
at large relative concentrations. These can lead to grossly inappropriate interpretation of patient glucose levels
and resultant treatment in critical care and hospital settings. This study describes a methodology to reduce this
effect on glucose analysis using an NIR Fourier transform spectroscopy method combined with a multivariate
calibration technique (PLS) using preprocessing by orthogonal signal correction (OSC). A mathematical approach
based on the use of a single calibration based bias and slope correction was applied in addition to a standard
OSC was investigated. This approach is combined with a factorial interferent calibration design to accommodate
for interference effects. We named this approach as a slope and bias OSC (sbOSC). sbOSC differs from OSC
in the way it handles the prediction. In sbOSC, statistics on slope and bias obtained from a set of calibration
samples are then used as a validation parameter in the prediction set. Healthy human volunteer blood with
different glucose (80 to 200 mg/dL) and hematocrit (24 to 48 vol.%) levels containing high expected levels of
inteferents have been measured with a transmittance near-infrared Fourier transform spectrometer operates in the
broadband spectral range of 1.25–2.5 μm (4000–8000 cm− 1). The effect of six interferents compounds used in
intensive care and operating rooms, namely Dextran, Fructose, Galactose, Maltose, Mannitol, and Xylose, were
tested on blood glucose. A maximum interference effect (MIE) parameter was used to rank the significance for
the individual interferent type on measurement error relative to the total NIR whole blood glucose measurement
error. For comparison, a YSI (Yellow Springs Instrument) laboratory reference glucose analyzer and NIR data were
collected at the same time as paired samples. MIE results obtained by sbOSC were compared with several standard
spectral preprocessing approaches and show a substantial reduced effect of saccharide interferences. NIR glucose
measurement results are substantially improved when comparing standard error of prediction from validation
samples; and resulting MIE values are small. C©2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3540408]
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1 Introduction
Monitoring and quantification of glucose level in blood is an im-
portant ongoing field of research in clinical analysis.1, 2 Specif-
ically, monitoring blood glucose by near infrared spectroscopy
(NIRS) has become one of the most active areas in biomedical
optics and pharmaceutical research investigated over 20 years
by many research groups.3–6 More recently, interest in NIRS is
on the rise for strict continuous control of blood glucose lev-
els for patients in an intensive care unit (ICU) and operating
room (OR) known as tight glycemic control (TGC).7 In TGC,
blood glucose is frequently (four to six daily measurements) or
continuously monitored in order to provide information needed
to administer the proper amount of insulin or glucose in or-
der to avoid hypoglycemia or hyperglycemia while maintaining
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normoglycemia (80 to 110 mg/dL).8 Recently, Tang et al. report
on the effect of 30 drugs used in hospitals on glucose mea-
surement with handheld glucose meters and a portable glucose
analyzer.9 To date, however, very little research is available de-
scribing the influence of drugs, found in many patients while
treated in ICU, on NIRS measurements. The Food and Drug
Administration of the United States also requires understand-
ing regarding the effect of drugs on accuracy and precision for
blood glucose assays using NIRS. In general, the measurement
of blood glucose by any technique is inherently complex be-
cause of the wide range of potentially interfering components
in blood and body tissues. Therefore, a study designed to screen
the influence of interferent substances at clinically relevant con-
centrations is necessary.

The clinical and laboratory standards institute (CLSI) refer
to the term interference as a cause of clinically significant
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bias in the measured analyte concentration due to the effect
of another component or property of the sample.10 By clinical
significance we mean the importance of an error to its potential
to alter a physician’s diagnosis, treatment, or management
of a patient. One of our goals in this study was to evaluate
the effects of test interferent compounds on NIRS glucose
prediction errors. The main test interferences for this evaluation
are saccharide compounds, suspected as having the greatest
potential to interfere with NIR glucose analysis. Saccharide
compounds can be divided into three main groups: 1. monosac-
charides (e.g., fructose, galactose, mannitol, and xylose),
2. disaccharides (e.g., maltose), and 3. polysaccharides (e.g.,
dextran and hetastarch). These saccharides are suspect since
they have similar spectroscopic fingerprints to glucose and
may be present physiologically at large relative concentrations.
The selection of specific interferents and test concentration
levels for interference testing are gathered from a variety of
reference literature sources. Although not comprehensive in
these literature, sources for interference information include
the following: common handheld meter interferences, selected
interferences from the EP7-A2 guidelines (high concentrations),
and commonly used drugs in ICUs.

To reduce or eliminate the effect of these saccharide com-
pounds on glucose measurements, a preprocessing method such
as orthogonal signal correction (OSC) can be used. OSC aims to
remove strong structured variation from the spectral data, X, that
is unrelated, or orthogonal, to the concentration Y.11 To achieve
such orthogonality, X is decomposed into scores (t), which are
required to be orthogonal to Y, and loading (p) vectors. Multi-
variate calibration by partial least squares (PLS) is accomplished
with X calibrated against scores and new scores and loadings
are recalculated.12 Next, new scores and loadings, which con-
tain information not related to the concentration, are subtracted
from X in order to correct the spectra. For new spectral data,
Xnew, a new score vector is calculated and multiplied with the
transpose of the loading vector previously found. Finally, the
product of the two is subtracted from Xnew. This type of mathe-
matical treatment has been applied here with one more element;
during calibration and validation modeling the bias (intercept)
and slope from the prediction data sets, that are not included
in the calibration model, were determined. This process was
repeated 100 times (∼10% of the model size across the entire
set) in order to compute statistic power on the bias and slope
parameter. For each new validation spectra, both the prediction
vector, b̂, and the bias and slope from the calibration process
were automatically applied yielding a standardized prediction.
A flow chart describing the difference between OSC and slope
and bias OSC (sbOSC) is depicted in Fig. 1.

In this work, the ability to determine glucose concentration
in the presence of saccharide interferences in NIRS measure-
ments by using Fourier transform near-infrared spectroscopy
(FT-NIRS) with a modification to OSC, for the first time to our
knowledge, was investigated. Detailed results demonstrate the
use of a single calibration for quantitative determination of glu-
cose levels in whole blood samples from 14 healthy anonymous
patients. These patient samples contained maximum physiolog-
ical levels of six different saccharides. The measurement error
effect of the individual interferents was determined based on
the maximum interference effect (MIE) of each substance. Fur-
thermore, the detailed use of FT-NIRS in transmission mode

Yknown

Xmsr’ OSC

PLS b̂

Xosc

(a)

Xnew msr’

b̂

Yval
correction
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Fig. 1 Flow chart describing the difference between OSC procedures
to sbOSC. (a) Calibration, (b) Validation. sbOSC contribution achieved
on the validation side.

coupled with sbOSC and a single PLS calibration model for
determination of glucose in whole blood will be described.

2 Material and Methods
2.1 Instrumentation
The transmittance Fourier transform near-infrared (FT-NIR)
spectrometer was designed and built in-house that has an op-
erating wavelength range of 1.25–2.5 μm (4000–8000 cm− 1)
with a spectral resolution of 32 cm− 1. It uses the same basic opti-
cal configuration of a Michelson interferometer platform.13 The
spectrometer consists of a uniform, constant, blackbody light
source (mini-igniter) with a color temperature of approximately
1035 ◦C, matched fused silica beam splitter and compensator
plates, fixed and moveable (active) corner-cube retroreflectors,
1 mm diameter extended-wavelength InGaAs PIN photodiode,
and a data acquisition system that digitizes the interferogram
data and stores them on PC. The interferogram data was pro-
cessed and analyzed off-line using MatLab. Light reaching the
sample is high pass filtered by the use of a silicon collima-
tor lens that attenuates wavelengths below 1.05 μm. A spring
suspension system along with a voice coil actuator is used to
move the active retroreflector in a strictly axial direction. The
active mirror is continuously scanning at a constant velocity of
0.8 cm · s− 1, 70% duty cycle, which results in approximately
eight interferograms per second. The blood and background
(Saline) samples were pumped through a borosilicate flow cell
with a path length of 1 mm that was controlled at 34 ◦C.

2.2 Sample Handling
Human blood was collected from healthy human donors in the
morning between 7:30 to 9:00 am on each testing day. Using a
venipuncture technique, blood is drawn into multiple 50 mL hep-
arinized syringes. Blood is immediately transported to our lab by
motor vehicle, which takes approximately 30 min. Once at the
lab, blood syringes are transferred to 50 mL centrifuge tubes. A
small and well-mixed sample is used for native hematocrit (Hct)
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and glucose readings. A VWR clinical 200 large centrifuge with
Hct adapter and YSI 2300 glucose analyzers are respectively
utilized to measure Hct and glucose values. Regardless of Hct
volume percentage, all blood tubes are spun down at 3000 rpm
for 5 min using the VWR centrifuge with 50 mL tube adapter
and cell buffy coats are gently removed. As will be mentioned
in Sec. 2.4, our model database consists two sample groups:
(1) samples that are designed with different measurement con-
ditions: flow rate, temperature, and flowcell pathlength with six
different glucose levels and three Hct levels; and (2) saccharide
containing samples. For the first group, red blood cells (RBC)
are reconstituted with plasma to generate different Hct levels. A
wide range of samples are created from three Hct levels and six
glucose stock concentrations. Each blood sample is spiked with
glucose concentration at least ten minutes before the sampling
process and that the sample is gently mixed during that time. A
small blood sample is also kept for Hct and glucose readings. For
the second group, RBCs are then reconstituted with plasma to
create a mid-range Hct level. High concentration glucose stock
solution prepared with saline is used to spike the blood to three
different glucose levels. Interference solutions are also prepared
with saline and at ten times the tested concentration. Saccharide
interferences are mixed at least 12 h before testing time to ensure
the anomeric stability of solutions. These concentrated interfer-
ences are then added to blood at a 1:10 ratio to yield the final
testing concentration and at least 10 min before the sampling
process. Samples for the prediction set are prepared as follows:
RBCs are reconstituted with plasma to create a mid-range Hct
level. High concentration glucose stock solution prepared with
saline is used to spike the blood. Saccharide interferences are
mixed at least 12 h before testing time to ensure the stability
of solutions. These concentrated interferences are then added to
blood at a 1:10 ratio to yield the final testing concentration at
least 10 min before the sampling process.

2.3 Measurements
FT-NIRS measurements were performed on whole blood sam-
ples obtained from 14 anonymous patients. Spectra were col-
lected in transmission mode in the spectral region from 4000 to
8000 cm− 1 from two FT-NIR systems (Nos. 7 & 8). Symmetri-
cal interferograms that contained 2048 point were measured at
32 cm− 1 resolution at full throughput. Background spectra of
Saline (NaCl 0.9%) were collected before and after blood sample
measurement for 30 s to account for variation in instrument noise
and drift profiles. On the other hand, blood measurements were
obtained for 60 s. Each background and blood measurement is
an average of ∼230 and ∼460 spectra, respectively. Reference
measurements were made by two bench whole-blood glucose
analyzers, YSI 2300, which has an accuracy of ± 3 mg/dL;
instrument A versus instrument B (1 sigma). Glucose samples
were in the concentration range of 30–500 mg/dL with variable
Hct levels ranging from 24 to 48 vol.%. For drug measurements
to be included in the calibration and validation model the NIR in-
terference is measured by spiking a control blood sample with an
interferent and measuring the NIR glucose for the spiked sample
versus an untreated control sample (the control sample has an
identical volume of saline without the interferent). In this man-
ner, interferent spiked and control samples are serially measured
following CLSI guidelines (EP7-A2, Interference Testing).

Glucose (mg/dL)

Interferent 

Hct (%)

Total Spectra

Instr1

80                   140          200

0,C,L,M,H        0,C,L,M,H 0,C,L,M,H

L,M,H L,M,H

5           +            7        +             7     =    19  

24  36  48  24  36  48  24  36  48  24  36  48  

Fig. 2 Simple factorial design samples file to accommodate for single
inteferent for each instrument used in this study. L- low, M- mid, H-high.

2.4 Calibration Model
The goal during NIR calibration is to increase analytical speci-
ficity or selectivity for glucose and decrease the effects of in-
terferents. For that, a PLS1 model was used to develop a mul-
tivariate calibration model for predicting glucose concentration
from the NIR spectra.14 Spectra here refer to the absorbance
data given by the modified Beer–Lambert law15

μa = log10

(
Ibck

Ibld

)
, (1)

where μa is the absorption coefficient, Ibck is the background
intensity, and Ibld is the light intensity from the blood.

Calibrations for glucose must be designed such that they are
sensitive to changes in glucose concentration but are insensitive
to interferent chemicals. A method for making calibrations more
selective to the analyte of interest and less selective toward an
interferent includes the use of “interferent compensation.” This
is accomplished by including low (nonzero), medium, and high
concentration samples into the initial calibration and testing
the sensitivity of the calibration to glucose and to the interfer-
ent following the incorporation of such samples into the ini-
tial calibration. A standard factorial design for including such
samples is depicted in Fig. 2. This is implemented by taking
the same basic blood sample with three different Hct levels
(24, 36, and 48 vol.%) and spiking it to three levels of glucose
(80, 140, and 200 mg/dL), and three levels of interferent (low,
mid, and high expected physiological concentration). Table 1
summarizes these ranges of expected concentration for each

Table 1 Three level of interferent concentration used in this work. To
convert mg glucose/dL to mmol/L, divide by 18.015

Interferent Type Low (mg/dL) Mid (mg/dL) High (mg/dL)

Fructose 6 12 18

Galactose 20 40 60

Mannitol 200 400 600

Xylose 10 15 20

Dextran 1000 2000 3000

Maltose 60 120 180
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inteferent. These intervals of values are near those commonly
used in ICU and in OR. In addition, a combination of spec-
tra from sample types with “real-world” effects (instrument
type, sample temperature, flow rate, and flowcell pathlength)
was added to the calibration model. Hence, our calibration data
is formulated from a mixture of two groups of samples. The first
group (N = 1007) is the real-world samples while the second (N
= 361) contains the saccharide samples at constant: flow
rate (0.5 ml/min), temperature (25oC) and flowcell pathlength
(1 mm) state.

Outlier detection based on both Mahalanobis distance (MD)
and spectral F-ratio (SFR) metrics were applied to ensure the
quality of the data used to construct the calibration model. A
criterion of μ ± 3σ was used as an outlier screening for each
metric. μ and σ represents the mean and the standard deviation
receptively of the MD (or SFR). Samples that exhibit MD and
SFR above this criterion were considered an outlier and removed
from the calibration model. OSC was applied for preprocessing
of the NIR spectra before being used in the PLS model. As
stated in Sec. 1, the main goal of OSC is to determine and re-
move from the spectral data, X, the part of information that is
not correlated with the concentration, Y, within a limited num-
ber of orthogonal scores (t) and loadings (p). Filtered data are
obtained after iterative removal of the orthogonal components as
follows:

X O SC = X −
n∑

i=1

ti · pT
i , (2)

where n is the number of times that the treatment is applied.
Usually, one factor is commonly used in OSC correction; the
second treatment on the corrected X data can remove useful
information reducing the predictive analytical ability.16

After outlier screening and OSC treatment, a PLS calibration
matrix is formed. A leave-one-out method of cross-validation
was performed on the calibration data set to determine the op-
timal number of factors (i.e., latent variables). The PLS model
size was chosen as the number of factors resulting in the first
minima of the standard error of cross-validation (SECV). Com-
mon calibration statistics such as SECV, mean relative error,
coefficient of determination (R2), etc. were computed to as-
sess the fitting ability of the model. Once a model has been
built, it can be used to predict the concentration of the unknown
samples.

2.5 Validation Model
Validation data sets were composed of saccharide samples sim-
ilar to the data included in the calibration model. These data
sets differ from those in the calibration in their concentration
level (Table 1, third column) and in the time when they were
measured. The spectral data matrix, Xval, was constructed by
serially measuring new spectra of different interferences and
control samples according to the following manner: Control,
Interfernt1, Control, Interfernt2, Control, ..., Interferent n, etc.
such that each block-run consists of ten interferent and ten con-
trol samples. The interferent treated test samples are immedi-
ately measured following the control samples and include an
identical dilution volume of saline only as an added volume.
Xval was then subtracted from the scores and loading vector

obtained from the calibration model;

X̃V al = XV al − t · p′
Cal , (3)

where t is a new scores vector given by t = XV al · b̂Cal

· (p′
Cal · b̂)−1and pCal is the loading vector determined by the

OSC in the calibration model [see Eq. (2)]. The prime (′) repre-
sents the transpose matrix operation. For the validation proce-
dure, Xval is multiplied by the prediction vector b̂Cal

YV al = b̂Cal · X̃V al . (4)

2.6 Computation and Software
All computations were performed in Matlab software (Math-
works, Inc., R2008b) on an Intel Pentium (T4400) running at
2.2 GHz with 4GB memory. PLS program for calibration-
prediction was obtained using PLS-Toolbox (Eigenvector Com-
pany, Ver. 2.1) and OSC m-file achieved from Ref. 17. Prepro-
cessing algorithms were written in-house in Matlab language.
During data processing the region of 4935–5300 cm− 1, repre-
senting the water band, was cut off (i.e., trimmed) in order to
eliminate noise caused by high water absorption.
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Fig. 3 (a) Plot of the root mean square of standard error of cross-
validation (RMSECV) values versus the number of factors used to build
the PLS. The arrow indicates the lower RMSECV values results in 27 fac-
tors. (b) Cross-validated PLS glucose prediction versus actual glucose
concentration with Clark error grid. Cross-validation was performed by
leaving one spectrum out of the calibration model at a time.
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3 Results and Discussion
The aim of the first experiment was to investigate the effect of
the saccharide interferences, on the prediction (validation) data
sets. A PLS calibration was built with 1007 spectra from the
real-world group as described in Sec. 2.4. The number of PLS
factors used in the model and the cross-validation glucose pre-
diction plot in the Clarke Error Grid Analysis (CEGA) format of
these data sets are presented in Figs. 3(a) and 3(b), respectively.
Usually, CEGA is used to quantify clinical accuracy of blood
glucose measurement techniques in comparison to a reference
value.18 The grid consists of five zones A–E and provides an
assessment of measurement errors and their respective clinical
significance. For example, zone A is the region in which the NIR
analytical values are within 20% of the reference values and in-
dicates errors without serious clinical implications. As depicted,
a linear correlation of R2 = 0.99 between the NIR results and
the YSI glucose concentrations, with SECV = 4.1 mg/dL is
observed. These results, together with the fact that 100% of the
prediction fall within zone A and zero% results on the other
zones, confirm both the ability of PLS to calibrate models by
using NIR spectra with real-world effects and the reliability
of our FT-NIRS modality. Once the calibration is complete,
the prediction data sets were build composed by six saccharide
interferences: Dextran, Fructose, Galactose, Maltose, Manni-
tol, and Xylose. For interferent compensation, each interferent
was spiked with different concentration levels and different glu-
cose and Hct levels as per a factorial design depicted in Fig. 2;
Table 2 shows an example for the Xylose experiment. The NIR

Table 2 Example of Xylose sequence measurements. Total sample
measurements are equal to 26. Discontinuity in Sample ID results from
the measurement of other inteferent according to CLSI Guidelines.

Sample ID
Hct
(%)

Glucose
(mg/dL)

Xylose
Concentration

(mg/dL) System #

1000766 36 80 10 7 & 8

1000768 36 80 15 7 & 8

1000770 36 80 20 7 & 8

1000774 36 140 10 7 & 8

1000776 24 140 15 7 & 8

1000778 36 140 15 7 & 8

1000780 48 140 15 7 & 8

1000778 36 140 20 7 & 8

1000786 36 200 10 7 & 8

1000788 24 200 15 7 & 8

1000790 36 200 15 7 & 8

1000792 48 200 15 7 & 8

1000794 36 200 20 7 & 8

Fructose Galactose Mannitol Xylose Dextran Maltose
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Fig. 4 Bar graph represents the difference in the MIE values when
interferents out (black) or in (white) the calibration model.

predictions are reported under two basic conditions: 1. extrap-
olation testing without calibration interferent accommodation
(compensation) of the test interferent compounds, where the
calibration model predicts outside of its calibration space, and
2. interpolation with calibration interferent accommodation
(compensation) of the test interferent compounds (i.e., including
the extremes within the model), where the model predicts within
its calibration space. Figure 4 together with Table 3 presents the
results of the prediction in terms of maximum interference effect
(MIE). MIE is expressed by

M I E = |N I R − Y SI | + 1.96×
(

SE P√
n

)
, (5)

where NIR and YSI are the average value from the NIR predic-
tion and YSI readings, respectively. SEP is the standard error of
prediction given by

SE P =
√∑

(ŷ − y)2

Np
, (6)

Table 3 Comparison of the prediction results of Maximum Interfer-
ence Effect (MIE) for six saccharide interferences when exclude and
include in the calibration model.

Interferent Name

Interferent
exclude

Calibration
(mg/dL)

Interferent
include

Calibration
(mg/dL)

Fructose 11.1 8.6

Galactose 39.7 14.5

Mannitol 62.4 6.2

Xylose 16.4 9.5

Dextran 2599.6 6.2

Maltose 152.2 20.8
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Fig. 5 Cross-validated results of glucose prediction versus reference
values shown on Clark error grid before (a) and after (b) using OSC.

where ŷ is the predicted glucose value, y is the known glucose
value, and Np is the number of spectra used in the prediction
sets. n in Eq. (5) represents the number of spectra used for each
interferent and was equal to n = 26 (see Table 2). The differ-
ences between the MIE values are clearly shown in Fig. 4 and
indicate, as expected, the influence of the interferent when ex-
cluded/included for both the calibration and validation models.

Before assessing the feasibility of sbOSC, a new experiment
(experiment #2) was conducted in order to validate the efficacy
of the standard OSC on interferent containing sample prediction.
In this experiment a PLS calibration was constructed with 696
spectra obtained from a combination of a third set of real-world
random samples (N = 335) and saccharide interferences (Ns
= 361) having different concentrations. The performance of the
calibration model before and after the use of OSC is shown in
Figs. 5(a) and 5(b), respectively. Inspection of the correlation
plots in Fig. 5(b) in comparison with Fig. 5(a) reveals that with
OSC processing the prediction results are considerably concen-
trated along the unity line with R2 = 0.99 and a ∼70% decrease
in SECV (19.1 mg/dL versus 5.8 mg/dL). In addition, Fig. 4(b)
shows that a high percentage of the NIR predicted data points
fall within the zones A and B of the Clarke grid; 99.9% and 0.1%
of all NIR predictions fall in the A and B zones, respectively.

Fig. 6 Representative cross-validation performance (a) and predicted
glucose concentration for a validation set (b) versus actual values ob-
served during modeling. In (c), the slope and bias correction were
applied to the validation set, noting the prediction performance is on
samples that did not participate in the calibration modeling process.

On the contrary, without using OSC, 84.2%, 15.2%, and 0.6%
of the predictions fall in the A, B, and D zones, respectively,
resulting in a much higher error expressed as SECV.

The next experiment’s (experiment #3) purpose was to estab-
lish a statistical method for computing the calibration slope (m)
and bias (i, intercept) used later during the sbOSC procedure.
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Table 4 Comparison of calibration and validation performance between sbOSC to several background correction methods. Validation results are
present as the Maximum Interference Effect (MIE) in mg/dL. The validation data sets are saccharide interferences non-included in the calibration
model.

Calibration set Validation set

Calibration
Approach

No. of PLS
components

SECV
(mg/dL) R2

Dextran
(mg/dL)

Fructose
(mg/dL)

Galactose
(mg/dL)

Maltose
(mg/dL)

Mannitol
(mg/dL)

Xylose
(mg/dL)

Factorial 33 21.9 0.934 27.8 18.3 53.9 66.3 47.4 41.7

2nd SG 30 21.7 0.933 34.6 22.7 61.6 72.0 50.3 44.9

WT 30 20.0 0.946 21.8 19.8 57.2 60.7 54.0 50.4

SLSN 29 22.5 0.927 33.1 18.6 52.8 70.2 20.0 48.4

DOSC 1 11.7 0.982 27.2 14.7 53 63.8 18 44.9

OSC 3 7.4 0.996 12 2.2 13.1 13.9 9.2 12.5

sbOSC 3 7.4 0.996 10.9 2 12 12.6 8.3 11.3

Percent improvement between sbOSC to Factorial approach 61% 89% 78% 81% 82% 73%

Table legend: 2nd SG - second derivative Savitsky-Golay, WT - Wavelet Transform, SLSN - sample selection, DOSC - direct orthogonal signal correction, OSC -
orthogonal signal correction, sbOSC - slope and bias orthogonal signal correction

Eighty percent of the data set of random real-world samples (N
= 807) were combined together with saccharide interferences
(Ns = 361) in order to build an NIR calibration model. OSC
was applied for preprocessing of the NIR spectra of these mixed
samples (NT = 1168) before being used in the calibration mod-
eling step. The validation data sets were composed of the same
saccharide type molecules, however, as previously mentioned,
with high physiological concentration levels (Table 1, third col-
umn). In addition, the spectra of these validation samples were
collected on the same two FT-NIRS instruments 35 days after
the samples used for calibration. A total of 100 calibration mod-
els were developed by selecting different random samples for
calibration and validation in order to determine the distribution
for the slope and bias. For each set of experiments m and i
metrics were computed according to the following expressions:

m =
n ·

n∑
i=1

(ŷi · yi ) −
n∑

i=1
ŷi ·

n∑
i=1

yi

n ·
n∑

i=1

(
ŷ2

i

) −
n∑

i=1
(ŷi )

2
,

i =

n∑
i=1

ŷ2
i ·

n∑
i=1

yi −
n∑

i=1
ŷi ·

n∑
i=1

(ŷi · yi )

n ·
n∑

i=1

(
ŷ2

i

) −
n∑

i=1
(ŷi )2

, (7)

where ŷi is a predicted value of a sample i, yi is the known
(reference) value for that particular sample, and n is the total
number of samples. The average ± standard deviation of the
slope and bias were found to be m = 1.07 ± 0.032, and ī = − 71
± 3.5, respectively. These values will be used as correction met-
rics for the next experiment. One representative cross-validation
and prediction plot before and after slope and bias correction are
presented in Figs. 6(a)–6(c), respectively. Please note that the
slope and bias in Fig. 6(c) are equal to 1 and 0, respectively, as
a result of the correction. This correction was achieved by the

following;

ŷnew = ŷold − ī

m
, (8)

where ŷold and ŷnew are the predicted glucose value before and
after the slope and bias correction, respectively. In addition,
among the 120 validation data, 97.5% were in the A zone, 2.5%
in B zone, and 0% were in C, D, and E zones. Thus, all NIR
analytical values fell in areas where the error had no negative
impact on resulting therapeutic decisions, thus no values fell
where inaccurate values might cause clinically significant errors.

After identifying the slope and bias factors, a random data
set of entire real-world samples (N = 200) were combined to-
gether with the saccharide interference samples (N = 361) to
construct the PLS model for the calibration. Prediction data
sets, not included in the calibration model, were employed as
an independent test set. Therefore, our validation process is ob-
tained on “blind” saccharide interferents samples. In addition
the prediction equation from Eq. (4), was modified accordingly
by

ỸV al = YV al − ī

m
, (9)

where īand m are the average slope and bias reported above.
After Eq. (9) was automatically applied on the validation sac-
charide interferent sets, MIE values were calculated based on
Eq. (5). Since in this experiment the validation data measure-
ments are following EP7-A2 protocol, in which the control and
the interferent spectra are consecutively measured in time (con-
trol, Interfernt1, control, Interfernt2, control,..., etc.), Eq. (9) was
separately applied for both the interferent and control samples
and the final value was determined by subtraction of the two,

ỸV al f inal = ỸV alI ntr − ỸV alCntrl . (10)
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Table 5 Comparison of calibration and validation performance of sbOSC when Dextran excluded during modeling. Validation results are present
as the Maximum Interference Effect (MIE) in mg/dL.

Calibration set Validation set

Calibration
Approach

No. of PLS
components

SECV
(mg/dL) R2

Dextran
(mg/dL)

Fructose
(mg/dL)

Galactose
(mg/dL)

Maltose
(mg/dL)

Mannitol
(mg/dL)

Xylose
(mg/dL)

Factorial 30 20.1 0.939 - 15.5 52.4 66.4 19.2 41.2

OSC 3 5.4 0.996 - 1.5 11.7 12.1 5.3 10.7

sbOSC 3 5.4 0.996 - 0.5 10.6 11 4.7 9.8

In the next experiment (experiment #4), following Sec. 2.5,
the purpose was to evaluate the bias and slope approach as
sbOSC in comparison to other basic preprocessing approaches.
After the spectral data matrix, X, of the combined samples of
real-world samples (N = 1007) with saccharide samples (N
= 361) was corrected with a different correction technique, a
PLS model was built and prediction on blind saccharide interfer-
ents (N = 120) was obtained. The MIE results are summarized
in Table 4. The factorial approach appearing in Table 4 repre-
sents the data set without using any preprocessing correction
approach, only the factorial design for data set construction.
The MIE results for this category show that the prediction of the
PLS is poor and should be improved. Next, the Savitzky–Golay
method with nine points of smoothing and second derivative
differentiation was performed. As observed, no improvement
was obtained. Although, not shown in this paper, we used dif-
ferent smoothing points, different fitting polynomial, and also
first derivative approaches to help reduce the MIE values, yet no
dramatic prediction improvements were observed. Biorthogo-
nal wavelet transform (WT) and sample selection (SLSN) algo-
rithm was used next, unfortunately without improvement. The
MIE result of the SLSN method to Mannitol is better from the
previous correction method, but the overall performance for the
other interferents is still not clinically acceptable. SLSN is an
algorithm that subtracts unusual spectra from the others.19 This
kind of approach corrects the distribution of spectra used for
calibration from normal to flat increasing the variability of the
samples for calibration; it computes a data set with the largest
concentration difference for chemical constituents and instru-
mental effects. Direct orthogonal signal correction (DOSC) was
used next. Briefly, in DOSC instead of orthogonalizing X to Y
using a regular PLS model, it uses the Moore–Penrose inverse
calculation.20 Use of DOSC yields dramatic changes of the cal-
ibration parameters, however, the results showed a reduction in
MIE value only for Fructose and Mannitol for the validation
sets. On the other hand, using OSC a distinct decrease in the
validation performance of the MIE values occurs across the en-
tire set of interferent. Finally, compared to OSC, sbOSC was
able to further decrease the MIE values in validation analysis
by an additional 10% for each interferent. For the reader’s con-
venience, the bottom of Table 4 displays another Table line that
summarizes the percent change (improvement) in the MIE value
between sbOSC with that of the factorial approach. The results
showed in Table 4 verified that OSC and sbOSC are greatly
effective preprocessing approaches that enable the reduction of

the influence of interferents on the accuracy of glucose mea-
surements. In the next experiment (experiment #5), the Dex-
tran, which is characterized with the highest concentration (i.e.,
3000 mg/dL) as compared to the other saccharide interferents
was removed from the calibration model. We hypothesize that
this high interferent concentration of a glucose-like compound
can affect the prediction accuracy of the NIR calibration model.
The previous experiment was repeated again but now without
using the Dextran. Results are presented in Table 5. In compar-
ison to Table 4, MIE parameter improvements of 15% and 60%
for Fructose and Mannitol, respectively, is observed when the
Dextran is removed. However, the overall performance of the
other interferents is not significantly changed. By using OSC,
MIE values were improved by 32%, 11%, 13%, 42%, and 14%
for Fructose, Galactose, Maltose, Mannitol, and Xylose, respec-
tively, in comparison to previous results (Table 4, OSC data).
With sbOSC, the MIE values were improved by 75%, 12%, 13%,
43%, and 13% for Fructose, Galactose, Maltose, Mannitol, and
Xylose, respectively, in comparison to previous results (Table 4,
sbOSC data). These results confirm our hypothesis about the
removal of Dextran at high relative concentration.

4 Conclusions
There are medicines that can cause hypoglycemia (low blood
sugar) or hyperglycemia (high blood sugar) in diabetic and non-
diabetic patients. These drugs have a possible effect to inter-
fere with NIR glucose measurements. In this paper, a method
for determination of glucose concentrations in blood in pres-
ence of saccharide interferences using FT-NIRS and sbOSC as a
pretreatment method was demonstrated. sbOSC is based on the
traditional OSC platform but in addition uses a universal slope
and bias correction on the prediction sets. The slope and bias
were computed during calibration using 100 different calibration
models and are used later for the validation prediction and rou-
tine analysis. A clear advantage of OSC and sbOSC presented in
MIE value performance is observed in comparison to other ba-
sic preprocessing spectral correction techniques (Table 4). The
novelty of this work is our ability to directly quantify glucose
value in the presence of saccharide interferences in NIR region
using FTS, and the ability of the sbOSC approach to further
decrease the MIE values by an additional 10% for each interfer-
ent over OSC-PLS. To the best of our knowledge, no previous
report of such a study and calibration development has been
previously described. The overall results presented in this study
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clearly show the potential and versatility of our methodology,
which could be applied for blood glucose assay in ICU and OR
rooms.
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