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Abstract. The identification of bacterial pathogens from culture is critical to the proper administration of antibiotics
and patient treatment. Many of the tests currently used in the clinical microbiology laboratory for bacterial identi-
fication today can be highly sensitive and specific; however, they have the additional burdens of complexity, cost,
and the need for specialized reagents. We present an innovative, reagent-free method for the identification of patho-
gens from culture. A clinical study has been initiated to evaluate the sensitivity and specificity of this approach.
Multiwavelength transmission spectra were generated from a set of clinical isolates including Escherichia coli,
Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus. Spectra of an initial training set
of these target organisms were used to create identification models representing the spectral variability of each
species using multivariate statistical techniques. Next, the spectra of the blinded isolates of targeted species
were identified using the model achieving >94% sensitivity and >98% specificity, with 100% accuracy for
P. aeruginosa and S. aureus. The results from this on-going clinical study indicate this approach is a powerful
and exciting technique for identification of pathogens. The menu of models is being expanded to include
other bacterial genera and species of clinical significance. © 2012 Society of Photo-Optical Instrumentation Engineers (SPIE).
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1 Introduction
The current health care crisis is forcing the modernization of the
existing state of medical delivery. The rapid, cost-effective iden-
tification of infectious bacteria is an area of significant medical
need for hospitals, clinics, and other laboratory settings, espe-
cially in remote locations or those serving a large indigent popu-
lation in low-resource settings. Diagnostic systems in use today
are often unable to identify life-threatening infections in time
to effectively treat them in many patients. Bacterial infections
leading to septicemia are especially deadly. Sepsis is the tenth-
leading cause of death in the United States, and treating these
infections adds $17 billion annually to the total health care
expenditures for the country.1 Early diagnosis and treatment of
bacterial infections is key to better patient outcomes.2 Providing
the clinical laboratory with the appropriate diagnostic instru-
mentation to meet those needs is critical world-wide.

1.1 Established and New Approaches

Technologies that are used in the clinical laboratory to identify
bacterial pathogens are primarily based upon either biochemical
assays or molecular methodologies. Biochemical assay-based
instruments, such as the Phoenix (BD) or Vitek 2 (bioMerieux),
rely upon a series of chemical reactions conducted automatically
on a card. Molecular methods primarily used include real-time
polymerase chain reaction (PCR), peptide nucleic acid fluores-
cence in situ hybridization (PNA FISH) and can also be applied
to a variety of sample types (i.e., blood, wounds, nasal swabs,

etc.). Matrix-assisted laser desorption/ionization time of flight
mass spectroscopy (MALDI-TOF MS), a recent advancement
for the identification of blood culture pathogens, has gained
approval in Europe for use in clinical applications.3,4 Unlike
some techniques, MALDI-TOF MS does not require any initial
assessment, such as gram staining, choice of PCR primers, or
usage of selective growth media; however, specific protocols
involving chemical reagents are required to break cell walls
to expose intracellular proteins for analysis. Despite these
more recent approaches, sample processing and preparation
remains laborious, complex, and expensive, and samples are
susceptible to contamination, especially for DNA extraction.
Further, these techniques are not necessarily within reach of
smaller health-care centers with limited financial resources.

Optical biosensors are increasingly being considered as the
next-generation tool for detection and identification of microbial
pathogens in bodily fluids and tissue, as well as food and envi-
ronmental samples.5,6 The interaction of light with matter fun-
damentally changes the properties of the input light, and the
measurement of such changes provides insights into the nature
of a sample. Optical techniques such as fluorescence spectros-
copy,7 flow cytometry,8 and immunological tests9 among
others5,10,11 detect specific enzymes, antibodies, nucleic acids,
labels, or pathogenic markers and require specialized reagents.
There is also a renewed interest, in optical techniques that
directly use the structural5,12–17 or chemical properties of cell
constituents18–22 without the use of specialized reagents. From
the structural perspective, the light scattering of cells has been
used to identify bacteria based upon metrics like size and
shape.16,17,23 Intrinsic fluorophores such as tryptophan and
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NADH have been used in fluorescence spectroscopy to dis-
criminate among bacteria.24–26 Vibrational spectroscopic tech-
niques, specifically Raman spectroscopy and infrared
spectroscopy, have been used to create “fingerprints” based
upon the chemical composition of bacteria,18,20,22,27 and systems
such as the SpectraCell RA (River Diagnostics) are now com-
mercially available. While the aforementioned techniques typi-
cally rely on the resolution of either structural or chemical
information about the cells5 to identify bacteria, it is also worth-
while to investigate the use of other types of optical measure-
ments, like multiwavelength transmission spectroscopy, that
include more than one type of light-matter interactions in a
single measurement, thus increasing the diversity of variables
available to discriminate among bacteria.

1.2 Pathogen Identification from Transmission
Measurements

Both the absorption and scattering properties of a sample are
measured in UV-Visible-NIR transmission spectra.28 Such spec-
tra of microorganisms and cells contain rich information pertain-
ing to their physical structure and chemical composition.29–35

The spectral features of cells and cellular organisms result
from numerical density (concentration), size, shape, and internal
composition.29 A model that utilizes light scattering theory,
spectral deconvolution techniques, and the approximation of
the wavelength-dependent optical properties of the basic consti-
tuents of cells (e.g., DNA, etc.) has been proposed for the inter-
pretation of the spectra of microorganisms.31 It was shown that
the features of the transmission spectra of bacteria (Escherichia
coli, Pseudomonas agglomerans, Bacillus globigii vegetative
cells and spores, and Bacillus subtilis spores) can be quantita-
tively linked to the internal and external characteristics of the
bacteria thus enabling discrimination among them.31 Although
the ability of UV-visible-NIR spectroscopy for the detection,
identification, and characterization of cells, pathogens, and
disease markers using their spectral signatures has been demon-
strated,30,32,35 a statistically meaningful study of clinical isolates
is still needed.

The objective of this study is a clinical demonstration of the
utility of multiwavelength UV-vis-NIR transmission measure-
ments for the identification of bacterial pathogens. The study
utilizes the theoretically confirmed findings that multiwave-
length transmission spectroscopy uniquely characterize bacteria
and accounts for the natural variability in bacteria spectral sig-
natures using multivariate statistical techniques. The approach is
demonstrated to be an excellent discriminatory tool for clinically
relevant pathogens such as Escherichia coli, Klebsiella pneumo-
niae, Pseudomonas aeruginosa, and Staphylococcus aureus
which accounted for more than 50% of the isolates received
for this study.

2 Methods

2.1 Targeted Organisms

The bacteria E. coli, K. pneumoniae, P. aeruginosa, and
S. aureus were selected as targets because of their high collec-
tive prevalence and severity of infection. A total of 555 bacterial
isolates from positive blood cultures were received during the
course of the study (Table 1) from the BayCare Health System,
Florida. The identities of the isolates were blinded and arrived in
sealed envelopes. The identity of the initial 188 isolates received

were opened and used to construct and test identification models
(n ¼ 116 isolates of target organisms). Due to the substantial
size differences in the number of isolates received for K. pneu-
moniae and P. aeruginosa in the initial set of 188 isolates (11
and 6, respectively c.f. 38 and 61 for E. coli and S. aureus,
respectively), this set was further supplemented with an addi-
tional 45 clinical isolates of K. pneumoniae and P. aeruginosa
(23 K. pneumoniae and 22 for P. aeruginosa) from a second
hospital (Tampa General Hospital, Florida) to ensure adequate
sample sizes for each target organism. The remaining 367 iso-
lates were analyzed as blinded samples (n ¼ 204 isolates for
target organisms).

2.2 Generation of Bacterial Spectra

Participating hospitals subcultured positive blood cultures onto
either blood agar or MacConkey agar plates, which were sent
via courier for analysis. Upon arrival all plates were inspected
for sample integrity and colonial morphology. Samples were
processed as follows: a single well-isolated colony was selected
and inoculated using sterile technique into a 250 mL flask con-
taining 50 mL of sterile tryptic soy broth. The flask was incu-
bated at 37°C with agitation for 17� 2 h. After incubation, a
1 mL aliquot was collected from each flask and transferred
to a 1.5 mL sterile Eppendorf tube. Samples were immediately
placed into a ThermoFisher Accuspin Microfuge 12 and spun
for 3 min at 12,000 RPMs. Upon completion of the centrifuga-
tion cycle, the tubes were removed from the Microfuge and the
supernatant was slowly drawn off and discarded. The remaining
pellets were re-suspended using de-ionized water and vortexed
for a few seconds. This washing process was repeated three
times to remove all traces of the growth media. After the last
wash, the pellet of clean cells was re-suspended well in de-
ionized water. Aliquots of the final cell suspension (30 to
60 μL) were diluted into 3 mL of deionized water in a 1 cm
path length quartz cuvette. For the transmission measurements,
the following diode array spectrometers were tested and found
to be equivalent for pathogen identification: Agilent 8453, Santa
Clara, California; Ocean Optics HR4000, Dunedin, Florida; and
Ocean Optics HR2000, Dunedin, Florida. The data reported
herein are from the Agilent 8453. Other commercial spectro-
photometers can be used provided that the spectrophotometers
have a minimum of 1 nm wavelength resolution, a high signal-to
noise ratio (>99%) and an acceptance angle smaller than 2 deg.
The degree of dilution of each sample was selected to yield max-
imal optical density values between 0.4 and 0.8 absorbance units
in the wavelength range of 190 to 220 nm. In the case of spectra
that exceed maximum allowable optical density, samples were
diluted to achieve the requisite optical density range. Data were
collected with an integration time of 0.5 s. Collected spectra
were inspected and removed from the data set if they exhibited
significant scattering signal in the visible-IR wavelength region
due to aggregation, diffraction artifacts, or exceeded allowable
optical densities. All spectra were pretreated by normalizing by
the area under the curve between 210 to 900 nm.

2.3 Model Development and Validation

The generation of an accurate identification model for an organ-
ism must be based on a set of spectra that represents as many of
the spectral variations as possible that can be exhibited by an
organism. Natural spectral variability can be related to bacterial
growth due to changes in the number of cells, their shape,
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Table 1 Species prevalence of bacteria from positive blood cultures from BayCare Hospital System.

Genus Species Known % Blind %

Achromobacter denitrificans 0 — 2 0.5

Achromobacter xylosoxidans 1 0.01 3 0.8

Acinetobacter lwoffi 0 — 1 0.3

Aeromonas hydrophilia/caviae 0 — 1 0.3

Chryseobacterium meningosepticum 1 0.01 0 —

Citrobacter braakii 0 — 1 0.3

Citrobacter freundii 0 — 3 0.8

Enterobacter aerogenes 1 0.01 1 0.3

Enterobacter cloacae 1 0.01 14 3.8

Enterococcus avium 1 0.01 0 —

Enterococcus durans 1 0.01 1 0.3

Enterococcus faecalis 8 0.04 18 4.9

Enterococcus faecium 2 0.01 3 0.8

Escherichia coli 38 0.2 71 19.3

Klebsiella oxytoca 0 — 1 0.3

Klebsiella pneumoniae 11 0.06 16 4.4

Pasteurella multocida 0 — 2 0.5

Pasteurella sp. 0 — 1 0.3

Proteus mirabilis 0 — 7 1.9

Pseudomonas aeruginosa 6 0.03 16 4.4

Pseudomonas oryzihabitans 0 — 1 0.3

Salmonella sp. 2 0.01 1 0.3

Serratia marcescens 3 0.02 4 1.1

Staphylococcus aureus 61 0.3 101 27.5

Staphylococcus auricularis 2 0.01 3 0.8

Staphylococcus capitis 2 0.01 8 2.2

Staphylococcus cohnii 0 — 1 0.3

Staphylococcus epidermidis 28 0.2 46 12.5

Staphylococcus haemolyticus 1 0.01 4 1.1

Staphylococcus hominis 9 0.05 17 4.6

Staphylococcus lugdunensis 1 0.01 0 —

Staphylococcus saprophyticus 2 0.01 0 —

Staphylococcus simulans 0 — 3 0.8

Staphylococcus warneri 4 0.02 5 1.4
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chemical composition, and internal structure.29 For example, a
spectral data set representing the complete growth cycle of an
organism must include spectra of the organism at the lag, expo-
nential, stationary, and death phases since they have distinct
spectral signatures.29 Moreover, a set of spectra describing
the stationary phase alone should contain any spectral variation
that can occur within this phase as well as any contribution due
to sample processing. In order to account for such spectral var-
iations, the set of spectra used in the training set was composed
of multiple spectra of each isolate collected while in station-
ary phase.

Following this, 10 spectra (Fig. 1) were selected from the full
set of spectra available for each species from their respective
training sets to create an optimal identification model (i.e., a
set of eigenvectors) solving the generalized eigenvalue problem
[Eq. (1)].

Ax ¼ λx (1)

A ¼ XX 0

n
; (2)

where λ are the eigenvalues, x are the corresponding eigen-
vectors, A is the covariance matrix of the spectral data, X,
and n is the number of spectra.36 The eigenvectors represent
the underlying spectral features of the corresponding microor-
ganisms and are defined as the “model” for each organism.
Therefore, the spectral features contained within the set of
eigenvectors derived from the training set are present in the
transmission spectra of any sample of a given microorganism.
The spectra used to generate each model were chosen to span the
range of spectral variability observed for each species. The lar-
gest breadth of this variability is apparent in the UV region of
the measured spectra (Fig. 1). While the selection of 10 spectra
to represent each organism is somewhat arbitrary, given the
small sample sizes of K. pneumoniae and P. aeruginosa, it is
a result of trying strike a balance between including enough
spectra to capture the variability and having enough spectra
left over to validate the model.

Under the aforementioned assumptions, a regression step is
required to calculate the sample residuals and compare among
models for classification. The entire set of generated eigenvec-
tors (n ¼ 10 for each model) were regressed in an ordinary least
squares sense37 against the remaining spectra from the training
set and the entire set of blinded spectra. This is described gen-
erally in Eq. (3).

B ¼ mx; (3)

where B is a the spectral data, m is a set of weights describing
the relationship between B and the eigenvectors generated from
the training set, x. Specifically, for i spectra and j models,

mi ¼
Bi

λj
(4)

B̂i ¼ miλj: (5)

Typically only the eigenvectors with the highest eigenvalues
are used in this type of regression; however, we found that using
the entire set yielded the best sensitivity and specificity in the
training set.38 A residual sum of squares (RSSQ) was generated
for the regression of each spectrum against each model
[Eq. (6)]

Table 1 (Continued).

Genus Species Known % Blind %

Staphylococcus xylosus 0 — 1 0.3

Stenotrophomonas maltophilia 1 0.01 0 —

Streptococcus acidominimus 0 — 1 0.3

Streptococcus agalactiae 1 0.01 6 1.6

Streptococcus anginosus 0 — 1 0.3

Streptococcus infantarius 0 — 1 0.3

Streptococcus salivarus 0 — 1 0.3

Total 188 100%* 367 100%*

*Totals may not equal 100% due to rounding.

200 400 600 800
0

0.002

0.004

0.006

0.008

0.01
Model 1 (E. coli)

Wavelength [nm]

O
pt

ic
al

 D
en

si
ty

200 400 600 800
0

0.002

0.004

0.006

0.008

0.01
Model 2 (K. pneumoniae)

Wavelength [nm]

O
ptical D

ensity

200 400 600 800
0

0.002

0.004

0.006

0.008

0.01
Model 3 (P. aeruginosa)

Wavelength [nm]

O
pt

ic
al

 D
en

si
ty

200 400 600 800
0

0.002

0.004

0.006

0.008

0.01

Model 4 (S. aureus)

Wavelength [nm]

O
ptical D

ensity

Fig. 1 Transmission spectra used to construct each identification
model. Spectra have been normalized by the area under the curve.
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RSSQij ¼
X ðB̂ij − BiÞ2

nwav
; (6)

where nwav is equal to the number of wavelengths used for
each spectrum. The model regression that generated the smallest
RSSQ value was judged to best represent the spectrum, and the
spectrum was correspondingly assigned the identification of the
species represented by that model. Replicate spectra of many of
the blinded isolates were generated from independently grown
cultures and analyzed with the identification models to establish
the reproducibility of the results. Identification results were
compared to those obtained by the hospital using bioMerieux
Vitek-2.

The spectra from the training set not selected for model crea-
tion were used to validate the model. Table 2 summarizes the
identification results obtained for the spectra for each training
set, excluding those used to create the models. Sensitivity and
specificity values of the training sets were greater than 93.5% for
all four target organisms.

3 Results and Discussion

3.1 Targeted Species

Collected spectra of 204 blind isolates were analyzed with four
identification models, and the results are presented in Table 3.
Strong sensitivity and specificity values were achieved for the
target species. The overall accuracy for the identification of the
targeted species was 98%. Replicate spectra generated from

independently grown cultures and representing 169 isolates
were also tested to confirm the robustness of the approach.

The RSSQ values obtained from the regression of the eigen-
vector sets against the blinded spectra of target organisms were
the lowest and were within the same order of magnitude as those
for the training sets (Table 4). However, the RSSQ values for
training sets were still smaller than those obtained from the
blinded spectra of the target species. Given the limited size of
the training sets, as is evidenced by the larger spread of the resi-
duals in the blinded data, this would indicate that the identifica-
tion models underestimate the full scope of spectral variability
for each species and could be enhanced with additional data in
the training sets (i.e., a larger number of spectra from additional
isolates from which to generate the eigenvectors). P. aeruginosa
had the largest difference in RSSQ values between the training
set and blinded isolates (c.f. 4.84e−12 versus 8.22e−12). This dif-
ference speaks to the small sample size used for the construction
of its model (n ¼ 30 spectra). Notwithstanding this difference,
the spectral features of P. aeruginosa are exceptionally distinct
from the other targeted organisms so much that there was no
impact on the identification results (100% accurate). Another
example of how spectral differences among species can be effec-
tively exploited for correct identification was with S. aureus,
which showed 100% sensitivity and specificity in both training
and blind data sets.

In both the training set and the blind samples, there was one
cross-identification between E. coli and K. pneumoniae and
one E. coli isolate was incorrectly identified as K. pneumoniae.

Table 2 Results of the training set for the sensitivity and specificity for each of the target organisms. These results confirm the validity of the model
for each organism.

Species # Spectra (Isolates) Sensitivity Specificity Accuracy*

E. coli 164 (38) 98.2� 0.2% 98.9� 0.1% 98.6� 0.1%

K. pneumoniae 46 (28) 93.5� 1.1% 99.2� 0.4% 98.6� 0.5%

P. aeruginosa 30 (22) 100% 100% 100.0%

S. aureus 202 (61) 100% 100% 100.0%

*Accuracy ¼ ðTPþ TNÞ∕ðTPþ TNþ FPþ FNÞ; Confidence intervals from Harper 1999.39

Table 3 Sensitivity and specificity results for the blind samples. Analysis of independently grown replicate cultures confirms the same overall
accuracy rate.

Reported data Replicate data

# Isolates Sensitivity Specificity Accuracy
# Spectra
(Isolates) Sensitivity Specificity Accuracy

E. coli 71 95.8� 0.6% 99.2� 0.2% 98.0� 0.4% 38 (25) 97.4� 0.4% 98.5� 0.3% 98.2� 0.4%

K. pneumoniae 16 93.8� 3% 98.4� 1.5% 98.0� 1.7% 10 (6) 90.0% 98.7% 98.2%

P. aeruginosa 16 100% 100% 100.0% 5 (4) 80.0% 100.0% 99.4%

S. aureus 101 100% 100% 100.0% 116 (77) 99.1� 0.2% 100.0% 99.4� 0.1%

Total 204 169 (112)

*Confidence intervals are calculated from Harper and Reeves, 1999 on samples with appropriate sample sizes.39
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This crossover is due to the fact that the spectra of E. coli and
K. pneumoniae are very similar (Fig. 1). On the other hand the
spectra of P. aeruginosa, another Gram-negative rod, are clearly
distinct. Unlike E. coli and K. pneumoniae, P. aeruginosa is
known to produce phenazine compounds, namely pyocyanin,
which are thought to confer a competitive growth advantage
and are a virulence factor in certain diseases, such as cystic
fibrosis.40 These fluorescent compounds are strong absorbers
in the UV-visible portion of the spectrum41,42 and likely contri-
bute to the distinct spectral features of P. aeruginosa.

3.2 Nontargeted Species

The blind spectra of nontargeted species show distinct differences
in spectral features from those of the targeted organisms (not
shown). The RSSQ values of the regression of the target organism
models against the spectra of the blind isolates of nontarget spe-
cies are given in Table 4. These RSSQ values were much greater
than those for the blind isolates of the target species indicating
that the models performed substantially better for their respective
organisms. A contrast of more than one order of magnitude in the
RSSQ values between the target and nontarget organisms sug-
gests that a RSSQ threshold can be imposed to discriminate
the target organisms from nontarget organisms and thus, the uti-
lity of using the models for target organisms in the absence of
those for others remains relevant. A retrospective analysis that
imposed an RSSQ threshold adequate to ensure the same reported
sensitivity for each model (Table 3) resulted in specificity values
of 89%, 98%, and 98% for E. coli, K. pneumonia, and
P. aeruginosa, respectively. The specificity value for S. aureus
was substantially lower, which is not particularly surprising

given that this was the only model representing cocci and cap-
tured the widest number of species (see Table 5).

Because all spectra were collected on a blinded basis, the
nontarget organisms also received an identification based on
the best model fit. We have evaluated the merit of the models
when applied to organisms they were not designed to represent.
This dataset included 32 species representing 14 genera. A sum-
mary of the results is presented in Table 5.

The models did well at selecting organisms that express the
same morphological characteristics as their targets. For exam-
ple, 97% of the Staphylococcus isolates were assigned to
Model 4 (183/189 including S. aureus; 82/88, excluding S. aur-
eus). Model 4 also captures half of the Enterococcus isolates
(11/22) and the majority of the Streptococcus (8/10) isolates.
Enterobacter is described almost equally well by Models 1
and 2—two of the models that describe Gram-negative organ-
isms. Interestingly, one isolate of Pseudomonas oryzihabitans
was not classified under Model 3. Closer inspection of the spec-
trum of this isolate revealed substantial differences from the
spectra of P. aeruginosa. In fact, this may not be surprising con-
sidering that P. oryzihabitans (previously known as Flavimonas
oryzihabitans) is in a different rRNA homology group than
P. aeruginosa and has a different phenotypic expression.43,44

Given that these models were designed for specific species, it
encourages confidence that the inclusion of additional models
can provide a higher degree of taxonomic resolution.

The vast majority of the blinded samples were assigned to
either Model 1 or 4 (82%). This can be explained in two differ-
ent manners. The spectral variance of E. coli and S. aureus iso-
lates is so large that they act like “catch all” models. This large
variance can be explained by either the natural variability among

Table 4 A comparison of residuals among data sets.

Organism/model N Mean RSSQ St. dev of RSSQ

Training set Spectra/isolates

E. coli 164∕38 2.56e − 12 2.20e − 12

K. pneumoniae 46∕28 1.93e − 12 1.58e − 12

P. aeruginosa 30∕22 4.84e − 12 4.58e − 12

S. aureus 202∕61 3.70e − 12 2.82e − 12

Blinded targeted species N (isolates)

E. coli 68 3.17e − 12 2.42e − 12

K. pneumoniae 15 2.62e − 12 1.42e − 12

P. aeruginosa 16 8.22e − 12 4.16e − 12

S. aureus 101 4.77e − 12 2.80e − 12

Blinded nontargeted species(based
on model assignment)

N (isolates)

Model 1 31 2.03e − 11 1.89e − 11

Model 2 21 1.23e − 11 5.52e − 12

Model 3 13 3.82e − 11 5.29e − 11

Model 4 102 1.46e − 11 2.25e − 11
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Table 5 Classification of blinded isolates using four models. Model assignment is indicated by the four right-most columns. Models 1 to 4 represent
E. coli, K. pneumoniae, P. aeruginosa, and S. aureus, respectively.

Genus Species n Model 1 Model 2 Model 3 Model 4

Achromobacter dentrificans 2 1 1

Achromobacter xylosoxidans 3 3

Acinetobacter lwoffi 1 1

Aeromonas hydrophila/caviae 1 1

Citrobacter braakii 1 1

Citrobacter freundii 3 3

Enterobacter aerogenes 1 1

Enterobacter cloacae 14 8 6

Enterococcus durans 1 1

Enterococcus faecalis 18 3 7 8

Enterococcus faecium 3 1 2

Escherichia coli 71 68 3

Klebiella oxytoca 1 1

Klebiella pneumoniae 16 1 15

Pasteurella multocida 2 1 1

Pasteurella spp. 1 1

Proteus mirabilis 7 4 3

Pseudomonas aeruginosa 16 16

Pseudomonas orzyhabitans 1 1

Salmonella spp. 1 1

Serratia marcescens 4 1 3

Staphylococcus aureus 101 101

Staphylococcus auricularis 3 3

Staphylococcus capitis 8 8

Staphylococcus cohnii 1 1

Staphylococcus epidermidis 46 1 45

Staphylococcus haemolyticus 4 4

Staphylococcus hominis 17 3 14

Staphylococcus simulans 3 1 2

Staphylococcus warneri 5 1 4

Staphylococcus xylosus 1 1

Streptococcus acidominimus 1 1

Streptococcus agalactiae 6 1 1 4

Streptococcus anginosus 1 1
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isolates or can be attributed to their large sample sizes. Alterna-
tively, it could be postulated that the models representing
K. pneumoniae and P. aeruginosa (Models 2 and 3) are formu-
lated from spectra that are so distinct in character from the other
organisms that they have elevated skill in excluding them. Given
that the size of the sample set from which the models were built
was relatively small (n ¼ 46 and 30, respectively) these models
may only represent a fraction of the variance expressed by these
organisms; however, this is not supported by the results from
the blinded samples of K. pneumoniae and P. aeruginosa.
Again, the numbers of blind samples were small relative to the
other target organisms, so it is difficult to extrapolate beyond
the results at hand. In the absence of equal representation of
other species, it is difficult to determine the number of spectra
required to describe the full variance of spectral features from
stationary phase cultures for each species (some may require
more than others). Because of this, numerical comparisons of
sampling sizes among different species are challenging. Models
will be revisited to further discriminate among cocci and include
other organisms with discriminating spectral features.

This study demonstrates that the transmission spectra of clin-
ical pathogens can be utilized for pathogen identification. This
method eliminates the need for specialized reagents and can be
directly applied to liquid cultures (e.g., in a research laboratory
or food safety testing). In a clinical setting, colonies could be
sampled directly from a culture plate and suspended in water
for analysis. Maximum utility of this approach will be achieved
when complemented with an appropriate sample preparation
system (see Refs. 45 to 47 for promising developments) and
thus this method could be applied directly to the positive blood
cultures, eliminating the need for plating or culturing.

4 Conclusions
This pilot study demonstrates that the use of multiwavelength
transmission measurements is an effective and economical way
to identify pathogens without specialized reagents. Sensitivities
and specificities >93.5% to 100% were achieved for E. coli,
K. pneumoniae, P. aeruginosa, and S. aureus. The sampling
protocol, hardware capabilities, and models used in this study
are being expanded. Subsequent generations of sample handling
protocols will include refinement and automation of sample
preparation (samples were processed by hand in this study)
that will significantly decrease the testing turn-around time.
The menu of targeted organisms will be extended to include
other prevalent organisms with special focus upon Staphylococ-
cus species. To this end, it is expected that there is an upper limit
on the utility of transmission measurements alone for bacterial
identification. To overcome such a limitation, additional inde-
pendent, yet complementary optical measurements (i.e., angular
scattering) will be necessary to discriminate among some
species. Statistical models will be further informed by incorpor-
ating such additional discriminatory information and will also
be expanded to include theoretical and other multivariate

approaches. In summary, our studies have demonstrated that
standard UV-vis-NIR transmission measurements can be uti-
lized for reagent-free pathogen identification.
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